Semaphores and Monitors: High-level Synchronization Constructs
|
|
|
- Cornelius Cummings
- 10 years ago
- Views:
Transcription
1 Semaphores and Monitors: High-level Synchronization Constructs 1 Synchronization Constructs Synchronization Coordinating execution of multiple threads that share data structures Past few lectures: Locks: provide mutual exclusion Condition variables: provide conditional synchronization Today: Historical perspective Monitors Alternate high-level language constructs Semaphores Introduced by Dijkstra in 1960s Main synchronization primitives in early operating systems 2
2 Introducing Monitors Separate the concerns of mutual exclusion and conditional synchronization What is a monitor? One lock, and Zero or more condition variables for managing concurrent access to shared data General approach: Collect related shared data into an object/module Define methods for accessing the shared data Monitors first introduced as programming language construct Calling a method defined in the monitor automatically acquires the lock Examples: Mesa, Java (synchronized methods) Monitors also define a programming convention Can be used in any language (C, C++, ) 3 Critical Section: Monitors Basic idea: Restrict programming model Permit access to shared variables only within a critical section General program structure Entry section Lock before entering critical section Wait if already locked Key point: synchronization may involve wait Critical section code Exit section Unlock when leaving the critical section Object-oriented programming style Associate a lock with each shared object Methods that access shared object are critical sections Acquire/release locks when entering/exiting a method that defines a critical section 4
3 Remember Condition Variables Locks Provide mutual exclusion Support two methods Lock::Acquire() wait until lock is free, then grab it Lock::Release() release the lock, waking up a waiter, if any Condition variables Support conditional synchronization Three operations Wait(): Release lock; wait for the condition to become true; reacquire lock upon return (Java wait()) Signal(): Wake up a waiter, if any (Java notify()) Broadcast(): Wake up all the waiters (Java notifyall()) Two semantics for implementation of wait() and signal() Hoare monitor semantics Hansen (Mesa) monitor semantics 5 Coke Machine Example Monitor Class CokeMachine{ Lock lock; int count = 0; Condition notfull, notempty; t Does the order of aquire/while(){wait matter? Order of release/signal matter? while (count == n) { notfull.wait(&lock); notempty.signal(); CokeMachine::Remove(){ while (count == 0) { notempty.wait(&lock); Remove coke from to the machine; count--; notfull.signal(); 6
4 Every monitor function should start with what? A. wait B. signal C. lock acquire D. lock release E. signalall 7 Hoare Monitors: Semantics Hoare monitor semantics: Assume thread T1 is waiting on condition x Assume thread T2 is in the monitor Assume thread T2 calls x.signal T2 gives up monitor, T2 blocks! T1 takes over monitor, runs T1 gives up monitor T2 takes over monitor, resumes Example fn1( ) x.wait // T1 blocks // T1 resumes Lock release(); fn4( ) x.signal T2 resumes // T2 blocks 8
5 Hansen (Mesa) Monitors: Semantics Hansen monitor semantics: Assume thread T1 waiting on condition x Assume thread T2 is in the monitor Assume thread T2 calls x.signal; g wake up T1 T2 continues, finishes When T1 get a chance to run,t1 takes over monitor, runs T1 finishes, gives up monitor Example: fn1( ) x.wait // T1 resumes // T1 finishes // T1 blocks fn4( ) x.signal // T2 continues // T2 finishes 9 Tradeoff Hoare Claims: Cleaner, good for proofs When a condition variable is signaled, it does not change Used in most textbooks but Inefficient implementation Not modular correctness depends on correct use and implementation of signal Hansen Signal is only a hint that the condition may be true Need to check condition again before proceeding Can lead to synchronization bugs Used by most systems (e.g., Java) Benefits: Efficient implementation Condition guaranteed to be true once you are out of while! if (count == n) { notfull.wait(&lock); notempty.signal(); while (count == n) { notfull.wait(&lock); notempty.signal(); 10
6 Problems with Monitors Nested Monitor Calls What happens when one monitor calls into another? What happens to CokeMachine::lock if thread sleeps in CokeTruck::Unload? What happens if truck unloader wants a coke? while (count == n) { notfull.wait(&lock); truck->unload(); notempty.signal(); CokeTruck::Unload(){ while (soda.atdoor()!= coke) { cokeavailable.wait(&lock); Unload soda closest to door; soda.pop(); Signal availability for soda.atdoor(); 11 More Monitor Headaches The priority inversion problem Three processes (P1, P2, P3), and P1 & P3 communicate using a monitor M. P3 is the highest priority process, followed by P2 and P1. 1. P1 enters M. 2. P1 is preempted by P2. 3. P2 is preempted by P3. 4. P3 tries to enter the monitor, and waits for the lock. 5. P2 runs again, preventing P3 from running, subverting the priority system. A simple way to avoid this situation is to associate with each monitor the priority of the highest priority process which ever enters that monitor. 12
7 Other Interesting Topics Exception handling What if a process waiting in a monitor needs to time out? Naked notify How do we synchronize with I/O devices that do not grab monitor locks, but can notify condition variables. Butler Lampson and David Redell, Experience with Processes and Monitors in Mesa. 13 Semaphores Study these for history and compatibility Don t use semaphores in new code A non-negative integer variable with two atomic and isolated operations Semaphore P() (Passeren; wait) If sem > 0, then decrement sem by 1 Otherwise wait until sem > 0 and then decrement Semaphore V() (Vrijgeven; signal) Increment sem by 1 Wake up a thread waiting in P() We assume that a semaphore is fair No thread t that is blocked on a P() operation remains blocked if the V() operation on the semaphore is invoked infinitely often In practice, FIFO is mostly used, transforming the set into a queue. 14
8 Important properties of Semaphores Semaphores are non-negative integers The only operations you can use to change the value of a semaphore are P() and V() (except for the initial setup) P() can block, but V() never blocks Semaphores are used both for Mutual exclusion, and Conditional synchronization Two types of semaphores Binary semaphores: Can either be 0 or 1 General/Counting semaphores: Can take any non-negative value Binary semaphores are as expressive as general semaphores (given one can implement the other) 15 How many possible values can a binary semaphore take? A. 0 B. 1 C. 2 D. 3 E. 4 16
9 Using Semaphores for Mutual Exclusion Use a binary semaphore for mutual exclusion Semaphore = new Semaphore(1); Semaphore P(); Critical Section; Semaphore V(); Using Semaphores for producer-consumer with bounded buffer int count; Semaphore mutex; Semaphore fullbuffers; Semaphore emptybuffers; Use a separate semaphore for each constraint 17 Coke Machine Example Coke machine as a shared buffer Two types of users Producer: Restocks the coke machine Consumer: Removes coke from the machine Requirements Only a single person can access the machine at any time If the machine is out of coke, wait until coke is restocked If machine is full, wait for consumers to drink coke prior to restocking How will we implement this? How many lock and condition variables do we need? A. 1 B. 2 C. 3 D. 4 E. 5 18
10 Revisiting Coke Machine Example Class CokeMachine{ int count; Semaphore new mutex(1); Semaphores new fullbuffers(0); Semaphores new emptybuffers(numbuffers); emptybuffers P(); mutex P(); mutex V(); fullbuffers V(); CokeMachine::Remove(){ fullbuffers P(); mutex P(); Remove coke from to the machine; count--; mutex V(); emptybuffers V(); Does the order of P matter? Order of V matter? 19 Implementing Semaphores Semaphore::P() { if (value == 0) { Put TCB on wait queue for semaphore; Switch(); // dispatch a ready thread else {value--; Does this work? Semaphore::V() { if wait queue is not empty { Move a waiting thread to ready queue; value++; 20
11 Implementing Semaphores Semaphore::P() { while (value == 0) { Put TCB on wait queue for semaphore; Switch(); // dispatch a ready thread value--; Semaphore::V() { if wait queue is not empty { Move a waiting thread to ready queue; value++; 21 The Problem with Semaphores Semaphores are used for dual purpose Mutual exclusion Conditional synchronization Difficult to read/develop code Waiting for condition is independent of mutual exclusion Programmer needs to be clever about using semaphores emptybuffers P(); mutex P(); mutex V(); fullbuffers V(); CokeMachine::Remove(){ fullbuffers P(); mutex P(); Remove coke from to the machine; count--; mutex V(); emptybuffers V(); 22
12 Comparing Semaphores and Monitors emptybuffers P(); mutex P(); mutex V(); fullbuffers V(); CokeMachine::Remove(){ fullbuffers P(); mutex P(); Remove coke from to the machine; count--; mutex V(); emptybuffers V(); Which is better? A. Semaphore B. Monitors while (count == n) { notfull.wait(&lock); notempty.notify(); CokeMachine::Remove(){ while (count == 0) { notempty.wait(&lock); Remove coke from to the machine; count--; notfull.notify(); 23 Summary Synchronization Coordinating execution of multiple threads that share data structures Past lectures: Locks provide mutual exclusion Condition variables provide conditional synchronization Today: Semaphores Introduced by Dijkstra in 1960s Two types: binary semaphores and counting semaphores Supports both mutual exclusion and conditional synchronization Monitors Separate mutual exclusion and conditional synchronization 24
! Past few lectures: Ø Locks: provide mutual exclusion Ø Condition variables: provide conditional synchronization
1 Synchronization Constructs! Synchronization Ø Coordinating execution of multiple threads that share data structures Semaphores and Monitors: High-level Synchronization Constructs! Past few lectures:
Last Class: Semaphores
Last Class: Semaphores A semaphore S supports two atomic operations: S Wait(): get a semaphore, wait if busy semaphore S is available. S Signal(): release the semaphore, wake up a process if one is waiting
Lecture 6: Semaphores and Monitors
HW 2 Due Tuesday 10/18 Lecture 6: Semaphores and Monitors CSE 120: Principles of Operating Systems Alex C. Snoeren Higher-Level Synchronization We looked at using locks to provide mutual exclusion Locks
Monitors, Java, Threads and Processes
Monitors, Java, Threads and Processes 185 An object-oriented view of shared memory A semaphore can be seen as a shared object accessible through two methods: wait and signal. The idea behind the concept
Monitors and Semaphores
Monitors and Semaphores Annotated Condition Variable Example Condition *cv; Lock* cvmx; int waiter = 0; await() { cvmx->lock(); waiter = waiter + 1; /* I m sleeping */ cv->wait(cvmx); /* sleep */ cvmx->unlock();
Concurrent Programming
Concurrent Programming Shared Memory Passing the baton Monitors Verónica Gaspes www.hh.se/staff/vero CERES, November 2, 2007 ceres Outline 1 Recap 2 Readers & Writers Readers & writers (mutual exclusion)
Outline of this lecture G52CON: Concepts of Concurrency
Outline of this lecture G52CON: Concepts of Concurrency Lecture 10 Synchronisation in Java Natasha Alechina School of Computer Science [email protected] mutual exclusion in Java condition synchronisation
Chapter 6 Concurrent Programming
Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:
Lecture 6: Introduction to Monitors and Semaphores
Concurrent Programming 19530-V (WS01) Lecture 6: Introduction to Monitors and Semaphores Dr. Richard S. Hall [email protected] Concurrent programming November 27, 2001 Abstracting Locking Details
Parallel Programming
Parallel Programming 0024 Recitation Week 7 Spring Semester 2010 R 7 :: 1 0024 Spring 2010 Today s program Assignment 6 Review of semaphores Semaphores Semaphoren and (Java) monitors Semaphore implementation
COS 318: Operating Systems. Semaphores, Monitors and Condition Variables
COS 318: Operating Systems Semaphores, Monitors and Condition Variables Prof. Margaret Martonosi Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/
Monitors & Condition Synchronization
Chapter 5 Monitors & Condition Synchronization 1 monitors & condition synchronization Concepts: monitors: encapsulated data + access procedures mutual exclusion + condition synchronization nested monitors
CS11 Java. Fall 2014-2015 Lecture 7
CS11 Java Fall 2014-2015 Lecture 7 Today s Topics! All about Java Threads! Some Lab 7 tips Java Threading Recap! A program can use multiple threads to do several things at once " A thread can have local
3C03 Concurrency: Condition Synchronisation
3C03 Concurrency: Condition Synchronisation Mark Handley 1 Goals n Introduce concepts of Condition synchronisation Fairness Starvation n Modelling: Relationship between guarded actions and condition synchronisation?
Mutual Exclusion using Monitors
Mutual Exclusion using Monitors Some programming languages, such as Concurrent Pascal, Modula-2 and Java provide mutual exclusion facilities called monitors. They are similar to modules in languages that
Thread Synchronization and the Java Monitor
Articles News Weblogs Buzz Chapters Forums Table of Contents Order the Book Print Email Screen Friendly Version Previous Next Chapter 20 of Inside the Java Virtual Machine Thread Synchronization by Bill
Distributed Systems [Fall 2012]
Distributed Systems [Fall 2012] [W4995-2] Lec 6: YFS Lab Introduction and Local Synchronization Primitives Slide acks: Jinyang Li, Dave Andersen, Randy Bryant (http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt,
4. Monitors. Monitors support data encapsulation and information hiding and are easily adapted to an object-oriented environment.
4. Monitors Problems with semaphores: - shared variables and the semaphores that protect them are global variables - Operations on shared variables and semaphores distributed throughout program - difficult
SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I)
SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics
Monitor Object. An Object Behavioral Pattern for Concurrent Programming. Douglas C. Schmidt
Monitor Object An Object Behavioral Pattern for Concurrent Programming Douglas C. Schmidt [email protected] Department of Computer Science Washington University, St. Louis 1 Intent The Monitor Object
Abstract. 1. Introduction. Butler W. Lampson Xerox Palo Alto Research Center David D. Redell Xerox Business Systems
Experience with Processes and Monitors in Mesa 1 Abstract Butler W. Lampson Xerox Palo Alto Research Center David D. Redell Xerox Business Systems The use of monitors for describing concurrency has been
Real Time Programming: Concepts
Real Time Programming: Concepts Radek Pelánek Plan at first we will study basic concepts related to real time programming then we will have a look at specific programming languages and study how they realize
Concurrent programming in Java
Concurrent programming in Java INF4140 04.10.12 Lecture 5 0 Book: Andrews - ch.05 (5.4) Book: Magee & Kramer ch.04 - ch.07 INF4140 (04.10.12) Concurrent programming in Java Lecture 5 1 / 33 Outline 1 Monitors:
Shared Address Space Computing: Programming
Shared Address Space Computing: Programming Alistair Rendell See Chapter 6 or Lin and Synder, Chapter 7 of Grama, Gupta, Karypis and Kumar, and Chapter 8 of Wilkinson and Allen Fork/Join Programming Model
Hoare-Style Monitors for Java
Hoare-Style Monitors for Java Theodore S Norvell Electrical and Computer Engineering Memorial University February 17, 2006 1 Hoare-Style Monitors Coordinating the interactions of two or more threads can
Topics. Producing Production Quality Software. Concurrent Environments. Why Use Concurrency? Models of concurrency Concurrency in Java
Topics Producing Production Quality Software Models of concurrency Concurrency in Java Lecture 12: Concurrent and Distributed Programming Prof. Arthur P. Goldberg Fall, 2005 2 Why Use Concurrency? Concurrent
6 Synchronization with Semaphores
32 6 Synchronization with Semaphores The too-much-milk solution is much too complicated. The problem is that the mutual exclusion mechanism was too simple-minded: it used only atomic reads and writes.
Resurrecting Ada s Rendez-Vous in Java
Resurrecting Ada s Rendez-Vous in Java Luis Mateu, José M. Piquer and Juan León DCC - Universidad de Chile Casilla 2777, Santiago, Chile [email protected] Abstract Java is a programming language designed
Chapter 6, The Operating System Machine Level
Chapter 6, The Operating System Machine Level 6.1 Virtual Memory 6.2 Virtual I/O Instructions 6.3 Virtual Instructions For Parallel Processing 6.4 Example Operating Systems 6.5 Summary Virtual Memory General
Embedded Systems. 6. Real-Time Operating Systems
Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic
Java Virtual Machine Locks
Java Virtual Machine Locks SS 2008 Synchronized Gerald SCHARITZER (e0127228) 2008-05-27 Synchronized 1 / 13 Table of Contents 1 Scope...3 1.1 Constraints...3 1.2 In Scope...3 1.3 Out of Scope...3 2 Logical
SYSTEM ecos Embedded Configurable Operating System
BELONGS TO THE CYGNUS SOLUTIONS founded about 1989 initiative connected with an idea of free software ( commercial support for the free software ). Recently merged with RedHat. CYGNUS was also the original
The Little Book of Semaphores
The Little Book of Semaphores Allen B. Downey Version 2.1.2 2 The Little Book of Semaphores Second Edition Version 2.1.2 Copyright 2005, 2006, 2007 Allen B. Downey Permission is granted to copy, distribute
Tasks Schedule Analysis in RTAI/Linux-GPL
Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
MonitorExplorer: A State Exploration-Based Approach to Testing Java Monitors
Department of Computer Science and Engineering University of Texas at Arlington Arlington, TX 76019 MonitorExplorer: A State Exploration-Based Approach to Testing Java Monitors Y. Lei, R. Carver, D. Kung,
Processes and Non-Preemptive Scheduling. Otto J. Anshus
Processes and Non-Preemptive Scheduling Otto J. Anshus 1 Concurrency and Process Challenge: Physical reality is Concurrent Smart to do concurrent software instead of sequential? At least we want to have
OPERATING SYSTEMS PROCESS SYNCHRONIZATION
OPERATING SYSTEMS PROCESS Jerry Breecher 6: Process Synchronization 1 OPERATING SYSTEM Synchronization What Is In This Chapter? This is about getting processes to coordinate with each other. How do processes
Figure 30.1: A Parent Waiting For Its Child What we would like to see here is the following output:
30 Condition Variables Thus far we have developed the notion of a lock and seen how one can be properly built with the right combination of hardware and OS support. Unfortunately, locks are not the only
How To Write A Multi Threaded Software On A Single Core (Or Multi Threaded) System
Multicore Systems Challenges for the Real-Time Software Developer Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany [email protected] Abstract Multicore systems have become
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
Facing the Challenges for Real-Time Software Development on Multi-Cores
Facing the Challenges for Real-Time Software Development on Multi-Cores Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany [email protected] Abstract Multicore systems introduce
Overview. CMSC 330: Organization of Programming Languages. Synchronization Example (Java 1.5) Lock Interface (Java 1.5) ReentrantLock Class (Java 1.
CMSC 330: Organization of Programming Languages Java 1.5, Ruby, and MapReduce Overview Java 1.5 ReentrantLock class Condition interface - await( ), signalall( ) Ruby multithreading Concurrent programming
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015 1. Goals and Overview 1. In this MP you will design a Dynamic Load Balancer architecture for a Distributed System 2. You will
Synchronization. Todd C. Mowry CS 740 November 24, 1998. Topics. Locks Barriers
Synchronization Todd C. Mowry CS 740 November 24, 1998 Topics Locks Barriers Types of Synchronization Mutual Exclusion Locks Event Synchronization Global or group-based (barriers) Point-to-point tightly
Chapter 2: OS Overview
Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:
Built-in Concurrency Primitives in Java Programming Language. by Yourii Martiak and Mahir Atmis
Built-in Concurrency Primitives in Java Programming Language by Yourii Martiak and Mahir Atmis Overview One of the many strengths of Java is the built into the programming language support for concurrency
COMMMUNICATING COOPERATING PROCESSES
COMMMUNICATING COOPERATING PROCESSES The producer-consumer paradigm A buffer of items can be filled by the producer and emptied by the consumer. The producer and the consumer must be synchronized: the
Java Concurrency Framework. Sidartha Gracias
Java Concurrency Framework Sidartha Gracias Executive Summary This is a beginners introduction to the java concurrency framework Some familiarity with concurrent programs is assumed However the presentation
Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture
Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Priority Based Implementation in Pintos
Priority Based Implementation in Pintos Deepa D 1, Nivas K S 2, Preethi V 3 1, 2, 3 Students M-Tech, Dept. of Information Technology, SNS College of Engg., Coimbatore. Abstract Pintos is a simple operating
Linux Driver Devices. Why, When, Which, How?
Bertrand Mermet Sylvain Ract Linux Driver Devices. Why, When, Which, How? Since its creation in the early 1990 s Linux has been installed on millions of computers or embedded systems. These systems may
The ConTract Model. Helmut Wächter, Andreas Reuter. November 9, 1999
The ConTract Model Helmut Wächter, Andreas Reuter November 9, 1999 Overview In Ahmed K. Elmagarmid: Database Transaction Models for Advanced Applications First in Andreas Reuter: ConTracts: A Means for
Understanding the Python GIL
Understanding the Python GIL David Beazley http://www.dabeaz.com Presented at PyCon 2010 Atlanta, Georgia 1 Introduction As a few of you might know, C Python has a Global Interpreter Lock (GIL) >>> import
Deadlock Victim. dimanche 6 mai 12
Deadlock Victim by Dr Heinz Kabutz && Olivier Croisier The Java Specialists Newsletter && The Coder's Breakfast [email protected] && [email protected] 1 You discover a race condition 2
Lecture 8: Safety and Liveness Properties
Concurrent Programming 19530-V (WS01) 1 Lecture 8: Safety and Liveness Properties Dr. Richard S. Hall [email protected] Concurrent programming December 11, 2001 Safety Properties 2 A safety property
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances
Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Jialin Zhang Tsinghua University [email protected] Wei Chen Microsoft Research Asia [email protected] Abstract
Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell
Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell Ryan Yates 5-5-2014 1/21 Introduction Outline Thesis Why Haskell? Preliminary work Hybrid TM for GHC Obstacles to Performance
Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification
Introduction Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Advanced Topics in Software Engineering 1 Concurrent Programs Characterized by
Java the UML Way: Integrating Object-Oriented Design and Programming
Java the UML Way: Integrating Object-Oriented Design and Programming by Else Lervik and Vegard B. Havdal ISBN 0-470-84386-1 John Wiley & Sons, Ltd. Table of Contents Preface xi 1 Introduction 1 1.1 Preliminaries
Concurrent Programming
Concurrent Programming Principles and Practice Gregory R. Andrews The University of Arizona Technische Hochschule Darmstadt FACHBEREICH INFCRMATIK BIBLIOTHEK Inventar-Nr.:..ZP.vAh... Sachgebiete:..?r.:..\).
Programming real-time systems with C/C++ and POSIX
Programming real-time systems with C/C++ and POSIX Michael González Harbour 1. Introduction The C language [1], developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories, is the most widely
Operating Systems and Networks
recap Operating Systems and Networks How OS manages multiple tasks Virtual memory Brief Linux demo Lecture 04: Introduction to OS-part 3 Behzad Bordbar 47 48 Contents Dual mode API to wrap system calls
Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
Compiling Object Oriented Languages. What is an Object-Oriented Programming Language? Implementation: Dynamic Binding
Compiling Object Oriented Languages What is an Object-Oriented Programming Language? Last time Dynamic compilation Today Introduction to compiling object oriented languages What are the issues? Objects
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
Linux Scheduler. Linux Scheduler
or or Affinity Basic Interactive es 1 / 40 Reality... or or Affinity Basic Interactive es The Linux scheduler tries to be very efficient To do that, it uses some complex data structures Some of what it
Priority Inversion Problem and Deadlock Situations
INTER-PROCESS COMMUNICATION AND SYNCHRONISATION: Lesson-11: Priority Inversion Problem and Deadlock Situations 1 1. Priority Inversion 2 Assume Priorities of tasks be in an order such that task I highest
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM
Chapter 1 FUNDAMENTALS OF OPERATING SYSTEM An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware. The purpose of an operating system is to
Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm
Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm PURPOSE Getting familiar with the Linux kernel source code. Understanding process scheduling and how different parameters
A Survey of Parallel Processing in Linux
A Survey of Parallel Processing in Linux Kojiro Akasaka Computer Science Department San Jose State University San Jose, CA 95192 408 924 1000 [email protected] ABSTRACT Any kernel with parallel processing
1.4 SOFTWARE CONCEPTS
22 INTRODUCTION CHAP. 1 1.4 SOFTWARE CONCEPTS Hardware for distributed systems is important, but it is software that largely determines what a distributed system actually looks like. Distributed systems
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Learning goals of this lecture Different flavors of synchronization primitives and when to use them, in the context of Linux kernel How synchronization
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get
Design Patterns in C++
Design Patterns in C++ Concurrency Patterns Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 4, 2011 G. Lipari (Scuola Superiore Sant Anna) Concurrency Patterns May 4,
Concepts of Concurrent Computation
Chair of Software Engineering Concepts of Concurrent Computation Bertrand Meyer Sebastian Nanz Lecture 3: Synchronization Algorithms Today's lecture In this lecture you will learn about: the mutual exclusion
First-class User Level Threads
First-class User Level Threads based on paper: First-Class User Level Threads by Marsh, Scott, LeBlanc, and Markatos research paper, not merely an implementation report User-level Threads Threads managed
Operating System Manual. Realtime Communication System for netx. Kernel API Function Reference. www.hilscher.com.
Operating System Manual Realtime Communication System for netx Kernel API Function Reference Language: English www.hilscher.com rcx - Kernel API Function Reference 2 Copyright Information Copyright 2005-2007
Concurrency and Parallelism
Concurrency and Parallelism 480/571 G. Castagna (CNRS) Cours de Programmation Avancée 480 / 571 Outline 39 Concurrency 40 Preemptive multi-threading 41 Locks, Conditional Variables, Monitors 42 Doing without
Operating Systems 4 th Class
Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
Tuple spaces and Object spaces. Distributed Object Systems 12. Tuple spaces and Object spaces. Communication. Tuple space. Mechanisms 2.
Distributed Object Systems 12 Tuple spaces and Object spaces Tuple spaces and Object spaces Tuple spaces Shared memory as a mechanism for exchanging data in a distributed setting (i.e. separate from processes)
Input / Output and I/O Strategies
The Four Major Input / Output Strategies Preliminary Definitions A Silly Example to Illustrate Basic Definitions Input / Output and I/O Strategies A Context for Advanced I/O Strategies The Four Strategies
Programming Languages
CS 345 Programming Languages Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs345/ slide 1 Course Personnel Instructor: Vitaly Shmatikov Office: CSA 1.114 Office hours: Tuesday, 3:30-4:30pm (after
Performance Evaluation and Optimization of A Custom Native Linux Threads Library
Center for Embedded Computer Systems University of California, Irvine Performance Evaluation and Optimization of A Custom Native Linux Threads Library Guantao Liu and Rainer Dömer Technical Report CECS-12-11
Java Memory Model: Content
Java Memory Model: Content Memory Models Double Checked Locking Problem Java Memory Model: Happens Before Relation Volatile: in depth 16 March 2012 1 Java Memory Model JMM specifies guarantees given by
CSCI E 98: Managed Environments for the Execution of Programs
CSCI E 98: Managed Environments for the Execution of Programs Draft Syllabus Instructor Phil McGachey, PhD Class Time: Mondays beginning Sept. 8, 5:30-7:30 pm Location: 1 Story Street, Room 304. Office
