REAL TIME OPERATING SYSTEMS. Lesson-3:
|
|
|
- Johnathan Parker
- 9 years ago
- Views:
Transcription
1 REAL TIME OPERATING SYSTEMS Lesson-3: Timer Functions 1
2 1. Timer Functions 2
3 Timer Functions Real time clock system clock, on each tick SysClkIntr interrupts Based on each SysClkIntr interrupts there are number of OS timer functions 3
4 Timer functions at OS OS_TICK_PER_SEC to set the system clock ticks and hence SysClkIntr interrupts per s OSTickInit ( ) to initiate system clock ticks 4
5 Timer functions at OS OSTimeDelay ( ) to delay the process making call by a fixed number of system clock ticks specified in argument OSTimeDelay-Resume ( ) to resume a delayed process specified in the argument 5
6 Timer functions at OS OSTimeSet ( ) to set the counts of system clock ticks OSTimeGet ( ) to read the counts of system clock ticks to find the time interval from the previous read or write of the counts 6
7 Timer functions at OS OSSemPend (semval, twait, *semerr) to wait for a semaphore release OSMboxPend (semval, twait, *mboxerr) to wait for a message in mailbox (wait for message pointed not Null) 7
8 2. System clock ticks and hence SysClkIntr interrupts 8
9 SysClkIntr interrupts Before servicing of SysClkIntr, the presently running task or thread or process context saves on the TCB or thread stack or PCB data structure, System switches to supervisory mode SysClkIntr service routine call the OS to increment system time and to find the new messages or IPCs, which the OS event control blocks received from the system call for the IPC functions, 9
10 SysClkIntr service routine call the OS functions (i) to increment system time and (ii) to find the new messages or IPCs, which the OS event control blocks received from the system call for the IPC functions, (iii) call the OS function as per the message or system call 10
11 SysClkIntr service routine (iv) Then OS either selects the same task or selects new task or thread [by preemption in case of preemptive scheduling and switches the context to the new one, and Then after return from the interrupt the new task runs from the code, which was blocked from running 11
12 2. Examples of Timer functions 12
13 OS_TICK_PER_SEC # define OS_TICK_PER_SEC 100 /* COS-II function to define the number of ticks per second = 100 before the beginning of the main ( ) and the initiating the OS by OSInit ( ) function* 13
14 OSTickInit ( ) OSTickInit ( ) /* COS-II function to initiate the defined number of ticks per second after the beginning of the first task and creating all the tasks to which the context will be switched by the OS on the tick. It initiates SysClkIntr interrupts every 10 ms when number of ticks = 100 per s*/. 14
15 OSTimeDelay (n ) OSTimeDelay (n ) by period equal to period of n clock ticks OSTimeDelay (100); /* Code for finding the coins amount after every 100 clock ticks, which means every 1 s*/ ; } 15
16 OSTimeSet (Count) and OSTimeGet () count =0; OSTimeSet (Count); while (count < = 6000) /* While loop waits for the coins amount upto ms = 1 minute */ {Count = OSTimeGet ( ); /*Calling OSTimeGet ( ), finding the count, count1, running a section of codes and then calling OSTimeGet ( ), finding the new count, count2 give us the interval, T spent by the system in between the two function calls of OSTimeGet ( ). T = (count2 count1) interval between two clock ticks gives the interval*/ 16
17 Summary 17
18 We learnt SysClkIntr interrupts OS_TICK_PER_SEC OSTickInit ( ) OSTimeDelay ( ) OSTimeDelay-Resume ( ) 18
19 We learnt OSTimeSet ( ) OSTimeGet ( ) OSSemPend (semval, twait, *semerr) OSMboxPend (semval, twait, *mboxerr) 19
20 End of Lesson 3 of Chapter 8 20
The Real-Time Operating System ucos-ii
The Real-Time Operating System ucos-ii Enric Pastor Dept. Arquitectura de Computadors µc/os-ii Overview µc/os-ii Task Management Rate Monotonic Scheduling Memory Management µc/gui µc/fs Books and Resources
REAL TIME OPERATING SYSTEMS. Lesson-10:
REAL TIME OPERATING SYSTEMS Lesson-10: Real Time Operating System 1 1. Real Time Operating System Definition 2 Real Time A real time is the time which continuously increments at regular intervals after
PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++ and JAVA: Lesson-4: Data Structures: Stacks
PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++ and JAVA: Lesson-4: Data Structures: Stacks 1 STACK A structure with a series of data elements with last sent element waiting for a delete operation.
Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK
DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-16: Real time clock 1 Real Time Clock (RTC) A clock, which is based on the interrupts at preset intervals. An interrupt service routine executes
Operating Systems. Lecture 03. February 11, 2013
Operating Systems Lecture 03 February 11, 2013 Goals for Today Interrupts, traps and signals Hardware Protection System Calls Interrupts, Traps, and Signals The occurrence of an event is usually signaled
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
Processes and Non-Preemptive Scheduling. Otto J. Anshus
Processes and Non-Preemptive Scheduling Otto J. Anshus 1 Concurrency and Process Challenge: Physical reality is Concurrent Smart to do concurrent software instead of sequential? At least we want to have
Real Time Programming: Concepts
Real Time Programming: Concepts Radek Pelánek Plan at first we will study basic concepts related to real time programming then we will have a look at specific programming languages and study how they realize
Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1
Module 8 Industrial Embedded and Communication Systems Version 2 EE IIT, Kharagpur 1 Lesson 37 Real-Time Operating Systems: Introduction and Process Management Version 2 EE IIT, Kharagpur 2 Instructional
Comparing RTOS to Infinite Loop Designs
Comparing RTOS to Infinite Loop Designs If you compare the way software is developed for a small to medium sized embedded project using a Real Time Operating System (RTOS) versus a traditional infinite
Embedded Systems. 6. Real-Time Operating Systems
Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic
Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5
77 16 CPU Scheduling Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 Until now you have heard about processes and memory. From now on you ll hear about resources, the things operated upon
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
8. MicroC/OS-II Real-Time Operating System
8. MicroC/OS-II Real-Time Operating System NII52008-7.0.0 Introduction Overview This chapter describes the MicroC/OS-II real-time kernel for the Nios II processor. MicroC/OS-II is a popular real-time kernel
Process Description and Control. 2004-2008 william stallings, maurizio pizzonia - sistemi operativi
Process Description and Control 1 Process A program in execution (running) on a computer The entity that can be assigned to and executed on a processor A unit of activity characterized by a at least one
快 速 porting μc/os-ii 及 driver 解 說
快 速 porting μc/os-ii 及 driver 解 說 沈 智 明 晶 心 科 技 公 司 資 深 經 理 Email: [email protected] WWW.ANDESTECH.COM Outline Application Building Blocks μc/os-ii/rtos Introduction μc/os-ii & FreeRTOS Merge μc/os-ii
10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details
Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting
Lecture 6: Interrupts. CSC 469H1F Fall 2006 Angela Demke Brown
Lecture 6: Interrupts CSC 469H1F Fall 2006 Angela Demke Brown Topics What is an interrupt? How do operating systems handle interrupts? FreeBSD example Linux in tutorial Interrupts Defn: an event external
CS414 SP 2007 Assignment 1
CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the
SYSTEM ecos Embedded Configurable Operating System
BELONGS TO THE CYGNUS SOLUTIONS founded about 1989 initiative connected with an idea of free software ( commercial support for the free software ). Recently merged with RedHat. CYGNUS was also the original
EE8205: Embedded Computer System Electrical and Computer Engineering, Ryerson University. Multitasking ARM-Applications with uvision and RTX
EE8205: Embedded Computer System Electrical and Computer Engineering, Ryerson University Multitasking ARM-Applications with uvision and RTX 1. Objectives The purpose of this lab is to lab is to introduce
Priority Inversion Problem and Deadlock Situations
INTER-PROCESS COMMUNICATION AND SYNCHRONISATION: Lesson-11: Priority Inversion Problem and Deadlock Situations 1 1. Priority Inversion 2 Assume Priorities of tasks be in an order such that task I highest
Computer-System Architecture
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
Jorix kernel: real-time scheduling
Jorix kernel: real-time scheduling Joris Huizer Kwie Min Wong May 16, 2007 1 Introduction As a specialized part of the kernel, we implemented two real-time scheduling algorithms: RM (rate monotonic) and
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
Aperiodic Task Scheduling
Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2014 年 11 月 19 日 These slides use Microsoft clip arts. Microsoft copyright
Tasks Schedule Analysis in RTAI/Linux-GPL
Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos
What is an RTOS? Introduction to Real-Time Operating Systems. So what is an RTOS?(contd)
Introduction to Real-Time Operating Systems Mahesh Balasubramaniam What is an RTOS? An RTOS is a class of operating systems that are intended for real time-applications What is a real time application?
Zing Vision. Answering your toughest production Java performance questions
Zing Vision Answering your toughest production Java performance questions Outline What is Zing Vision? Where does Zing Vision fit in your Java environment? Key features How it works Using ZVRobot Q & A
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Shared Address Space Computing: Programming
Shared Address Space Computing: Programming Alistair Rendell See Chapter 6 or Lin and Synder, Chapter 7 of Grama, Gupta, Karypis and Kumar, and Chapter 8 of Wilkinson and Allen Fork/Join Programming Model
Priority Based Implementation in Pintos
Priority Based Implementation in Pintos Deepa D 1, Nivas K S 2, Preethi V 3 1, 2, 3 Students M-Tech, Dept. of Information Technology, SNS College of Engg., Coimbatore. Abstract Pintos is a simple operating
White Paper Perceived Performance Tuning a system for what really matters
TMurgent Technologies White Paper Perceived Performance Tuning a system for what really matters September 18, 2003 White Paper: Perceived Performance 1/7 TMurgent Technologies Introduction The purpose
Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling
Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing
Virtual machine CPU monitoring with Kernel Tracing
Virtual machine CPU monitoring with Kernel Tracing Mohamad Gebai Michel Dagenais 15 May, 2014 École Polytechnique de Montreal 1 Content General objectives Current approaches Kernel tracing Trace synchronization
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Implementing and Using Execution Time Clocks in Ada Hard Real-Time Applications
Implementing and Using Execution Time Clocks in Ada Hard Real-Time Applications By: M. González Harbour, M. Aldea Rivas, J.J. Gutiérrez García, and J.C. Palencia Gutiérrez Departamento de Electrónica y
Operating System Manual. Realtime Communication System for netx. Kernel API Function Reference. www.hilscher.com.
Operating System Manual Realtime Communication System for netx Kernel API Function Reference Language: English www.hilscher.com rcx - Kernel API Function Reference 2 Copyright Information Copyright 2005-2007
CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS
CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get
Embedded Programming in C/C++: Lesson-1: Programming Elements and Programming in C
Embedded Programming in C/C++: Lesson-1: Programming Elements and Programming in C 1 An essential part of any embedded system design Programming 2 Programming in Assembly or HLL Processor and memory-sensitive
First-class User Level Threads
First-class User Level Threads based on paper: First-Class User Level Threads by Marsh, Scott, LeBlanc, and Markatos research paper, not merely an implementation report User-level Threads Threads managed
Design of Real-Time Software
Design of Real-Time Software Implementing the real time task model By courtesy of Prof. Dr. Johan J. Lukkien Department of Mathematics and Computer Science System Architecture and Networking Eindhoven
1. Computer System Structure and Components
1 Computer System Structure and Components Computer System Layers Various Computer Programs OS System Calls (eg, fork, execv, write, etc) KERNEL/Behavior or CPU Device Drivers Device Controllers Devices
Operating Systems 4 th Class
Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science
Project 11: FreeRTOS TM Real-Time Control of a Stepper Motor
Implementation on a chipkit Pro MX7 Revision: September 23, 2014 Author: Professor Richard Wall, University of Idaho, [email protected] 1300 NE Henley Court, Suite 3 Pullman, WA 99163 (509) 334 6306 Voice
Debouncing Switches. Mechanical switches are one of the most common interfaces to a uc.
Mechanical switches are one of the most common interfaces to a uc. Switch inputs are asynchronous to the uc and are not electrically clean. Asynchronous inputs can be handled with a synchronizer (2 FF's).
CS0206 OPERATING SYSTEMS Prerequisite CS0201, CS0203
CS0206 OPERATING SYSTEMS Prerequisite CS0201, CS0203 L T P C 3 0 0 3 PURPOSE Every computer professional should have a basic understanding of how an operating system controls the computing resources and
ELEC 377. Operating Systems. Week 1 Class 3
Operating Systems Week 1 Class 3 Last Class! Computer System Structure, Controllers! Interrupts & Traps! I/O structure and device queues.! Storage Structure & Caching! Hardware Protection! Dual Mode Operation
Real-Time Operating Systems With Example PICOS18. What is an Operating System?
Real-Time Operating Systems With Example PICOS18 Sebastian Fischmeister 1 What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware Operating
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
Process definition Concurrency Process status Process attributes PROCESES 1.3
Process Management Outline Main concepts Basic services for process management (Linux based) Inter process communications: Linux Signals and synchronization Internal process management Basic data structures:
Chapter 10: Virtual Memory. Lesson 08: Demand Paging and Page Swapping
Chapter 10: Virtual Memory Lesson 08: Demand Paging and Page Swapping Objective Learn demand paging, pages of data are only brought into the main memory when a program accesses them Learn swapping technique
Red Hat Linux Internals
Red Hat Linux Internals Learn how the Linux kernel functions and start developing modules. Red Hat Linux internals teaches you all the fundamental requirements necessary to understand and start developing
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
Crazy Alarm Clock L A K S H M I M E Y Y A P P A N J A M E S K A Y E W I L L I A M D I E H L C O N G C H E N
Crazy Alarm Clock L A K S H M I M E Y Y A P P A N J A M E S K A Y E W I L L I A M D I E H L C O N G C H E N Overview Problem: Some people hit snooze excessively every morning rather than getting out of
Processor Scheduling. Queues Recall OS maintains various queues
Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time
USING THE FREERTOS REAL TIME KERNEL
USING THE FREERTOS REAL TIME KERNEL A Practical Guide Richard Barry This page intentionally left blank 2009 Richard Barry All text, source code and diagrams are the exclusive property of Richard Barry.
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
Chapter 11: Input/Output Organisation. Lesson 06: Programmed IO
Chapter 11: Input/Output Organisation Lesson 06: Programmed IO Objective Understand the programmed IO mode of data transfer Learn that the program waits for the ready status by repeatedly testing the status
REAL TIME OPERATING SYSTEM PROGRAMMING-II: II: Windows CE, OSEK and Real time Linux. Lesson-12: Real Time Linux
REAL TIME OPERATING SYSTEM PROGRAMMING-II: II: Windows CE, OSEK and Real time Linux Lesson-12: Real Time Linux 1 1. Real Time Linux 2 Linux 2.6.x Linux is after Linus Torvalds, father of the Linux operating
Embedded Software development Process and Tools:
Embedded Software development Process and Tools: Lesson-2 Integrated Development Environment (IDE) 1 1. IDE 2 Consists of Simulators editors, compilers, assemblers, etc., IDE 3 emulators logic analyzers
Linux Scheduler. Linux Scheduler
or or Affinity Basic Interactive es 1 / 40 Reality... or or Affinity Basic Interactive es The Linux scheduler tries to be very efficient To do that, it uses some complex data structures Some of what it
Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses
Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline
REAL TIME OPERATING SYSTEMS. Lesson-18:
REAL TIME OPERATING SYSTEMS Lesson-18: Round Robin Time Slicing of tasks of equal priorities 1 1. Common scheduling models 2 Common scheduling models Cooperative Scheduling of ready tasks in a circular
Introduction to Operating Systems. Perspective of the Computer. System Software. Indiana University Chen Yu
Introduction to Operating Systems Indiana University Chen Yu Perspective of the Computer System Software A general piece of software with common functionalities that support many applications. Example:
Lecture 3 Theoretical Foundations of RTOS
CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)
Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts
Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
Real- Time Scheduling
Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter
Timer A (0 and 1) and PWM EE3376
Timer A (0 and 1) and PWM EE3376 General Peripheral Programming Model Each peripheral has a range of addresses in the memory map peripheral has base address (i.e. 0x00A0) each register used in the peripheral
BLOCK OCCUPANCY DETECTOR WITH SEMAPHORE OPERATION BOD1/DAP4-BR
BLOCK OCCUPANCY DETECTOR WITH SEMAPHORE OPERATION BOD1/DAP4-BR This Block Occupancy Detector recognises the current drawn by moving trains within a block, and can operate a number of built-in programs
Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture
Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts
Linux scheduler history. We will be talking about the O(1) scheduler
CPU Scheduling Linux scheduler history We will be talking about the O(1) scheduler SMP Support in 2.4 and 2.6 versions 2.4 Kernel 2.6 Kernel CPU1 CPU2 CPU3 CPU1 CPU2 CPU3 Linux Scheduling 3 scheduling
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Interrupts and the Timer Overflow Interrupts Huang Sections 6.1-6.4. What Happens When You Reset the HCS12?
Interrupts and the Timer Overflow Interrupts Huang Sections 6.1-6.4 o Using the Timer Overflow Flag to interrupt a delay o Introduction to Interrupts o How to generate an interrupt when the timer overflows
POSIX. RTOSes Part I. POSIX Versions. POSIX Versions (2)
RTOSes Part I Christopher Kenna September 24, 2010 POSIX Portable Operating System for UnIX Application portability at source-code level POSIX Family formally known as IEEE 1003 Originally 17 separate
A Survey of Parallel Processing in Linux
A Survey of Parallel Processing in Linux Kojiro Akasaka Computer Science Department San Jose State University San Jose, CA 95192 408 924 1000 [email protected] ABSTRACT Any kernel with parallel processing
Chapter 6, The Operating System Machine Level
Chapter 6, The Operating System Machine Level 6.1 Virtual Memory 6.2 Virtual I/O Instructions 6.3 Virtual Instructions For Parallel Processing 6.4 Example Operating Systems 6.5 Summary Virtual Memory General
Timer Value IRQ IACK
Real Time Clocks & s Programming with Real-time clocks Real-time clock is just another source of interrupts. Should have high priority in real-time systems Timing jitter must be accommodated or tolerated
Keil C51 Cross Compiler
Keil C51 Cross Compiler ANSI C Compiler Generates fast compact code for the 8051 and it s derivatives Advantages of C over Assembler Do not need to know the microcontroller instruction set Register allocation
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
949 Crestview Circle Weston, FL 33327 U.S.A. www.micrium.com. The Real-Time kernel V2.90. Release Notes. Copyright 2010, Micriµm All Rights reserved
Micriµm 949 Crestview Circle Weston, FL 33327 U.S.A. www.micrium.com µc/os-ii The Real-Time kernel V2.90 Release Notes Copyright 2010, Micriµm All Rights reserved Phone: +1 954 217 2036 FAX: +1 954 217
Multi-core Programming System Overview
Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,
Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition
Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating
