# Mendelian Inheritance & Probability

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Mendelian Inheritance & Probability (CHAPTER 2- Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy

2 Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring?

3 Tt RR x Tt RR What fraction of the progeny will be Tall and Round? (pg 38)

4 Alternative = Forked Line Method Tt RR Yy x Tt RR Yy What fraction of the progeny will be Tall, Round, and Green?

5 PROBABILITY Probability calculations are used in genetic problems to predict the outcome of crosses To compute probability, we can use three mathematical operations Product rule Sum rule Binomial expansion equation Product rule The probability that two or more independent events will occur is equal to the product of their respective probabilities Note Independent events are those in which the occurrence of one does not affect the probability of another What are the odds of 3 heads in a row?

6 Sum rule The probability that one of two or more mutually exclusive events will occur is the sum of their respective probabilities What are the odds of rolling a 3 on a single die? What are the odds of rolling a 3 or a 4 on a single die? Binomial Expansion Equation Represents all of the possibilities for a given set of unordered events P = n! x! (n x)! px q n x where P = probability that the unordered number of events will occur n = total number of events x = number of events in one category p = individual probability of x q = individual probability of the other category

7 Note: p + q = 1 The symbol! denotes a factorial n! is the product of all integers from n down to 1 4! = 4 X 3 X 2 X 1 = 24 An exception is 0! = 1 Question Two heterozygous brown-eyed (Bb) individuals have five children What is the probability that two of the couple s five children will have blue eyes? The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted from a hypothesis Note: The chi square test does not prove that a hypothesis is correct It evaluates whether or not the data and the hypothesis have a good fit

8 The Chi Square Test The general formula is χ 2 =Σ (O E)2 E where O = observed data in each category E = observed data in each category based on the experimenter s hypothesis Σ = Sum of the calculations for each category Consider the following example in Drosophila melanogaster Gene affecting wing shape c + = Normal wing c = Curved wing Gene affecting body color e + = Normal (gray) e = ebony Note: The wild-type allele is designated with a + sign Recessive mutant alleles are designated with lowercase letters The Cross: A cross is made between two true-breeding flies (c + c + e + e + and ccee). The flies of the F 1 generation are then allowed to mate with each other to produce an F 2 generation.

9 The outcome F 1 generation All offspring have straight wings and gray bodies F 2 generation 193 straight wings, gray bodies 69 straight wings, ebony bodies 64 curved wings, gray bodies 26 curved wings, ebony bodies 352 total flies Applying the chi square test Step 1: Propose a hypothesis that allows us to calculate the expected values based on Mendel s laws The two traits are independently assorting Step 2: Calculate the expected values of the four phenotypes, based on the hypothesis Step 3: Apply the chi square formula χ 2 = (O 1 E 1 )2 (O 2 E 2 )2 (O 3 E 3 )2 (O 4 E )2 E 1 E 2 E 3 E 4

10 Step 4: Interpret the chi square value The calculated chi square value can be used to obtain probabilities, or P values, from a chi square table These probabilities allow us to determine the likelihood that the observed deviations are due to random chance alone Low chi square values indicate a high probability that the observed deviations could be due to random chance alone High chi square values indicate a low probability that the observed deviations are due to random chance alone If the chi square value results in a probability that is less than 0.05 (ie: less than 5%) The hypothesis is rejected Step 4: Interpret the chi square value Before we can use the chi square table, we have to determine the degrees of freedom (df) Thedf is a measure of the number of categories that are independent of each other df = n 1 where n = total number of categories In our experiment, there are four phenotypes/categories Therefore, df = 4 1 = 3 Refer to Table 2.1

11 Human Genetics & Pedigrees 2-75

12

13 Huntington Disease: studies of a Venezuelan family

14 Inheritance of Cystic Fibrosis

### Appendix A The Chi-Square (32) Test in Genetics

Appendix A The Chi-Square (32) Test in Genetics With infinitely large sample sizes, the ideal result of any particular genetic cross is exact conformation to the expected ratio. For example, a cross between

### 2 GENETIC DATA ANALYSIS

2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

### Mendelian Genetics and Inheritance Problems

Biology 211 Mendelian Genetics and Inheritance Problems Mendel discovered and described many of the basic rules of genetics after studying the pattern of how inheritable traits were passed from generation

### Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1

### GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics

GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics OBJECTIVES: Understand Mendel s laws of segregation and independent assortment. Differentiate between an organism s genotype and phenotype. Recognize

### Chapter 2: Traits and How They Change

Table of Contents Chapter 2: Traits and How They Change Section 2: Genetics Heredity x Genetics Mendel s experiments Punnett Square REVIEW: Genes are sections of DNA Genes have different Alleles A gene

### Week 5 Homework Answer Key Due Feb. 23, 2013

Week 5 Homework Answer Key Due Feb. 23, 2013 A total of 20 points are possible for this homework 1. A black guinea pig is crossed with an albino guinea pig, producing 12 black offspring. When the very

### Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

### Mendel & the Gene Idea, Part II

Mendel & the Gene Idea, Part II Chapter 4, pp. 262-285 Lecture Outline Laws of probabilities govern Mendelian inheritance Beyond Mendel complex inheritance patterns Incomplete dominance Codominance and

### Genetics Exam Review Questions

Name: Date: Genetics Exam Review Questions Multiple Choice: Select the best answer to complete each statement. 1. Mendel crossed pea plants with greens seeds (yy) with plants with yellow seeds (YY). The

### AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### BIOL 202 LAB 3 Genetics

BIOL 202 LAB 3 Genetics Introduction Human genetic traits can be used to illustrate a number of genetic examples. Such examples include complete dominance, incomplete dominance, codominance, and sexlinkage.

### Example: TtRr X TtRr What is the probability of getting a short smooth offspring? Short? Smooth?

! Rule of Multiplication (aka Product Rule) how do we determine the chance that two or more independent events will occur together in a specific combination? Example: TtRr X TtRr What is the probability

### Single-Gene Inheritance (Learning Objectives) Review the presence of homologous chromosomes in diploid organisms that reproduce sexually, the

Single-Gene Inheritance (Learning Objectives) Review the presence of homologous chromosomes in diploid organisms that reproduce sexually, the definitions of karyotype, autosomes and sex chromosomes. Recognize

### Answers to Mendelian genetics questions BI164 Spring, 2007

Answers to Mendelian genetics questions BI164 Spring, 2007 1. The father has normal vision and must therefore be hemizygous for the normal vision allele. The mother must be a carrier and hence the source

### What is Genetics? Genetics is the scientific study of heredity

What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly

### PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

### Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

### 3. Mating two organisms produces a 3:1 ratio of the phenotype in progeny. The parental genotypes are

1. In dihybrid crosses, the ratio 9:3:3:1 indicates A. codominance. B. independent assortment. C. intermediate dominance. D. three alleles for each trait. 2. Mating of two organisms produces a 1:1 ratio

### Dr. Young. Genetics Problems Set #1 Answer Key

BIOL276 Dr. Young Name Due Genetics Problems Set #1 Answer Key For problems in genetics, if no particular order is specified, you can assume that a specific order is not required. 1. What is the probability

### 2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring that are AA or aa?

Heredity 1. Technology Enhanced Questions are not available in Word format. 2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring

### 11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

### If you have problems with the security or Java settings on school computers, scroll to the end of this document for instructions.

Fly Lab Go to this site: biologylab.awlonline.com Click on FlyLab login: gonzagax (x = 1 16) password: apeseaglex click on start lab If you have problems with the security or Java settings on school computers,

### Genetics Worksheet. Name

Genetics Worksheet Name Section A: Vocabulary 1. Identify if the alleles are homozygous (Ho) or heterozygous (He). a. DD c. Yy e. Ee b. Tt d. hh f. KK 2. For each genotype below, determine the phenotype.

### What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

### 2. For example, tall plant, round seed, violet flower, etc. are dominant characters in a pea plant.

Principles of Inheritance and Variation Class 12 Chapter 5 Principles of Inheritance and Variation Exercise Solutions Exercise : Solutions of Questions on Page Number : 93 Q1 : Mention the advantages of

### Genetics Problem Set

AP Biology Name: Genetics Problem Set Independent Assortment Problems 1. One gene has alleles A and a. Another has alleles B and b. For each genotype listed, what type(s) of gametes will be produced? (Assume

### Mendel s Laws. Patterns of Gene Inheritance. Gregor Mendel. What We Know Now. Gene locus. The Inheritance of a Single Trait.

Mendel s Laws Patterns of Gene Inheritance Gregor Mendel - Austrian monk Developed laws of heredity Worked with pea plants Investigated genetics at organism level Gregor Mendel What Mendel Said: 1. Characteristics

### H + T = 1. p(h + T) = p(h) x p(t)

Probability and Statistics Random Chance A tossed penny can land either heads up or tails up. These are mutually exclusive events, i.e. if the coin lands heads up, it cannot also land tails up on the same

### Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas.

GENETICS Genetics The study of heredity. Gregor Mendel (1860 s) discovered the fundamental principles of genetics by breeding garden peas. Genetics Alleles 1. Alternative forms of genes. 2. Units that

### LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### Mendelian Genetics. I. Background

Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

### Fundamentals of Genetics. Chapter 9

Fundamentals of Genetics Chapter 9 Heredity: the transmission of genetic information from one generation to the next. Genes: Provide continuity between generations that is essential for life Control to

### Directed Reading B. Section: Traits and Inheritance A GREAT IDEA

Skills Worksheet Directed Reading B Section: Traits and Inheritance A GREAT IDEA 1. What is the ratio that Mendel found for dominant to recessive traits? a. 1 to 1 c. 3 to 1 b. 2 to 1 d. 4 to 1 2. What

### Genetics. The connection between Gene expression and Genetics. Genotype is the genetic make up of an organism (gene), which codes for a protein.

Genetics The connection between Gene expression and Genetics Genotype is the genetic make up of an organism (gene), which codes for a protein. The protein has a specific function which produces a trait.

### Probability and the Idea of Chance

Probability and the Idea of Chance Instructions Activity 1. The Idea of Chance Consider a simple demonstration of the operation of chance (i.e., probability) in the tossing of coins. It is usually impossible

### 1. chose the pea plant for 3 reasons: a. structure of the pea flower (more later) b. presence of distinctive traits c. rapid reproductive cycle 2.

Genetics I. Genetics A. genetics: scientific study of heredity 1. we have known for centuries that traits are passed from parents to offspring 2. we didn t know how the traits were determined B. recall

### BIOLOGY I Study Guide # 5: Topic Genetics 1

BIOLOGY I Study Guide # 5: Topic Genetics 1 Biology Textbook pg. 262 285, 340-365 Name: I. Mendelian Genetics (pg. 263 272) Define: a. genetics: b. fertilization: c. true-breeding: d. trait: e. hybrid:

### MCB142/IB163 Mendelian and Population Genetics 9/19/02

MCB142/IB163 Mendelian and Population Genetics 9/19/02 Practice questions lectures 5-12 (Hardy Weinberg, chi-square test, Mendel s second law, gene interactions, linkage maps, mapping human diseases, non-random

### Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Foundations of Genetics 8.1 Mendel and the Garden Pea The tendency for traits to be passed from parent to offspring is called heredity Gregor Mendel (1822-1884) The first person to systematically study

### GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

### Punnett Square: Monohybird Crosses

Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

### BISC403 Genetic and Evolutionary Biology Spring 2011

BISC403 Genetic and Evolutionary Biology Spring 2011 February 22, 2011 Summary of requirements for Exam 1 (to be given on March 1) plus first exam from fall of 2010 The primary responsibility is for any

### The Mendelian Genetics of Corn

The Mendelian Genetics of Corn (Adapted from Mendelian Genetics for Corn by Carolina Biological Supply Company) Objectives: In this laboratory investigation, you will: a. Use corn to study genetic crosses.

### Genetics (20%) Sample Test Prep Questions

Genetics (20%) Sample Test Prep Questions Grade 7 (2a Genetics) Students know the differences between the life cycles and reproduction methods of sexual and asexual organisms. (pg. 106 Science Framework)

### GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS

Learning Outcomes: Students will be able to: Define the basic genetic terms and concepts DNA, chromosome, gene, allele, homozygous, heterozygous, recessive and dominant genes, genotype, phenotype, and

### The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

### Definition/Example Signature

Engage: Who Remembers? Instructions: Discuss the following terms with other students. Try to find someone who can explain the term to you or give you an example of the term. Record the definition or example

### 4.6 Dihybrid Crosses. offspring produced from such a cross are heterozygous for both the yellow and round genotypes. YYRR. YR YR yr.

(a) Indicate the genotypes and phenotypes of the F generation from the mating of a heterozygous Himalayan rabbit with an albino rabbit. (b) The mating of a full-coloured rabbit with a light-grey rabbit

### Pedigree Studies. Opening Activity: Latin Root Word: Review of Old Information: Guinea pigs can have curly or straight hair, where the curly gene is

Section: 3.7 Opening Activity: Latin Root Word: Name: Review of Old Information: Guinea pigs can have curly or straight hair, where the curly gene is recessive. Guinea pigs can also have a condition called

### MODULE 11: MENDELIAN GENETICS 1

PEER-LED TEAM LEARNING INTRODUCTORY BIOLOGY MODULE 11: MENDELIAN GENETICS 1 JOSEPH G. GRISWOLD, PH.D. (City College of New York, CUNY) I. Introduction In sexually reproducing animals, genetic information

### Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation.

Probability and the Chi-Square Test written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to determine the chance that a given state will occur in a system

### Seed color gene with two alleles: R = purple (or red) allele (dominant allele) r = yellow (or white) allele (recessive allele)

Patterns of Inheritance in Maize written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able to define the following terms gene, allele, genotype, phenotype,

### Opening Activity: Latin Root Word: Review of Old Information:

Section: 3.4 Opening Activity: Latin Root Word: Review of Old Information: Name: 1. In seals, the allele for long whiskers (L) is dominant and the allele for short whiskers (l) is recessive. What are the

### Non-Disjunction Review. tent/animations/content/mistakesmei osis/mistakesmeiosis.html

Non-Disjunction Review http://www.sumanasinc.com/webcon tent/animations/content/mistakesmei osis/mistakesmeiosis.html Lesson# 1.6- Genetic Diversity and Heredity Gregor Mendel (1822-1884) Pioneer of genetics

### 4. Sum the results of the calculation described in step 3 for all classes of progeny

F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives

### DETERMINING THE LOCATION OF GENES IN DROSOPHILA MEANOGASTER BY OBSERVING PHENOTYPIC RATIOS OF OFFSPRING By FRANK BIGGS, TREVON BRISBANE, RANDI

DETERMINING THE LOCATION OF GENES IN DROSOPHILA MEANOGASTER BY OBSERVING PHENOTYPIC RATIOS OF OFFSPRING By FRANK BIGGS, TREVON BRISBANE, RANDI DOLLAR, REINA GARCIA, WAYNE GILLEY, SAMANTHA HARLIN, JETTA

### Multiple Choice Review Mendelian Genetics & Inheritance Patterns

Multiple Choice Review Mendelian Genetics & 1. Jean-Baptiste Lamarck introduced a theory about inheritance in the early 1800s. Which of the following accurately describes his Theory of Acquired Characteristics?

### Mendelian Genetics. Lab Exercise 13. Contents. Objectives. Introduction

Lab Exercise Mendelian Genetics Contents Objectives 1 Introduction 1 Activity.1 Forming Gametes 2 Activity.2 Monohybrid Cross 3 Activity.3 Dihybrid Cross 4 Activity.4 Gene Linkage 5 Resutls Section 8 Objectives

### Population Genetics (Outline)

Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

### Explore INVESTIGATION. How can a pedigree be used to trace a genetic disorder over generations? Using models. Name Date

Name Date How can a pedigree be used to trace a genetic disorder over generations? A pedigree is a tool used by geneticists to study traits and genetic disorders in generations of families. A genetic disorder

Biology Heredity Blizzard Bag 2014-2015 Copyright 2014 Edmentum - All rights reserved. 1. Many serious diseases can be passed from parent to offspring through genes. In which case given below is a recessive

### Solutions to Genetics Problems

Solutions to Genetics Problems This chapter is much more than a solution set for the genetics problems. ere you will find details concerning the assumptions made, the approaches taken, the predictions

### Name Period Date GENETICS

Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

### Section 1 Chromosomes and Inheritance. Section 2 Human Genetics. Resources

How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

### What are the Odds? Page 1 of 7. Tutorial 10f: Probability

Page of 7 Module #: Tutorial 0f: Probability What are the Odds? Wouldn t you like to know the probability of winning a state lottery? You and everyone else! Maybe you have wondered what the odds are of

### Biology 160 Lab Module 12 Mendelian Genetics

BIOL& 160 Clark College 1 Biology 160 Lab Module 12 Mendelian Genetics Name Learning Outcomes Upon successful completion of this lab, you should be able to: 1. Understand character inheritance, allelic

### Genetics Practice. 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope.

Name: Date: 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope. Which of the following questions may best be answered by studying an organism s chromosomes?.

### Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

NCEA Level 1 Science (90948) 2013 page 1 of 7 Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Evidence Statement Expected Coverage

### Allele Frequencies and Hardy Weinberg Equilibrium

Allele Frequencies and Hardy Weinberg Equilibrium Summer Institute in Statistical Genetics 013 Module 8 Topic Allele Frequencies and Genotype Frequencies How do allele frequencies relate to genotype frequencies

### 3. If a heterozygous fire-breathing dragon is crossed with one that does not breathe fire, how many offspring will be fire breathers?

Mrs. Davisson Name Chapter 11: Genetics Per. Row Part I. Monohybrid Crosses - Complete Dominance For each of the following genetics problems, follow these steps in reaching a complete answer: Show all

### Bell Work: Friday, December 14. If red is dominant to white in flowers, how do we get pink ones?

Bell Work: Friday, December 14 If red is dominant to white in flowers, how do we get pink ones? 1 Review We have discussed human traits that have two completely different phenotypes (physical appearances)

### Ch.12 Reading and Concept Review Packet /20

Name: Period: Date: Ch.12 Reading and Concept Review Packet /20 Term Chapter 12 Reading and Concept Review: page 308-333. Directions: Link the various terms into coherent sentence or two that connects

### c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

### Pre-Lab #5: Inheritance

Pre-Lab #5: Inheritance Name 1. Define the following terms: Monohybrid Cross (see Part I) Allele Frequency (see Part II) 2. Describe how you will mate in Part 1 of this lab. 3. What is the allele frequency

### GENETICS PROBLEMS Genetics Problems Lab 17-1

GENETICS PROBLEMS Introduction: One of the facts of life involves the different types of offspring that can be produced as a result of sexual reproduction. Offspring may have traits of one parent, both

### CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459)

CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459) Questions to be addressed: 1. How can we predict the inheritance patterns of more than one gene? 2. How does the position of

### Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

### Bio 102 Practice Problems Chromosomes, Karyotyping and Sex Linkage

Bio 102 Practice Problems Chromosomes, Karyotyping and Sex Linkage Multiple choice: Unless otherwise directed, circle the one best answer: 1. A sex-linked trait is a trait: A. That can be inherited only

### Chapter 13: Meiosis and Sexual Life Cycles

Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

### Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

### Mendelian Genetics Problems

BIO 181 Lab Fall 2015 Name: Mendelian Genetics Problems 1) Do your own work. These problems are similar to what will occur on the second lecture exam, final exam and lab quizzes. Do not share or work with

### For a particular allele N, its frequency in a population is calculated using the formula:

Date: Calculating Allele Frequency Definitions: Allele frequency is a measure of the relative frequency of an allele in a population. Microevolution is defined as the change in the frequency of alleles

### Topic 6: Conditional Probability and Independence

Topic 6: September 15-20, 2011 One of the most important concepts in the theory of probability is based on the question: How do we modify the probability of an event in light of the fact that something

### C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

### Name Date Period. Genetics Review

Name Date Period Genetics Review MULTIPLE CHOICE: Circle the answer that best completes the sentence. The Austrian monk whose experiments with pea plants were the beginning of our understanding of genetics

### MODULE 12: MENDELIAN GENETICS 2

PEER-LED TEAM LEARNING INTRODUCTORY BIOLOGY MODULE 12: MENDELIAN GENETICS 2 JOSEPH G. GRISWOLD, PH.D.* AND DAVID L. WILSON, PH.D.+ (*City College of New York, CUNY; +Univ. of Miami, FL) I. Introduction

### Biology 3 Mendelian Inheritance (CH 7)

Biology 3 Mendelian Inheritance (CH 7) Dr. Terence Lee Genetics Genetics 1 2.20 DNA holds the genetic information to build an organism. 2.21 RNA is a universal translator, reading DNA and directing protein

### CCR Biology - Chapter 7 Practice Test - Summer 2012

Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

### LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

### DAYSHEET 53: Genetics Vocabulary Practice

UNIT 5: Genetics DAYSHEET 53: Genetics Vocabulary Practice Name Biology I Date: Purpose: To review basic genetics vocabulary Task: As you read, highlight or underline the definitions of the words in bold.

### LS4 Problem Set 2, Population Genetics. Corresponding Quiz: November (Along with positional cloning)

LS4 Problem Set 2, 2010 Population Genetics Corresponding Lectures: November 5, 8 and 10 Corresponding Reading: Hartwell et al., 757-773 Corresponding Quiz: November 15-19 (Along with positional cloning)

### Chapter 9 Patterns of Inheritance

Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

### A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

### 7.013 Problem Set 1 Solutions

MIT Department of Biology 7.013: Introductory Biology - Spring 2004 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr. Claudette Gardel NAME TA Section # 7.013 Problem Set 1 Solutions FRIDAY

### I. Genes found on the same chromosome = linked genes

Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

### Lesson #1.7-Incomplete Dominance Codominance Dihybrid Crosses

Lesson #1.7-Incomplete Dominance Codominance Dihybrid Crosses Exceptions to Mendel s principles So far, offspring have either the phenotype of one parent or the other. Sometimes, there is no dominant or

### Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157)

NCEA Level 2 Biology (91157) 2013 page 1 of 5 Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria with with Excellence Demonstrate understanding