Title: ENHANCEMENT OF ERD. Research by: Student Name : Wafa Ali Edrees. Student Id : Collage Of Computer Science and Information System

Size: px
Start display at page:

Download "Title: ENHANCEMENT OF ERD. Research by: Student Name : Wafa Ali Edrees. Student Id : 201130061. Collage Of Computer Science and Information System"

Transcription

1 Title: ENHANCEMENT OF ERD Research by: Student Name : Wafa Ali Edrees Student Id : Collage Of Computer Science and Information System Level : 5 Teacher : Arshia Arjumand Banu 1

2 ENHANCEMENT OF ERD ABSTRACT: This paper describes about the inclusion of normalization principles in the technique widely used in data modeling called Entity relationship diagram (ERD). Actually ERD is developed during the phase of conceptual data modeling in the database development process. Now, with the concept of normalization we are enhancing and transforming them in the logical database design phase. Application of normalization during ERD development allows for more robust requirement analysis. Keywords: EER, ERD, UML, DBMS, Normalization INTRODUCTION: Data modeling is an essential technique used to analyze business requirements and essential component of database design and development. Entity relationship diagram (ERD) is one of the most widely used techniques for data modeling. Data modeling is performed during the initial phases of the database life cycle. In this process, the first two phases are concerned with the information content of the database, while the last two phases are concerned with the implementation of the database on some commercial DBMS. During the conceptual data modeling phase, data requirements are expressed through an ERD. The conceptual data modeling phase in general is independent of a DBMS. The logical design phase transforms the conceptual data model into a format understandable to DBMS. This phase may also enhance or refine the data model (ERD) of the previous phase to ensure efficient utilization of the database. 2

3 One of the ways an ERD is enhanced during the logical design phase is through the process of normalization. Normalization is one of the key tenets in relational model design. It is the process of removing redundancy in a table so that the table is easier to modify. It usually involves dividing an entity table into two or more tables and defining relationships between the tables. The objective is to isolate data so that additions, deletions, and modifications of an attribute can be made in just one table and then propagated through the rest of the database via the defined relationships. 3

4 Normalization utilizes association among attributes within an entity table to accomplish its objective. Since an ERD also utilizes association among attributes as a basis to identify entity type structure, it is possible to apply normalization principles during the conceptual data modeling phase. Performing normalization during ERD development can improve the conceptual model, and speed its implementation. This paper outlines the application of normalization principles to ERD development during the conceptual modeling phase. There are various standards for ERD. Related work: In traditional environment there is face-to-face interaction. In this environment, data normalization would be introduced. Files act locally where as DBMS saves directly in a database. In File System transactions are not possible where as various transactions like insert, delete, view, updating etc are possible in DBMS. Data will be accessed through single or various files where as in DBMS, tables (schema) is used to access data. A "File manager" is used to store all relationships in directories in File Systems where as a data base manager (administrator) stores the relationship in form of structural tables. Data in data bases are more secure compared to data in files. Advantages Reduced data redundancy Reduced updating errors and increased consistency Greater data integrity and independence from applications programs Improved data access to users through use of host and query languages Improved data security Reduced data entry, storage, and retrieval costs Facilitated development of new applications program Disadvantages 4

5 Database systems are complex, difficult, and time-consuming to design Substantial hardware and software start-up costs Damage to database affects virtually all applications programs Extensive conversion costs in moving form a file-based system to a database system Initial training required for all programmers and users Proposed work: Normalized ERD Now we utilize the representation of dependency concepts in ERD toward their use in the application of normal forms. Each normal form rule and its application is outlined. First Normal Form (1NF) The first normal form rule is that there should be no nesting or repeating groups in a table. Now an entity type that contains only one value for an attribute in an entity instance ensures the application of first normal form for the entity type. So in a way any entity type with an entity identifier is by default in first normal form. For example, the entity type Student is in first normal form. Second Normal Form (2NF) The second normal form rule is that the key attributes determine all non-key attributes. A violation of second normal form occurs when there is a composite key, and part of the key determines some non-key attributes. The second normal form deals with the situation when the entity identifier contains two or more attributes, and the non-key attribute depends on part of the entity identifier. For example, consider the modified entity type Student. The entity type has a composite entity identifier of SID and City attributes. 5

6 An entity instance of this entity type is shown in the following Figure. Now, if there is a functional dependency City,Status, then the entity type structure will violate the second normal form. To resolve the violation of the second normal form a separate entity type City with oneto-many relationship is created. The relationship cardinalities can be further modified to reflect organizational working. In general, the second normal form violation can be avoided by ensuring that there is only one attribute as an entity identifier. Third Normal Form (3NF) The third normal form rule is that the non-key attributes should be independent. This normal form is violated when there exists a dependency among non-key attributes in the 6

7 form of a transitive dependency. For example consider the entity type Student, In this entity type, there is a functional dependency BuildingName, Fee that violates the third normal form. Transitive dependency is resolved by moving the dependency attributes to a new entity type with one-to-many relationship. In the new entity type the determinant of the dependency becomes the entity identifier. The resolution of the third normal form is shown in the following figure. The relationship cardinalities can be further modified to reflect organizational working. Boyce-Codd Normal Form (BCNF) The Boyce-Codd normal form (BCNF) extends the third normal form. The Boyce-Codd normal form rule is that every determinant is a candidate key. Even though Boyce-Codd normal form and third normal form generally produce the same result, Boyce-Codd normal form is a stronger definition than third normal form. Every table in Boyce-Codd normal form is by definition in third normal form. Boyce-Codd normal form considers two special cases not covered by third normal form: 1. Part of a composite entity identifier determines part of its attribute, and 2. A non entity identifier attribute determines part of an entity identifier attribute. These situations are only possible if there is a composite entity identifier, and dependencies exist from a non-entity identifier attribute to part of the entity identifier. 7

8 For example, consider the entity type Student Concentration. The entity type is in third normal form, but since there is a dependency FacultyName, MajorMinor, it is not in Boyce-Codd normal form. To ensure that Student Concentration entity type stays in Boyce-Codd normal form, another entity type Faculty with one-to-many relationship is constructed as shown in the following figure. The relationship cardinalities can be further modified to reflect organizational working. Fourth Normal Form (4NF) Fourth normal form rule is that there should not be more than one multi-valued dependency in a table. For example, consider the Student Details entity type. Now, during requirements analysis if it is found that the Major Minor values of a student are independent of the Activity performed by the student, then the entity type structure will violate the fourth normal form. To resolve the violation of the fourth normal form separate weak entity types with identifying relationships are created. The Student Focus and Student Activity entity types are weak entity types. The relationship cardinalities 8

9 can be further modified to reflect organizational working. It is now presumed that the Student entity type has the functional dependency SID, Name, Street, City, Zip. Architecture: The Logical Structures: Access to the data is made possible by a well-defined logical organization composed of the following. Logical structure Description Fields Records A field holds a single piece of information, such as a name or an amount. A field can hold one specific type of information. Fields are assembled into a structure called a record. On its own, a field is not very useful, as it can hold only a limited amount of information. A record is a logical structure assembled from an arbitrary number of fields. A record 9

10 stores a single entry in the database. The fields in a record store information about important properties of the entry. Records are organized in tables. Tables Companies A table can be thought of as an N times M matrix. Each of the N rows describes a record and each of the M columns describes a field in the record. Tables are organized in companies. A company is a sub-database; its primary use is to separate and group large portions of data together. A company can contain private tables as well as tables that are shared with other companies. The following illustration shows logical structures. Application of Normalization to ERD: Data modeling is an iterative process. Generally a preliminary data model is constructed which is then refined many times. There are many guidelines (rules) for refining an ERD. Some of these rules are as follows: 1. Transform attributes into entity types. This transformation involves the addition of an entity type and a 1-M (one-to-many) relationship. 10

11 2. Split compound attributes into smaller attributes. A compound attribute contains multiple kinds of data. 3. Expand entity types into two entity types and a relationship. This transformation can be useful to record a finer level of detail about an entity. 4. Transform a weak entity type into a strong entity type. This transformation is most useful for associative entity types. 5. Add historical details to a data model. Historical details may be necessary for legal as well as strategic reporting requirements. This transformation can be applied to attributes and relationships. 6. Add generalization hierarchies by transforming entity types into generalization hierarchy. Application of normalization principles toward ERD development enhances these guidelines. To understand this application (i) representation of dependency concepts in an ERD is outlined, followed by (ii) representation of normal forms toward the development of entity type structure. Guidelines for identification of various dependencies is avoided in the paper so as to focus more on their application. Only the first four normal forms and the Boyce-Codd normal forms are considered. Representation of Dependencies Functional dependency in an entity type occurs if one observes the association among the entity identifier and other attributes as reflected in an entity instance. Each entity instance represents a set of values taken by the non entity identifier attributes for each primary key (entity identifier) value. So, in a way an entity instance structure also reflects an application of the functional dependency concept. For example, the Student entity type can represent the functional dependency SID, Name, Street, City, Zip. 11

12 Each entity instance will now represent the functional dependency among the entity attributes as shown. During requirement analysis, some entity types may be identified through functional dependencies, while others may be determined through database relationships. For example, the statement, "A faculty teaches many offerings but an offering is taught by one faculty" defines entity type Faculty and Offerings. Another important consideration is to distinguish when one attribute alone is the entity identifier versus a composite entity identifier. A composite entity identifier is an entity identifier with more than one attribute. A functional dependency in which the determinant contains more than one attribute usually represents a many-to-many relationship, which is more addressed through higher normal forms. The notion of having a composite entity identifier is not very common, and often times is a matter of expediency, rather than good entity structure or design. 12

13 Transitive dependency in an entity type occurs if non entity identifier attributes have dependency among themselves. For example, consider the modified Student entity type. In this entity type, suppose there is a functional dependency BuildingName, Fee. Existence of BuildingName Fee dependency implies that the value assigned to the Fee attribute is fixed for distinct BuildingName attribute values. In other words, the Fee attribute values are not specific to the SID value of a student, but rather the BuildingName value. The entity instance of transitive dependency is shown in the figure. Multi-valued dependency equivalency in ERD occurs when attributes within an entity instance have more than one value. This is a situation when some attributes within an entity instance have maximum cardinality of N (more than 1). When an attribute has multiple values in an entity instance, it can be setup either as a composite key identifier of the entity type, or split into a weak entity type. For example, consider the following entity type Student Details as shown as follows. 13

14 The Student Details entity type has a composite entity identifier consisting of three attributes - SID, Major Minor, and Activity. The composition of entity identifier is due to the fact that a student has multiple Major Minor values along with being involved in multiple activities. However, a student has only one value for Name, Street, City, Zip attributes based on the functional dependency SID, Major Minor, Activity,Name, Street, City, Zip. The multi-valued dependency affects the key structure. So, in the Student Details entity type, there can be an MVD SID,Major Minor, Activity. This means that a SID value is associated with multiple values of Major Minor and Activity attributes, and together they determine other attributes. The entity instance of Student Details entity type as follows. 14

15 Diagram: The Database Design Life cycle Database development is just one part of the much wider field of software engineering, the process of developing and maintaining software. A core aspect of software engineering is the subdivision of the development process into a series of phases, or steps, each of which focuses on one aspect of the development. The collection of these steps is sometimes referred to as a development life cycle. The software product moves through this life cycle (sometimes repeatedly as it is refined or redeveloped) until it is finally retired from use. Ideally, each phase in the life cycle can 15

16 be checked for correctness before moving on to the next phase. However, software engineering is a very rich discipline with many different methods for the subdivision of the development process and a detailed exploration of the many different ways in which development can be structured is beyond the scope of this unit. Establishing requirements involves consultation with, and agreement among, stakeholders as to what they want of a system, expressed as a statement of requirements. Analysis starts by considering the statement of requirements and finishes by producing a system specification. The specification is a formal representation of what a system should do, expressed in terms that are independent of how it may be realized. Design begins with a system specification and produces design documents, and provides a detailed description of how a system should be constructed. Implementation is the construction of a computer system according to a given design document and taking account of the environment in which the system will be operating (for example specific hardware or software available for the development). Implementation may be staged, usually with an initial system than can be validated and tested before a final system is released for use. Testing compares the implemented system against the design documents and requirements specification and produces an acceptance report or, more usually, a list of errors and bugs that require a review of the analysis, design and implementation processes to correct (testing is usually the task that leads to the waterfall model iterating through the life cycle). Maintenance involves dealing with changes in the requirements, or the implementation environment, bug fixing or porting of the system to new 16

17 environments (for example migrating a system from a standalone PC to a UNIX workstation or a networked environment). Since maintenance involves the analysis of the changes required, design of a solution, implementation and testing of that solution over the lifetime of a maintained software system, the waterfall life cycle will be repeatedly revisited. Conclusion: Instead of applying normalization principles during the relational design portion of logical database design phase, it is better to apply them during the conceptual modeling phase. Due to the similarity in the notion of an entity type and a relation, normalization concepts when explained or applied to an ERD may generate a richer model. Also, such an application enables a better representation of user working requirements. There should be only one dependency in each entity type where the determinant is the entity identifier. There should not be any additional dependency among the non entity identifier attributes. Any such additional dependency should be represented by a new entity type with one-to-many relationship. If there is a composite entity identifier of three or more attributes it should be ensured that there is only one multi-valued dependency among them. Future enhancement: Normalization provides numerous benefits to a database. Some of the major benefits include the following: Greater overall database organization Reduction of redundant data Data consistency within the database A much more flexible database design A better handle on database security 17

18 Organization is brought about by the normalization process, making everyone's job easier, from the user who accesses tables to the database administrator (DBA) who is responsible for the overall management of every object in the database. Data redundancy is reduced, which simplifies data structures and conserves disk space. Because duplicate data is minimized, the possibility of inconsistent data is greatly reduced. For example, in one table an individual's name could read STEVE SMITH, whereas the name of the same individual reads STEPHEN R. SMITH in another table. Because the database has been normalized and broken into smaller tables, you are provided with more flexibility as far as modifying existing structures. It is much easier to modify a small table with little data than to modify one big table that holds all the vital data in the database. Lastly, security is also provided in the sense that the DBA can grant access to limited tables to certain users. Security is easier to control when normalization has occurred. Data integrity is the assurance of consistent and accurate data within a database. 18

19 Reference: Adelman, S., Moss, Larissa and Abai, Majid (2005) Data Strategy, Addison- Wesley, Readings, MA. Bala, Mohan and Martin, Kipp (1997) "A Mathematical Programming Approach to Data Base Normalization," Informs Journal of Computing, Vol. 9, No.1, pp Balaban, M. and Shoval, P. (1999). Enhancing the ER model with integrity methods. Journal of Database Management, 10(4), Balaban, M. and Shoval, P. (2002). Enforcing Cardinality Constraints in ER Model with Integrity Methods. In Keng Siau (Eds) Advanced Topics in Database Research, Volume 1,

A. TRUE-FALSE: GROUP 2 PRACTICE EXAMPLES FOR THE REVIEW QUIZ:

A. TRUE-FALSE: GROUP 2 PRACTICE EXAMPLES FOR THE REVIEW QUIZ: GROUP 2 PRACTICE EXAMPLES FOR THE REVIEW QUIZ: Review Quiz will contain very similar question as below. Some questions may even be repeated. The order of the questions are random and are not in order of

More information

DATABASE MANAGEMENT SYSTEMS. Question Bank:

DATABASE MANAGEMENT SYSTEMS. Question Bank: DATABASE MANAGEMENT SYSTEMS Question Bank: UNIT 1 1. Define Database? 2. What is a DBMS? 3. What is the need for database systems? 4. Define tupule? 5. What are the responsibilities of DBA? 6. Define schema?

More information

Fundamentals of Database System

Fundamentals of Database System Fundamentals of Database System Chapter 4 Normalization Fundamentals of Database Systems (Chapter 4) Page 1 Introduction To Normalization In general, the goal of a relational database design is to generate

More information

Database Design. Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB

Database Design. Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB Marta Jakubowska-Sobczak IT/ADC based on slides prepared by Paula Figueiredo, IT/DB Outline Database concepts Conceptual Design Logical Design Communicating with the RDBMS 2 Some concepts Database: an

More information

CS 377 Database Systems. Database Design Theory and Normalization. Li Xiong Department of Mathematics and Computer Science Emory University

CS 377 Database Systems. Database Design Theory and Normalization. Li Xiong Department of Mathematics and Computer Science Emory University CS 377 Database Systems Database Design Theory and Normalization Li Xiong Department of Mathematics and Computer Science Emory University 1 Relational database design So far Conceptual database design

More information

Data Modeling Basics

Data Modeling Basics Information Technology Standard Commonwealth of Pennsylvania Governor's Office of Administration/Office for Information Technology STD Number: STD-INF003B STD Title: Data Modeling Basics Issued by: Deputy

More information

14 Databases. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:

14 Databases. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to: 14 Databases 14.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define a database and a database management system (DBMS)

More information

How To Write A Diagram

How To Write A Diagram Data Model ing Essentials Third Edition Graeme C. Simsion and Graham C. Witt MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization. Introduction to Normalization. Normal Forms.

Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization. Introduction to Normalization. Normal Forms. Chapter 5: Logical Database Design and the Relational Model Part 2: Normalization Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS

More information

Databases What the Specification Says

Databases What the Specification Says Databases What the Specification Says Describe flat files and relational databases, explaining the differences between them; Design a simple relational database to the third normal form (3NF), using entityrelationship

More information

LOGICAL DATABASE DESIGN

LOGICAL DATABASE DESIGN MODULE 8 LOGICAL DATABASE DESIGN OBJECTIVE QUESTIONS There are 4 alternative answers to each question. One of them is correct. Pick the correct answer. Do not guess. A key is given at the end of the module

More information

DATABASE SYSTEMS. Chapter 7 Normalisation

DATABASE SYSTEMS. Chapter 7 Normalisation DATABASE SYSTEMS DESIGN IMPLEMENTATION AND MANAGEMENT INTERNATIONAL EDITION ROB CORONEL CROCKETT Chapter 7 Normalisation 1 (Rob, Coronel & Crockett 978184480731) In this chapter, you will learn: What normalization

More information

Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases

Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 15 Outline Informal Design Guidelines

More information

Advantages of DBMS. Copyright @ www.bcanotes.com

Advantages of DBMS. Copyright @ www.bcanotes.com Advantages of DBMS One of the main advantages of using a database system is that the organization can exert, via the DBA, centralized management and control over the data. The database administrator is

More information

CHAPTER 6 DATABASE MANAGEMENT SYSTEMS. Learning Objectives

CHAPTER 6 DATABASE MANAGEMENT SYSTEMS. Learning Objectives CHAPTER 6 DATABASE MANAGEMENT SYSTEMS Management Information Systems, 10 th edition, By Raymond McLeod, Jr. and George P. Schell 2007, Prentice Hall, Inc. 1 Learning Objectives Understand the hierarchy

More information

MODULE 8 LOGICAL DATABASE DESIGN. Contents. 2. LEARNING UNIT 1 Entity-relationship(E-R) modelling of data elements of an application.

MODULE 8 LOGICAL DATABASE DESIGN. Contents. 2. LEARNING UNIT 1 Entity-relationship(E-R) modelling of data elements of an application. MODULE 8 LOGICAL DATABASE DESIGN Contents 1. MOTIVATION AND LEARNING GOALS 2. LEARNING UNIT 1 Entity-relationship(E-R) modelling of data elements of an application. 3. LEARNING UNIT 2 Organization of data

More information

DATABASE NORMALIZATION

DATABASE NORMALIZATION DATABASE NORMALIZATION Normalization: process of efficiently organizing data in the DB. RELATIONS (attributes grouped together) Accurate representation of data, relationships and constraints. Goal: - Eliminate

More information

Announcements. SQL is hot! Facebook. Goal. Database Design Process. IT420: Database Management and Organization. Normalization (Chapter 3)

Announcements. SQL is hot! Facebook. Goal. Database Design Process. IT420: Database Management and Organization. Normalization (Chapter 3) Announcements IT0: Database Management and Organization Normalization (Chapter 3) Department coin design contest deadline - February -week exam Monday, February 1 Lab SQL SQL Server: ALTER TABLE tname

More information

Concepts of Database Management Seventh Edition. Chapter 6 Database Design 2: Design Method

Concepts of Database Management Seventh Edition. Chapter 6 Database Design 2: Design Method Concepts of Database Management Seventh Edition Chapter 6 Database Design 2: Design Method Objectives Discuss the general process and goals of database design Define user views and explain their function

More information

Normalization of Database

Normalization of Database Normalization of Database UNIT-4 Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy

More information

MCQs~Databases~Relational Model and Normalization http://en.wikipedia.org/wiki/database_normalization

MCQs~Databases~Relational Model and Normalization http://en.wikipedia.org/wiki/database_normalization http://en.wikipedia.org/wiki/database_normalization Database normalization is the process of organizing the fields and tables of a relational database to minimize redundancy. Normalization usually involves

More information

Bridge from Entity Relationship modeling to creating SQL databases, tables, & relations

Bridge from Entity Relationship modeling to creating SQL databases, tables, & relations 1 Topics for this week: 1. Good Design 2. Functional Dependencies 3. Normalization Readings for this week: 1. E&N, Ch. 10.1-10.6; 12.2 2. Quickstart, Ch. 3 3. Complete the tutorial at http://sqlcourse2.com/

More information

Introduction to normalization. Introduction to normalization

Introduction to normalization. Introduction to normalization Introduction to normalization Lecture 4 Instructor Anna Sidorova Agenda Presentation Review of relational models, in class exersise Introduction to normalization In-class exercises Discussion of HW2 1

More information

BCA. Database Management System

BCA. Database Management System BCA IV Sem Database Management System Multiple choice questions 1. A Database Management System (DBMS) is A. Collection of interrelated data B. Collection of programs to access data C. Collection of data

More information

CDC UNIFIED PROCESS PRACTICES GUIDE

CDC UNIFIED PROCESS PRACTICES GUIDE Purpose The purpose of this document is to provide guidance on the practice of Modeling and to describe the practice overview, requirements, best practices, activities, and key terms related to these requirements.

More information

DATABASE INTRODUCTION

DATABASE INTRODUCTION Introduction The history of database system research is one of exceptional productivity and startling economic impact. We have learnt that from the days of file-based systems there are better ways to handle

More information

Tutorial on Relational Database Design

Tutorial on Relational Database Design Tutorial on Relational Database Design Introduction Relational database was proposed by Edgar Codd (of IBM Research) around 1969. It has since become the dominant database model for commercial applications

More information

not necessarily strictly sequential feedback loops exist, i.e. may need to revisit earlier stages during a later stage

not necessarily strictly sequential feedback loops exist, i.e. may need to revisit earlier stages during a later stage Database Design Process there are six stages in the design of a database: 1. requirement analysis 2. conceptual database design 3. choice of the DBMS 4. data model mapping 5. physical design 6. implementation

More information

Chapter 6. Database Tables & Normalization. The Need for Normalization. Database Tables & Normalization

Chapter 6. Database Tables & Normalization. The Need for Normalization. Database Tables & Normalization Chapter 6 Database Tables & Normalization Objectives: to learn What normalization is and what role it plays in the database design process About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF How normal

More information

USING UML FOR OBJECT-RELATIONAL DATABASE SYSTEMS DEVELOPMENT: A FRAMEWORK

USING UML FOR OBJECT-RELATIONAL DATABASE SYSTEMS DEVELOPMENT: A FRAMEWORK USING UML FOR OBJECT-RELATIONAL DATABASE SYSTEMS DEVELOPMENT: A FRAMEWORK Ming Wang, California State University, ming.wang@calstatela.edu ABSTRACT Data model of object-relational databases (ORDBs) is

More information

IT2304: Database Systems 1 (DBS 1)

IT2304: Database Systems 1 (DBS 1) : Database Systems 1 (DBS 1) (Compulsory) 1. OUTLINE OF SYLLABUS Topic Minimum number of hours Introduction to DBMS 07 Relational Data Model 03 Data manipulation using Relational Algebra 06 Data manipulation

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization CPS352: Database Systems Simon Miner Gordon College Last Revised: 9/27/12 Agenda Check-in Functional Dependencies (continued) Design Project E-R Diagram Presentations

More information

Database Design Basics

Database Design Basics Database Design Basics Table of Contents SOME DATABASE TERMS TO KNOW... 1 WHAT IS GOOD DATABASE DESIGN?... 2 THE DESIGN PROCESS... 2 DETERMINING THE PURPOSE OF YOUR DATABASE... 3 FINDING AND ORGANIZING

More information

COSC344 Database Theory and Applications. Lecture 9 Normalisation. COSC344 Lecture 9 1

COSC344 Database Theory and Applications. Lecture 9 Normalisation. COSC344 Lecture 9 1 COSC344 Database Theory and Applications Lecture 9 Normalisation COSC344 Lecture 9 1 Overview Last Lecture Functional Dependencies This Lecture Normalisation Introduction 1NF 2NF 3NF BCNF Source: Section

More information

Database Design Process. Databases - Entity-Relationship Modelling. Requirements Analysis. Database Design

Database Design Process. Databases - Entity-Relationship Modelling. Requirements Analysis. Database Design Process Databases - Entity-Relationship Modelling Ramakrishnan & Gehrke identify six main steps in designing a database Requirements Analysis Conceptual Design Logical Design Schema Refinement Physical

More information

A brief overview of developing a conceptual data model as the first step in creating a relational database.

A brief overview of developing a conceptual data model as the first step in creating a relational database. Data Modeling Windows Enterprise Support Database Services provides the following documentation about relational database design, the relational database model, and relational database software. Introduction

More information

Designing Databases. Introduction

Designing Databases. Introduction Designing Databases C Introduction Businesses rely on databases for accurate, up-to-date information. Without access to mission critical data, most businesses are unable to perform their normal daily functions,

More information

æ A collection of interrelated and persistent data èusually referred to as the database èdbèè.

æ A collection of interrelated and persistent data èusually referred to as the database èdbèè. CMPT-354-Han-95.3 Lecture Notes September 10, 1995 Chapter 1 Introduction 1.0 Database Management Systems 1. A database management system èdbmsè, or simply a database system èdbsè, consists of æ A collection

More information

ISM 318: Database Systems. Objectives. Database. Dr. Hamid R. Nemati

ISM 318: Database Systems. Objectives. Database. Dr. Hamid R. Nemati ISM 318: Database Systems Dr. Hamid R. Nemati Department of Information Systems Operations Management Bryan School of Business Economics Objectives Underst the basics of data databases Underst characteristics

More information

AVOIDANCE OF CYCLICAL REFERENCE OF FOREIGN KEYS IN DATA MODELING USING THE ENTITY-RELATIONSHIP MODEL

AVOIDANCE OF CYCLICAL REFERENCE OF FOREIGN KEYS IN DATA MODELING USING THE ENTITY-RELATIONSHIP MODEL AVOIDANCE OF CYCLICAL REFERENCE OF FOREIGN KEYS IN DATA MODELING USING THE ENTITY-RELATIONSHIP MODEL Ben B. Kim, Seattle University, bkim@seattleu.edu ABSTRACT The entity-relationship (ER model is clearly

More information

Normalization in Database Design

Normalization in Database Design in Database Design Marek Rychly mrychly@strathmore.edu Strathmore University, @ilabafrica & Brno University of Technology, Faculty of Information Technology Advanced Databases and Enterprise Systems 14

More information

Fundamentals of Database Design

Fundamentals of Database Design Fundamentals of Database Design Zornitsa Zaharieva CERN Data Management Section - Controls Group Accelerators and Beams Department /AB-CO-DM/ 23-FEB-2005 Contents : Introduction to Databases : Main Database

More information

Lecture 12: Entity Relationship Modelling

Lecture 12: Entity Relationship Modelling Lecture 12: Entity Relationship Modelling The Entity-Relationship Model Entities Relationships Attributes Constraining the instances Cardinalities Identifiers Generalization 2004-5 Steve Easterbrook. This

More information

Database design 1 The Database Design Process: Before you build the tables and other objects that will make up your system, it is important to take time to design it. A good design is the keystone to creating

More information

IT2305 Database Systems I (Compulsory)

IT2305 Database Systems I (Compulsory) Database Systems I (Compulsory) INTRODUCTION This is one of the 4 modules designed for Semester 2 of Bachelor of Information Technology Degree program. CREDITS: 04 LEARNING OUTCOMES On completion of this

More information

Foundations of Information Management

Foundations of Information Management Foundations of Information Management - WS 2012/13 - Juniorprofessor Alexander Markowetz Bonn Aachen International Center for Information Technology (B-IT) Data & Databases Data: Simple information Database:

More information

Databases and BigData

Databases and BigData Eduardo Cunha de Almeida eduardo.almeida@uni.lu Outline of the course Introduction Database Systems (E. Almeida) Distributed Hash Tables and P2P (C. Cassagnes) NewSQL (D. Kim and J. Meira) NoSQL (D. Kim)

More information

If it's in the 2nd NF and there are no non-key fields that depend on attributes in the table other than the Primary Key.

If it's in the 2nd NF and there are no non-key fields that depend on attributes in the table other than the Primary Key. Normalization First Normal Form (1st NF) The table cells must be of single value. Eliminate repeating groups in individual tables. Create a separate table for each set of related data. Identify each set

More information

Functional Dependency and Normalization for Relational Databases

Functional Dependency and Normalization for Relational Databases Functional Dependency and Normalization for Relational Databases Introduction: Relational database design ultimately produces a set of relations. The implicit goals of the design activity are: information

More information

Part 6. Normalization

Part 6. Normalization Part 6 Normalization Normal Form Overview Universe of All Data Relations (normalized / unnormalized 1st Normal Form 2nd Normal Form 3rd Normal Form Boyce-Codd Normal Form (BCNF) 4th Normal Form 5th Normal

More information

Designing a Database Schema

Designing a Database Schema Week 10: Database Design Database Design From an ER Schema to a Relational One Restructuring an ER schema Performance Analysis Analysis of Redundancies, Removing Generalizations Translation into a Relational

More information

Database Design Process

Database Design Process Entity-Relationship Model Chapter 3, Part 1 Database Design Process Requirements analysis Conceptual design data model Logical design Schema refinement: Normalization Physical tuning 1 Problem: University

More information

Lecture Notes INFORMATION RESOURCES

Lecture Notes INFORMATION RESOURCES Vilnius Gediminas Technical University Jelena Mamčenko Lecture Notes on INFORMATION RESOURCES Part I Introduction to Dta Modeling and MSAccess Code FMITB02004 Course title Information Resourses Course

More information

Database Design Overview. Conceptual Design ER Model. Entities and Entity Sets. Entity Set Representation. Keys

Database Design Overview. Conceptual Design ER Model. Entities and Entity Sets. Entity Set Representation. Keys Database Design Overview Conceptual Design. The Entity-Relationship (ER) Model CS430/630 Lecture 12 Conceptual design The Entity-Relationship (ER) Model, UML High-level, close to human thinking Semantic

More information

Unit 2.1. Data Analysis 1 - V2.0 1. Data Analysis 1. Dr Gordon Russell, Copyright @ Napier University

Unit 2.1. Data Analysis 1 - V2.0 1. Data Analysis 1. Dr Gordon Russell, Copyright @ Napier University Data Analysis 1 Unit 2.1 Data Analysis 1 - V2.0 1 Entity Relationship Modelling Overview Database Analysis Life Cycle Components of an Entity Relationship Diagram What is a relationship? Entities, attributes,

More information

Database Normalization. Mohua Sarkar, Ph.D Software Engineer California Pacific Medical Center 415-600-7003 sarkarm@sutterhealth.

Database Normalization. Mohua Sarkar, Ph.D Software Engineer California Pacific Medical Center 415-600-7003 sarkarm@sutterhealth. Database Normalization Mohua Sarkar, Ph.D Software Engineer California Pacific Medical Center 415-600-7003 sarkarm@sutterhealth.org Definition A database is an organized collection of data whose content

More information

Chap 1. Introduction to Software Architecture

Chap 1. Introduction to Software Architecture Chap 1. Introduction to Software Architecture 1. Introduction 2. IEEE Recommended Practice for Architecture Modeling 3. Architecture Description Language: the UML 4. The Rational Unified Process (RUP)

More information

Introduction to Database Systems

Introduction to Database Systems Introduction to Database Systems A database is a collection of related data. It is a collection of information that exists over a long period of time, often many years. The common use of the term database

More information

normalisation Goals: Suppose we have a db scheme: is it good? define precise notions of the qualities of a relational database scheme

normalisation Goals: Suppose we have a db scheme: is it good? define precise notions of the qualities of a relational database scheme Goals: Suppose we have a db scheme: is it good? Suppose we have a db scheme derived from an ER diagram: is it good? define precise notions of the qualities of a relational database scheme define algorithms

More information

CS2Bh: Current Technologies. Introduction to XML and Relational Databases. Introduction to Databases. Why databases? Why not use XML?

CS2Bh: Current Technologies. Introduction to XML and Relational Databases. Introduction to Databases. Why databases? Why not use XML? CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 Introduction to Databases CS2 Spring 2005 (LN5) 1 Why databases? Why not use XML? What is missing from XML: Consistency

More information

Relational Database Basics Review

Relational Database Basics Review Relational Database Basics Review IT 4153 Advanced Database J.G. Zheng Spring 2012 Overview Database approach Database system Relational model Database development 2 File Processing Approaches Based on

More information

SQL Server. 1. What is RDBMS?

SQL Server. 1. What is RDBMS? SQL Server 1. What is RDBMS? Relational Data Base Management Systems (RDBMS) are database management systems that maintain data records and indices in tables. Relationships may be created and maintained

More information

COURSE NAME: Database Management. TOPIC: Database Design LECTURE 3. The Database System Life Cycle (DBLC) The database life cycle contains six phases;

COURSE NAME: Database Management. TOPIC: Database Design LECTURE 3. The Database System Life Cycle (DBLC) The database life cycle contains six phases; COURSE NAME: Database Management TOPIC: Database Design LECTURE 3 The Database System Life Cycle (DBLC) The database life cycle contains six phases; 1 Database initial study. Analyze the company situation.

More information

CS143 Notes: Normalization Theory

CS143 Notes: Normalization Theory CS143 Notes: Normalization Theory Book Chapters (4th) Chapters 7.1-6, 7.8, 7.10 (5th) Chapters 7.1-6, 7.8 (6th) Chapters 8.1-6, 8.8 INTRODUCTION Main question How do we design good tables for a relational

More information

C# Cname Ccity.. P1# Date1 Qnt1 P2# Date2 P9# Date9 1 Codd London.. 1 21.01 20 2 23.01 2 Martin Paris.. 1 26.10 25 3 Deen London.. 2 29.

C# Cname Ccity.. P1# Date1 Qnt1 P2# Date2 P9# Date9 1 Codd London.. 1 21.01 20 2 23.01 2 Martin Paris.. 1 26.10 25 3 Deen London.. 2 29. 4. Normalisation 4.1 Introduction Suppose we are now given the task of designing and creating a database. How do we produce a good design? What relations should we have in the database? What attributes

More information

Physical Database Design and Tuning

Physical Database Design and Tuning Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization

CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization CSCI-GA.2433-001 Database Systems Lecture 7: Schema Refinement and Normalization Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com View 1 View 2 View 3 Conceptual Schema At that point we

More information

1-04-10 Configuration Management: An Object-Based Method Barbara Dumas

1-04-10 Configuration Management: An Object-Based Method Barbara Dumas 1-04-10 Configuration Management: An Object-Based Method Barbara Dumas Payoff Configuration management (CM) helps an organization maintain an inventory of its software assets. In traditional CM systems,

More information

7.1 The Information system

7.1 The Information system Chapter 7. Database Planning, Design and Administration Last few decades have seen proliferation of software applications, many requiring constant maintenance involving: correcting faults, implementing

More information

1. Physical Database Design in Relational Databases (1)

1. Physical Database Design in Relational Databases (1) Chapter 20 Physical Database Design and Tuning Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1. Physical Database Design in Relational Databases (1) Factors that Influence

More information

Data Analysis 1. SET08104 Database Systems. Copyright @ Napier University

Data Analysis 1. SET08104 Database Systems. Copyright @ Napier University Data Analysis 1 SET08104 Database Systems Copyright @ Napier University Entity Relationship Modelling Overview Database Analysis Life Cycle Components of an Entity Relationship Diagram What is a relationship?

More information

Data Dictionary and Normalization

Data Dictionary and Normalization Data Dictionary and Normalization Priya Janakiraman About Technowave, Inc. Technowave is a strategic and technical consulting group focused on bringing processes and technology into line with organizational

More information

B.Com(Computers) II Year RELATIONAL DATABASE MANAGEMENT SYSTEM Unit- I

B.Com(Computers) II Year RELATIONAL DATABASE MANAGEMENT SYSTEM Unit- I B.Com(Computers) II Year RELATIONAL DATABASE MANAGEMENT SYSTEM Unit- I 1 1. What is Data? A. Data is a collection of raw information. 2. What is Information? A. Information is a collection of processed

More information

Database Design and the Reality of Normalisation

Database Design and the Reality of Normalisation Proceedings of the NACCQ 2000 Wellington NZ www.naccq.ac.nz Database Design and the Reality of Normalisation Dave Kennedy ABSTRACT Institute of Technology Christchurch Polytechnic Te Whare Runanga O Otautahi

More information

Database Design Process

Database Design Process Database Design Process Entity-Relationship Model From Chapter 5, Kroenke book Requirements analysis Conceptual design data model Logical design Schema refinement: Normalization Physical tuning Problem:

More information

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 Databases -Normalization III (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 This lecture This lecture describes 3rd normal form. (N Spadaccini 2010 and W Liu 2012) Databases -

More information

Data Hierarchy. Traditional File based Approach. Hierarchy of Data for a Computer-Based File

Data Hierarchy. Traditional File based Approach. Hierarchy of Data for a Computer-Based File Management Information Systems Data and Knowledge Management Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) LEARNING OBJECTIVES Recognize the importance of data, issues involved

More information

Module 5: Normalization of database tables

Module 5: Normalization of database tables Module 5: Normalization of database tables Normalization is a process for evaluating and correcting table structures to minimize data redundancies, thereby reducing the likelihood of data anomalies. The

More information

CHAPTER 1: CLIENT/SERVER INTEGRATED DEVELOPMENT ENVIRONMENT (C/SIDE)

CHAPTER 1: CLIENT/SERVER INTEGRATED DEVELOPMENT ENVIRONMENT (C/SIDE) Chapter 1: Client/Server Integrated Development Environment (C/SIDE) CHAPTER 1: CLIENT/SERVER INTEGRATED DEVELOPMENT ENVIRONMENT (C/SIDE) Objectives Introduction The objectives are: Discuss Basic Objects

More information

DATABASE DESIGN: NORMALIZATION NOTE & EXERCISES (Up to 3NF)

DATABASE DESIGN: NORMALIZATION NOTE & EXERCISES (Up to 3NF) DATABASE DESIGN: NORMALIZATION NOTE & EXERCISES (Up to 3NF) Tables that contain redundant data can suffer from update anomalies, which can introduce inconsistencies into a database. The rules associated

More information

There are five fields or columns, with names and types as shown above.

There are five fields or columns, with names and types as shown above. 3 THE RELATIONAL MODEL Exercise 3.1 Define the following terms: relation schema, relational database schema, domain, attribute, attribute domain, relation instance, relation cardinality, andrelation degree.

More information

Fourth generation techniques (4GT)

Fourth generation techniques (4GT) Fourth generation techniques (4GT) The term fourth generation techniques (4GT) encompasses a broad array of software tools that have one thing in common. Each enables the software engineer to specify some

More information

Introduction to Computing. Lectured by: Dr. Pham Tran Vu t.v.pham@cse.hcmut.edu.vn

Introduction to Computing. Lectured by: Dr. Pham Tran Vu t.v.pham@cse.hcmut.edu.vn Introduction to Computing Lectured by: Dr. Pham Tran Vu t.v.pham@cse.hcmut.edu.vn Databases The Hierarchy of Data Keys and Attributes The Traditional Approach To Data Management Database A collection of

More information

Physical Design. Meeting the needs of the users is the gold standard against which we measure our success in creating a database.

Physical Design. Meeting the needs of the users is the gold standard against which we measure our success in creating a database. Physical Design Physical Database Design (Defined): Process of producing a description of the implementation of the database on secondary storage; it describes the base relations, file organizations, and

More information

Institutional Research Database Study

Institutional Research Database Study Institutional Research Database Study The Office of Institutional Research uses data provided by Administrative Computing to perform reporting requirements to SCHEV and other state government agencies.

More information

Database IST400/600. Jian Qin. A collection of data? A computer system? Everything you collected for your group project?

Database IST400/600. Jian Qin. A collection of data? A computer system? Everything you collected for your group project? Relational Databases IST400/600 Jian Qin Database A collection of data? Everything you collected for your group project? A computer system? File? Spreadsheet? Information system? Date s criteria: Integration

More information

Answers to Review Questions

Answers to Review Questions Tutorial 2 The Database Design Life Cycle Reference: MONASH UNIVERSITY AUSTRALIA Faculty of Information Technology FIT1004 Database Rob, P. & Coronel, C. Database Systems: Design, Implementation & Management,

More information

www.dotnetsparkles.wordpress.com

www.dotnetsparkles.wordpress.com Database Design Considerations Designing a database requires an understanding of both the business functions you want to model and the database concepts and features used to represent those business functions.

More information

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24

LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 LiTH, Tekniska högskolan vid Linköpings universitet 1(7) IDA, Institutionen för datavetenskap Juha Takkinen 2007-05-24 1. A database schema is a. the state of the db b. a description of the db using a

More information

Normalization. Reduces the liklihood of anomolies

Normalization. Reduces the liklihood of anomolies Normalization Normalization Tables are important, but properly designing them is even more important so the DBMS can do its job Normalization the process for evaluating and correcting table structures

More information

Normalization. Functional Dependence. Normalization. Normalization. GIS Applications. Spring 2011

Normalization. Functional Dependence. Normalization. Normalization. GIS Applications. Spring 2011 Normalization Normalization Normalization is a foundation for relational database design Systematic approach to efficiently organize data in a database GIS Applications Spring 2011 Objectives Minimize

More information

Normal forms and normalization

Normal forms and normalization Normal forms and normalization An example of normalization using normal forms We assume we have an enterprise that buys products from different supplying companies, and we would like to keep track of our

More information

The Relational Model. Why Study the Relational Model? Relational Database: Definitions

The Relational Model. Why Study the Relational Model? Relational Database: Definitions The Relational Model Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Microsoft, Oracle, Sybase, etc. Legacy systems in

More information

The Relational Model. Why Study the Relational Model? Relational Database: Definitions. Chapter 3

The Relational Model. Why Study the Relational Model? Relational Database: Definitions. Chapter 3 The Relational Model Chapter 3 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase,

More information

3SL. Requirements Definition and Management Using Cradle

3SL. Requirements Definition and Management Using Cradle 3SL Requirements Definition and Management Using Cradle November 2014 1 1 Introduction This white paper describes Requirements Definition and Management activities for system/product development and modification

More information

Optimum Database Design: Using Normal Forms and Ensuring Data Integrity. by Patrick Crever, Relational Database Programmer, Synergex

Optimum Database Design: Using Normal Forms and Ensuring Data Integrity. by Patrick Crever, Relational Database Programmer, Synergex Optimum Database Design: Using Normal Forms and Ensuring Data Integrity by Patrick Crever, Relational Database Programmer, Synergex Printed: April 2007 The information contained in this document is subject

More information

Fragmentation and Data Allocation in the Distributed Environments

Fragmentation and Data Allocation in the Distributed Environments Annals of the University of Craiova, Mathematics and Computer Science Series Volume 38(3), 2011, Pages 76 83 ISSN: 1223-6934, Online 2246-9958 Fragmentation and Data Allocation in the Distributed Environments

More information

Chapter 10 Practical Database Design Methodology and Use of UML Diagrams

Chapter 10 Practical Database Design Methodology and Use of UML Diagrams Chapter 10 Practical Database Design Methodology and Use of UML Diagrams Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 10 Outline The Role of Information Systems in

More information

Database Design Final Project

Database Design Final Project Database Design 2015-2016 Database Design Final Project مشروع قاعدة بیانات ھو مشروع على طول السنة لاعطاء الطلبة الفرصة لتطویر قاعدة بیانات باستخدام نظام ادراة قواعد البیانات التجاریة حیث یبین الجدول رقم

More information