Priority Inversion Problem and Deadlock Situations
|
|
|
- Veronica Benson
- 9 years ago
- Views:
Transcription
1 INTER-PROCESS COMMUNICATION AND SYNCHRONISATION: Lesson-11: Priority Inversion Problem and Deadlock Situations 1
2 1. Priority Inversion 2
3 Assume Priorities of tasks be in an order such that task I highest priority, task J a lower, and task K the lowest priority. Only tasks I and K share the data and J does not share data with K. Also let tasks I and K alone share a semaphore s ik and not J. 3
4 Few tasks share a semaphore Why do only a few tasks share a semaphore? Can't all share a semaphore? Answer Worst-case latency becomes too high and may exceed the deadline if all tasks are blocked when one task takes a semaphore. The worst-case latency will be small only if the time taken by the tasks that share the resources is relevant 4
5 Priority Inversion Situation At an instant t0, suppose task K takes s ik, it does not block task J and blocks only the task I. This happens because only tasks I and K share the data and J does not and I is blocked at instance t0 due to wait for some message and sik. Consider the problem that now arises on selective sharing between K and I. 5
6 Priority Inversion Situation At next instant t1, let task K become ready first on an interrupt. Now, assume that at next instant t2, task I becomes ready on an interrupt or getting the waiting message. At this instant, K is in the critical section. Therefore, task I cannot start at this instant due to K being in the critical region. 6
7 Priority Inversion Situation Now, if at next instant t3, some action (event) causes the unblocked higher than K priority task J to run. After instant t3, running task J does not allow the highest priority task I to run because K is not running, and therefore K can't release s ik that it shares with I. 7
8 Priority Inversion Situation Further, the design of task J may be such that even when s ik is released by task K, it may not let I run. [J runs the codes as if it is in critical section all the time after executing DI.] The J action is now as if J has higher priority than I. This is because K, after entering the critical section and taking the semaphore the OS let the J run, did not share the priority information about I that task I is of higher priority than J. 8
9 The priority information of another higherpriority task I should have also been inherited by K temporarily, if K waits for I but J does not and J runs when K has still not finished the critical section codes. This did not happen because the given OS was such that it didn t provide for temporary priority inheritance in such situations. Above situation is also called a priority inversion problem Priority Inversion Situation 9
10 OS Provision for temporary priority inheritance in such situations Some OSes provide for priority inheritance in these situations and thus priority inheritance problem does not occur when using them. A mutex should be a mutually exclusive Boolean function, by using which the critical section is protected from interruption in such a way that the problem of priority inversion does not arise. Mutex is automatically provided in certain RTOS so that it the priority inversion problem does not arise 10
11 OS Provision for temporary priority inheritance in such situations Mutex is automatically provided with priority inheritance by task on taking it in certain OSes so that it the priority inversion problem does not arise and certain OSes provides for selecting priority inheritance as well as priority sealing options. 11
12 2. Deadlock Situation 12
13 Assume Priorities of tasks be such that task H is of highest priority, task I a lower priority and task J the lowest. Two semaphores, SemTok1 and SemTok2. Tasks I and H have a shared resource through SemTok1 only. Tasks I and J have two shared resources through two semaphores, SemTok1 and SemTok2. 13
14 Deadlock Situation At a next instant t1, being now of a higher priority, the task H interrupts the task I and J after it takes the semaphore SemTok1, and thus blocks both I and J. 14
15 Deadlock Situation In between the time interval t0 and t1, the SemTok1 was released but SemTok2 was not released during the run of task J. But the latter did not matter as the tasks I and J don t share SemTok2. 15
16 Deadlock Situation At an instant t2, if H now releases the SemTok1, lets the task I take it. Even then it cannot run because it is also waiting for task J to release the SemTok2. The task J is waiting at a next instant t3, for either H or I to release the SemTok1 because it needs this to again enter a critical section in it. Neither task I can run after instant t3 nor task J. 16
17 Deadlock Situation Solution There is a circular dependency established between I and J. 17
18 Deadlock Situation solution On the interrupt by H, the task J, before exiting from the running state, should have been put in queue-front so that later on, it should first take SemTok1, and the task I put in queue next for the same token, then the deadlock would not have occurred 18
19 Summary 19
20 We learnt Priority becomes inverted and deadlock (circular dependency) develops in certain situations when using semaphores. Certain OSes provide the solution to this problem of semaphore use by ensuring that these situations do not arise during the concurrent processing of multitasking operations. 20
21 End of Lesson11 of Chapter 7 on Priority Inversion Problem and Deadlock Situations 21
REAL TIME OPERATING SYSTEMS. Lesson-10:
REAL TIME OPERATING SYSTEMS Lesson-10: Real Time Operating System 1 1. Real Time Operating System Definition 2 Real Time A real time is the time which continuously increments at regular intervals after
Predictable response times in event-driven real-time systems
Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour [email protected]
REAL TIME OPERATING SYSTEMS. Lesson-18:
REAL TIME OPERATING SYSTEMS Lesson-18: Round Robin Time Slicing of tasks of equal priorities 1 1. Common scheduling models 2 Common scheduling models Cooperative Scheduling of ready tasks in a circular
Chapter 12. Development Tools for Microcontroller Applications
Chapter 12 Development Tools for Microcontroller Applications Lesson 01 Software Development Process and Development Tools Step 1: Development Phases Analysis Design Implementation Phase 1 Phase 2 Phase
Tasks Schedule Analysis in RTAI/Linux-GPL
Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos
Real- Time Scheduling
Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter
Programming real-time systems with C/C++ and POSIX
Programming real-time systems with C/C++ and POSIX Michael González Harbour 1. Introduction The C language [1], developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories, is the most widely
Monitors, Java, Threads and Processes
Monitors, Java, Threads and Processes 185 An object-oriented view of shared memory A semaphore can be seen as a shared object accessible through two methods: wait and signal. The idea behind the concept
Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1
Module 8 Industrial Embedded and Communication Systems Version 2 EE IIT, Kharagpur 1 Lesson 37 Real-Time Operating Systems: Introduction and Process Management Version 2 EE IIT, Kharagpur 2 Instructional
Embedded C Programming, Linux, and Vxworks. Synopsis
Embedded C Programming, Linux, and Vxworks. Synopsis This course is extensive and contains many advanced concepts. The range of modules covers a full introduction to C, real-time and embedded systems concepts
Chapter 2: OS Overview
Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:
Performance Comparison of RTOS
Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer University of Augsburg 12th International Workshop
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware. The purpose of an operating system is to
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2
Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...
Processor Scheduling. Queues Recall OS maintains various queues
Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time
The Real-Time Operating System ucos-ii
The Real-Time Operating System ucos-ii Enric Pastor Dept. Arquitectura de Computadors µc/os-ii Overview µc/os-ii Task Management Rate Monotonic Scheduling Memory Management µc/gui µc/fs Books and Resources
Last Class: Semaphores
Last Class: Semaphores A semaphore S supports two atomic operations: S Wait(): get a semaphore, wait if busy semaphore S is available. S Signal(): release the semaphore, wake up a process if one is waiting
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
LAB 5: Scheduling Algorithms for Embedded Systems
LAB 5: Scheduling Algorithms for Embedded Systems Say you have a robot that is exploring an area. The computer controlling the robot has a number of tasks to do: getting sensor input, driving the wheels,
Exercises : Real-time Scheduling analysis
Exercises : Real-time Scheduling analysis Frank Singhoff University of Brest June 2013 Exercise 1 : Fixed priority scheduling and Rate Monotonic priority assignment Given a set of tasks defined by the
Embedded Programming in C/C++: Lesson-1: Programming Elements and Programming in C
Embedded Programming in C/C++: Lesson-1: Programming Elements and Programming in C 1 An essential part of any embedded system design Programming 2 Programming in Assembly or HLL Processor and memory-sensitive
CS414 SP 2007 Assignment 1
CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
Lecture 3 Theoretical Foundations of RTOS
CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)
OPERATING SYSTEMS DEADLOCKS
OPERATING SYSTEMS DEADLOCKS Jerry Breecher 7: Deadlocks OPERATING SYSTEM Deadlocks What is a deadlock? What Is In This Chapter? Staying Safe: Preventing and Avoiding Deadlocks Living Dangerously: Let the
Design Patterns in C++
Design Patterns in C++ Concurrency Patterns Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 4, 2011 G. Lipari (Scuola Superiore Sant Anna) Concurrency Patterns May 4,
Chapter 9: Distributed Mutual Exclusion Algorithms
Chapter 9: Distributed Mutual Exclusion Algorithms Ajay Kshemkalyani and Mukesh Singhal Distributed Computing: Principles, Algorithms, and Systems Cambridge University Press A. Kshemkalyani and M. Singhal
Survey of software architectures: function-queue-scheduling architecture and real time OS
Survey of software architectures: function-queue-scheduling architecture and real time OS Reference: Simon chapter 5 Last class: round robin with interrupts and without interrupts Function-Queue-Scheduling
Convenience: An OS makes a computer more convenient to use. Efficiency: An OS allows the computer system resources to be used in an efficient manner.
Introduction to Operating System PCSC-301 (For UG students) (Class notes and reference books are required to complete this study) Release Date: 27.12.2014 Operating System Objectives and Functions An OS
The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example
The Deadlock Problem Deadlocks A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 tape drives. P 1 and P 2 each
Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems
Chapter 19: Real-Time Systems System Characteristics Features of Real-Time Systems Chapter 19: Real-Time Systems Implementing Real-Time Operating Systems Real-Time CPU Scheduling VxWorks 5.x 19.2 Silberschatz,
Concurrent programming in Java
Concurrent programming in Java INF4140 04.10.12 Lecture 5 0 Book: Andrews - ch.05 (5.4) Book: Magee & Kramer ch.04 - ch.07 INF4140 (04.10.12) Concurrent programming in Java Lecture 5 1 / 33 Outline 1 Monitors:
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I)
SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics
4. Fixed-Priority Scheduling
Simple workload model 4. Fixed-Priority Scheduling Credits to A. Burns and A. Wellings The application is assumed to consist of a fixed set of tasks All tasks are periodic with known periods This defines
Quality of Service su Linux: Passato Presente e Futuro
Quality of Service su Linux: Passato Presente e Futuro Luca Abeni [email protected] Università di Trento Quality of Service su Linux:Passato Presente e Futuro p. 1 Quality of Service Time Sensitive applications
Discrete-Event Simulation
Discrete-Event Simulation Prateek Sharma Abstract: Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the
First-class User Level Threads
First-class User Level Threads based on paper: First-Class User Level Threads by Marsh, Scott, LeBlanc, and Markatos research paper, not merely an implementation report User-level Threads Threads managed
Mutual Exclusion using Monitors
Mutual Exclusion using Monitors Some programming languages, such as Concurrent Pascal, Modula-2 and Java provide mutual exclusion facilities called monitors. They are similar to modules in languages that
ò Paper reading assigned for next Thursday ò Lab 2 due next Friday ò What is cooperative multitasking? ò What is preemptive multitasking?
Housekeeping Paper reading assigned for next Thursday Scheduling Lab 2 due next Friday Don Porter CSE 506 Lecture goals Undergrad review Understand low-level building blocks of a scheduler Understand competing
Real Time Programming: Concepts
Real Time Programming: Concepts Radek Pelánek Plan at first we will study basic concepts related to real time programming then we will have a look at specific programming languages and study how they realize
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
What is best for embedded development? Do most embedded projects still need an RTOS?
RTOS versus GPOS: What is best for embedded development? Do most embedded projects still need an RTOS? It is a good question, given the speed of today s high-performance processors and the availability
Embedded Software Architecture
Embedded Software Architecture EECS 461, Fall 2008 J. A. Cook J. S. Freudenberg 1 Introduction Embedded systems encompass aspects of control (or more broadly, signal processing), computing and communications.
OPERATING. William Stallings
THE WINDOWS OPERATING S YSTEM William Stallings This document is an extract from Operating Systems: Internals and Design Principles, Fifth Edition Prentice Hall, 2005, ISBN 0-13-147954-7 Copyright 2005
A Survey of Fitting Device-Driver Implementations into Real-Time Theoretical Schedulability Analysis
A Survey of Fitting Device-Driver Implementations into Real-Time Theoretical Schedulability Analysis Mark Stanovich Florida State University, USA Contents 1 Introduction 2 2 Scheduling Theory 3 2.1 Workload
Real Time Operating System for Embedded DSP Applications
Real Time Operating System for Embedded DSP Applications By P.S.Dey Lecturer Computer Science & Engg. Dept. I.I.T. Kharagpur Organization of the Talk 1. Real Time Systems an Overview. 2. Key Features of
REAL TIME OPERATING SYSTEMS. Lesson-3:
REAL TIME OPERATING SYSTEMS Lesson-3: Timer Functions 1 1. Timer Functions 2 Timer Functions Real time clock system clock, on each tick SysClkIntr interrupts Based on each SysClkIntr interrupts there are
Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example
Real-Time Scheduling (Part 1) (Working Draft) Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS 41,
10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details
Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting
Chapter 6 Concurrent Programming
Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:
Introduction to Distributed Systems
Introduction to Distributed Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note: Distributed Systems Why do we develop distributed systems?
Analysis and Comparison of CPU Scheduling Algorithms
Analysis and Comparison of CPU Scheduling Algorithms Pushpraj Singh 1, Vinod Singh 2, Anjani Pandey 3 1,2,3 Assistant Professor, VITS Engineering College Satna (MP), India Abstract Scheduling is a fundamental
REDUCING TIME: SCHEDULING JOB. Nisha Yadav, Nikita Chhillar, Neha jaiswal
Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 45-53 ISSN 2347 7393 Original Research Article REDUCING TIME: SCHEDULING JOB Nisha Yadav, Nikita Chhillar,
ICS 143 - Principles of Operating Systems
ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian [email protected] Note that some slides are adapted from course text slides 2008 Silberschatz. Some
Long-term monitoring of apparent latency in PREEMPT RT Linux real-time systems
Long-term monitoring of apparent latency in PREEMPT RT Linux real-time systems Carsten Emde Open Source Automation Development Lab (OSADL) eg Aichhalder Str. 39, 78713 Schramberg, Germany [email protected]
Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies
Chapter 7 Process Scheduling Process Scheduler Why do we even need to a process scheduler? In simplest form, CPU must be shared by > OS > Application In reality, [multiprogramming] > OS : many separate
3C03 Concurrency: Condition Synchronisation
3C03 Concurrency: Condition Synchronisation Mark Handley 1 Goals n Introduce concepts of Condition synchronisation Fairness Starvation n Modelling: Relationship between guarded actions and condition synchronisation?
Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification
Introduction Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Advanced Topics in Software Engineering 1 Concurrent Programs Characterized by
Operating System Manual. Realtime Communication System for netx. Kernel API Function Reference. www.hilscher.com.
Operating System Manual Realtime Communication System for netx Kernel API Function Reference Language: English www.hilscher.com rcx - Kernel API Function Reference 2 Copyright Information Copyright 2005-2007
Processes and Non-Preemptive Scheduling. Otto J. Anshus
Processes and Non-Preemptive Scheduling Otto J. Anshus 1 Concurrency and Process Challenge: Physical reality is Concurrent Smart to do concurrent software instead of sequential? At least we want to have
CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems
Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Based on original slides by Silberschatz, Galvin and Gagne 1 Basic Concepts CPU I/O Burst Cycle Process execution
Java Virtual Machine Locks
Java Virtual Machine Locks SS 2008 Synchronized Gerald SCHARITZER (e0127228) 2008-05-27 Synchronized 1 / 13 Table of Contents 1 Scope...3 1.1 Constraints...3 1.2 In Scope...3 1.3 Out of Scope...3 2 Logical
Licensing for BarTender s Automation Editions. Understanding Printer-Based Licensing WHITE PAPER
Licensing for BarTender s Automation Editions Understanding Printer-Based Licensing and How to Configure Seagull License Server WHITE PAPER Contents Introduction to Printer-Based Licensing 3 Available
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
Outline of this lecture G52CON: Concepts of Concurrency
Outline of this lecture G52CON: Concepts of Concurrency Lecture 10 Synchronisation in Java Natasha Alechina School of Computer Science [email protected] mutual exclusion in Java condition synchronisation
Fundamentalism and the UK NEW INTERNATIONALIST EASIER ENGLISH PRE-INTERMEDIATE READY LESSON
Fundamentalism and the UK NEW INTERNATIONALIST EASIER ENGLISH PRE-INTERMEDIATE READY LESSON Countries find yours and compare Today: Grammar: practise comparatives Vocabulary Speaking: to discuss Reading:
Centralized Systems. A Centralized Computer System. Chapter 18: Database System Architectures
Chapter 18: Database System Architectures Centralized Systems! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types! Run on a single computer system and do
Lecture 6: Semaphores and Monitors
HW 2 Due Tuesday 10/18 Lecture 6: Semaphores and Monitors CSE 120: Principles of Operating Systems Alex C. Snoeren Higher-Level Synchronization We looked at using locks to provide mutual exclusion Locks
Outline. Review. Inter process communication Signals Fork Pipes FIFO. Spotlights
Outline Review Inter process communication Signals Fork Pipes FIFO Spotlights 1 6.087 Lecture 14 January 29, 2010 Review Inter process communication Signals Fork Pipes FIFO Spotlights 2 Review: multithreading
Embedded Systems. 6. Real-Time Operating Systems
Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic
Making the difference between read to output, and read to copy GOING BEYOND BASIC FILE AUDITING FOR DATA PROTECTION
Making the difference between read to output, and read to copy GOING BEYOND BASIC FILE AUDITING FOR DATA PROTECTION MOST OF THE IMPORTANT DATA LOSS VECTORS DEPEND ON COPYING files in order to compromise
CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS
CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into
JAVA - MULTITHREADING
JAVA - MULTITHREADING http://www.tutorialspoint.com/java/java_multithreading.htm Copyright tutorialspoint.com Java is amulti threaded programming language which means we can develop multi threaded program
Introduction to Fractions
Section 0.6 Contents: Vocabulary of Fractions A Fraction as division Undefined Values First Rules of Fractions Equivalent Fractions Building Up Fractions VOCABULARY OF FRACTIONS Simplifying Fractions Multiplying
Syllabus MCA-404 Operating System - II
Syllabus MCA-404 - II Review of basic concepts of operating system, threads; inter process communications, CPU scheduling criteria, CPU scheduling algorithms, process synchronization concepts, critical
6 Synchronization with Semaphores
32 6 Synchronization with Semaphores The too-much-milk solution is much too complicated. The problem is that the mutual exclusion mechanism was too simple-minded: it used only atomic reads and writes.
What is an RTOS? Introduction to Real-Time Operating Systems. So what is an RTOS?(contd)
Introduction to Real-Time Operating Systems Mahesh Balasubramaniam What is an RTOS? An RTOS is a class of operating systems that are intended for real time-applications What is a real time application?
USING THE FREERTOS REAL TIME KERNEL
USING THE FREERTOS REAL TIME KERNEL A Practical Guide Richard Barry This page intentionally left blank 2009 Richard Barry All text, source code and diagrams are the exclusive property of Richard Barry.
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
1 Organization of Operating Systems
COMP 730 (242) Class Notes Section 10: Organization of Operating Systems 1 Organization of Operating Systems We have studied in detail the organization of Xinu. Naturally, this organization is far from
COS 318: Operating Systems. Semaphores, Monitors and Condition Variables
COS 318: Operating Systems Semaphores, Monitors and Condition Variables Prof. Margaret Martonosi Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor
Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer Department of Compute Science University of Augsburg
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
Semaphores and Monitors: High-level Synchronization Constructs
Semaphores and Monitors: High-level Synchronization Constructs 1 Synchronization Constructs Synchronization Coordinating execution of multiple threads that share data structures Past few lectures: Locks:
Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK
DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-16: Real time clock 1 Real Time Clock (RTC) A clock, which is based on the interrupts at preset intervals. An interrupt service routine executes
Jive Connects for Openfire
Jive Connects for Openfire Contents Jive Connects for Openfire...2 System Requirements... 2 Setting Up Openfire Integration... 2 Configuring Openfire Integration...2 Viewing the Openfire Admin Console...3
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Cumulative Diagrams: An Example
Cumulative Diagrams: An Example Consider Figure 1 in which the functions (t) and (t) denote, respectively, the demand rate and the service rate (or capacity ) over time at the runway system of an airport
Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization.
Cooperation and Coordination in Distributed Systems Communication Mechanisms for the communication between processes Naming for searching communication partners Synchronization in Distributed Systems But...
