A STUDY ON DIGITAL VIDEO BROADCASTING TO A HANDHELD DEVICE (DVB-H), OPERATING IN UHF BAND
|
|
|
- Gwenda Joseph
- 9 years ago
- Views:
Transcription
1 A STUDY ON DIGITAL VIDEO BROADCASTING TO A HANDHELD DEVICE (DVB-H), OPERATING IN UHF BAND Farhat Masood National University of Sciences and Technology, Pakistan [email protected] ABSTRACT In this paper, we will understand that the development of the Digital Video Broadcasting to a Handheld (DVB-H) standard makes it possible to deliver live broadcast television to a mobile handheld device. Building upon the strengths of the Digital Video Broadcasting - Terrestrial (DVB-T) standard in use in millions of homes, DVB-H recognizes the trend towards the personal consumption of media. KEYWORDS: DVB-H, Mobile Integration 1. Broadcasting to Handheld Devices a. Television to a handheld receiver. The concept of providing television-like services on a handheld device has generated much enthusiasm. Already, mobile telecom operators are providing video streaming services using their UMTS networks, or third-generation networks. However, the main alternatives to providing live television services on a handheld device currently available are DMB, ISDB-T, Media- FLO and now DVB-H. b. DVB approach to handheld television: DVB-H. Building upon the portable and mobile capabilities of DVB-T, the DVB Project developed the Digital Video Broadcasting on Handhelds (DVB-H) standard for the delivery of audio and video content to mobile handheld devices. DVB-H overcomes two key limitations of the DVBT standard when used for handheld devices - it lowers battery power consumption and improves robustness in the very difficult reception environments of indoor and outdoor portable use in devices with built-in antennas. DVB-H can be used alongside mobile telephone technology and thus benefit from access to a mobile telecom network and a broadcast network. 2. DVB-H value chain[1] a. Viewers. DVB-H enables viewers to watch television programs on a handheld device. Such handheld televisions are likely to be considered personal items as the act of viewing increasingly becomes an individual, rather than a social, activity. Services can be accessed when viewers are on the move in public transportation, waiting for an appointment or while at work. Hence, handheld viewing will extend the hours of television watching to parts of the day when viewers are not at home. b. Broadcasters. With their experience in creating and aggregating content, broadcasters have a privileged role in delivering content for television services to a handheld device. However, broadcasters will need to define the level of their involvement in the DVB-H service offering. c. Mobile telecom operators. Mobile telecom operators have access to a large customer database and a sophisticated payment system which can be used for customer billing. Mobile operators have already installed a dense network of cellular transmitter sites which may be helpful to use for the roll-out of DVB-H services. d. Broadcast Network Operators. Broadcast network operators have been among the key drivers in the development of the DVB-H standard as they have supported access to network infrastructure. Many of the broadcast networks have been built to provide portable indoor coverage of DVB-T services, the same type of coverage required to support DVB-H services. In addition, the broadcast network operator is well suited to serve as the intermediary between the various service providers. e. Manufacturers. Manufacturers of consumer devices and professional system components have actively supported the launch of DVB-H services. The DVB-H prototype chips currently measured have already reached a satisfactory performance level and are expected to be mass produced. f. Enablers. Various groups have been working to promote DVB-H and other mobile technologies based upon the DVB-T standard. 3. Implications for broadcasters[2] a. Screen-size. Handheld screen sizes will resemble those of mobile phones and personal digital assistants (PDAs). They are likely to vary from approximately 5 cm to 12 cm diagonal with a very sharp pixel resolution. Early DVB-H tests of normal TV recoded to around 200kbit/s for
2 display at CIF resolution (352 x 288) offered an enjoyable viewing experience and even permitted the reading of normally sized captions. b. Cyclical presentations. As a low-cost alternative, broadcasters can re-purpose material for a repeated cyclical presentation. Appropriate material can be edited to the desired length and suitably-sized title and closing elements added. The material is then loaded into a carousel for repeated transmission. Some broadcasters have already begun building experience in the use of cyclical carousel presentation of material over enhanced broadcasting channels. c. Interactivity. DVB-H television services can benefit from an interaction channel. Although interactivity has not yet been fully exploited for traditional television market, it may be facilitated through the adoption of DVB-H services since a personal device may be more conducive to such activity rather than a shared television set. Interactivity can be used to allow viewer voting, much like the phone call and SMS voting, or even allow viewers to participate in game shows. d. Current content on UMTS telecom networks. Although it is difficult to compare the service offering available from the UMTS networks while at the early stages of their roll-out, it is useful to understand some of the content currently available. 4. DVB-H Business Models a. Model I. In this model, broadcasters manage the end-relationship with the consumer. The broadcaster receives payments for the use of the service, from consumers from the license fee, or subscription, or through payments made via the telecoms network operator. A variation on this could be broadcast funding from advertising revenue. As this is not an integrated service proposal, consumers may need to pay more than one service provider to obtain the different services. Fully interactive services are a possibility and a separate billing procedure will be necessary for consumers to pay mobile telecom operators for the use of such services. The involvement of the mobile telecom operator may be limited except for linked telecom services. Given the expected initial high cost of DVB-H receivers, market penetration may below if no receiver subsidies are offered b. Model II. In this model, mobile telecom operators manage the end-relationship with consumers and are responsible for service provisions, marketing and customer care. In addition, mobile telecom operators will need to purchase spectrum and content from broadcasters and other content providers. Consumers have access to an integrated service proposition which means that a complete package will be offered by one service provider. Figure 2 Mobile telecom operator-led approach with broadcaster As a variation, mobile telecom operators could directly handle advertisements. While mobile telecom operators would be responsible for general marketing, it could be possible for broadcasters to market individual television programs. For programs that generate revenue, for example using tele-voting, broadcasters would be responsible for marketing the program while the mobile telecom operator would be responsible for the billing. Revenue would be shared. c. Model III. In this model, the mobile telecom operator manages the end-relationship with consumers and is responsible for service provisions, marketing and customer care. A dedicated DVB-H service provider acts as a facilitator for mobile operators in the aggregation of content and the use of the spectrum. Consumers have access to an integrated service proposition which means that a complete package will be offered by one service provider. Figure 1Broadcaster led approach with Mobile Telecom Operator
3 Figure 3 Independent DVB-H service provider approach Variations in this model would include the handling of advertisements directly by the DVBH service provider. d. Model IV. In this model, the mobile telecom operator is responsible for all aspects of the value chain, from the content creator to the consumer. Broadcasters, or broadcast network operators, provide simply the DVB-H transport capacity. Consumers have access to an integrated service proposition which means that a complete package will be offered by the one service provider. Such a model gives telecom operators a dominant role, with very little involvement from the broadcasting side. In addition time-sliced and non time-sliced services can be placed in the same multiplex. c. MPE-FEC(Multi-Protocol Encapsulation / Forward Error Correction). Because handheld devices have small antennas that require reception from many different locations, they necessitate a robust transmission system with solid error protection. DVB-H offers improved transmission robustness through the use of an additional level of forward error correction (FEC) at the Multi Protocol Encapsulation (MPE) layer. The use of MPE-FEC is optional. d. IPDC (Internet Protocol DataCasting). With IP Datacast, content is delivered in the form of data packets using the same distribution technique as used for delivering digital content on the Internet. The use of Internet Protocol to carry its data, in so-called IP packets, allows DVB-H to rely upon standard components and protocols for content manipulation, storage and transmission. In addition to video and audio stream broadcasting, IP Datacast over DVB-H system can be used also for file delivery. e. Overview of the system Figure 4 Mobile telecom operator-led approach 5. Technical aspects of DVB-H[3] a. Principles of the DVB-H system. Both DVB-H and DVB-T use the same physical layer and DVB-H can be backwards compatible with DVB-T. Like DVB-T, DVB-H can carry the same MPEG-2 transport stream and use the same transmitter and OFDM modulators for its signal. In addition, DVB-H broadcasts sound, picture and other data using Internet Protocol (IP). b. Time-Slicing. To improve the operating time, DVB-H uses time-slicing. Video and audio data (1-2 Mbits), generally representing between 1-5 seconds of the content arrives in the single burst. Figure 5 System architecture for collaboration between mobile and broadcast operators f. Optional characteristics. Broadcast services can be delivered by DVB-H without the need for an interaction channel, or in the configuration shown, an interaction channel can easily be provided by the use of a cellular network such as the GSM network. Methods of providing payment for services can be built upon a proprietary encryption and payment solution or in conjunction with the telecoms network s inherent service statistics collection and billing functions. The DVB Project has been elaborating these options in the Convergent Mobile and Broadcast Services (CMBS) group. 6. Network architecture While the DVB-T network is intended primarily for roof top antenna reception, a DVB-H network will be
4 designed for portable reception available even inside buildings. Hence it will need a much higher signal power density. In order to reach the higher power density needed for mobile coverage levels, several network architectures can be used depending on available frequencies, allowed maximum transmitter powers and antenna heights. The following network scenarios are possible: a. Existing DVB-T network with indoor coverage and DVB-H within the same multiplex, b. DVB-T and DVB-H using hierarchical transmission in the same radio frequency channel with DVB-H on the high-priority stream, or c. A DVB-H only network (which can then make use the optional 4K mode if needed). d. DVB-H can use both Single Frequency Networks (SFN) and Multiple Frequency Networks (MFN) topologies. 7. One main transmitter and several repeaters The simplest network architecture is one that uses a main transmitter with several repeater transmitters to boost the signal level at the edges of the cell. These repeaters may be necessary when it is not possible to have a high tower for the main transmitter or to fill-in shadows in the reception pattern. A repeater is a special high gain antenna amplifier that takes the input signal via a receiving antenna, amplifies it and connects the signal to a transmitter antenna. This kind of network topology (essentially circular in shape) may not be very practical and experience shows that several transmitters may be required, each extended by some repeaters, to encompass the entire coverage area required. 8. Single Frequency Network (SFN) An efficient network for DVB-H reception can be built by using several transmitters on the same frequency. A large area of up to 60 kilometers can be covered without needing high transmitter towers. The identical signals are transmitted from several sites and the system ehavior is similar to that of a distributed transmitter. The DVB-H main transmitters must be accurately synchronized, most easily with time signals received from GPS satellites. Repeaters can be used to improve coverage on critical areas where indoor or car reception performance has been found to be insufficient. This kind of network structure is sometimes known as a Dense SFN network. 9. Nation-wide coverage[4] When nationwide coverage is required, over distances of hundreds of kilometers, several radio frequency channels will be needed. The availability of channels differs very much from one country to another. In theory, three channels should be sufficient to provide continuous coverage with any area. However, practical network planning shows that 5-6 channels are actually needed. By using different channels in neighbouring areas gives the possibility also to run local content in each area. This may be important with DVB-H where local content is expected to have an important role. Figure 6 Possible network topology solutions for DVB-H 10. Conclusions Traditional broadcasting is undergoing a process of change as a consequence of the move towards an alldigital broadcasting environment. New technology, such as streaming technology and personal video recorders (PVRs) can complement traditional broadcasting. New players are entering the market. More programs, competition and new distribution platforms means that the television viewing experience will change. For television providers, the arrival of IPTV and the enhanced offering of cable and satellite providers has increased the competition. However the terrestrial platform benefits from a unique competitive advantage that of wireless mobility. New technologies, such as UMTS, are enabling mobile telecom operators to provide television like services to their subscribers and enter the television broadcast market. Already, this has led to nascent cooperation between broadcasters and mobile operators. However, because UMTS networks cannot provide television-like services to a large population at a reasonable cost, these services will likely become available via a broadcast network. In order to retain a role in the provision of television services to handheld devices, broadcasters will need to stake their claim quickly or risk the involvement of new players in the market. Because the ideal spectrum for DVB-H services is assigned to broadcasting, using a DVB-H network enables broadcasters to retain a leading role and leverage their strengths in the provision of content. But broadcasting television services to a handheld using the DVB-H standard will require compromises among the players. The technology to provide handheld television services exists. Consumer demand for such services is expected to grow, and it may be possible to commercially launch such services as early as However, key regulatory and business issues will need to be resolved. Broadcasters and other members of the value chain should use this time to consider how handheld television services such as DVB- H may be integrated into their strategy. References [1]. DVB World 2004 Conference Proceedings Dublin, March 2004 Michael Kornfeld and Ulrich Reimers:
5 DVB-H the emerging standard for mobile data communication EBU Technical Review, No. 301, January 2005 [2] IPDC Forum Digital Terrestrial Broadcasting for Handheld Devices Workshop Presentations Brussels, February 2005 [3]. IPDC Forum Broadcast Media in Mobile Workshop Presentations London, April 2004 EN [4] Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals (DVB-H) ETSI, November 2004
Television on a handheld receiver
www.digitag.org T Television on a handheld receiver - broadcasting with DVB-H Digital Terrestrial Television Action Group 1 Published by DigiTAG - The Digital Terrestrial Television Action Group 17A Ancienne
New TV Technologies for Science Education. A.K. Bhatnagar Chief Engineer Doordarshan
New TV Technologies for Science Education A.K. Bhatnagar Chief Engineer Doordarshan Digital TV Delivery Platforms Digital Terrestrial TV Broadcasting Digital Cable TV IPTV Mobile TV DTH Satellite Digital
White Paper. IP Datacasting Bringing TV to the Mobile Phone
IP Datacasting Bringing TV to the Mobile Phone Bringing TV to Mobile Phones In the near future morning commuters will be able to pass the time on the train by selecting the market news channel on their
Local and Ultra Local Content in Broadcast Mobile TV
Local and Ultra Local Content in Broadcast Mobile TV Richard LHERMITTE ENENSYS Technologies France ABSTRACT Broadcast Mobile TV is meant to be one of the next killer application for Mobile operators and
MEDIA TECHNOLOGY & INNOVATION. General issues to be considered when planning SFNs
EBU TECHNICAL MEDIA TECHNOLOGY & INNOVATION 13/03/09 General issues to be considered when planning SFNs 1. SFN networks In a Single Frequency Network (SFN), all transmitters in the network use the same
Mobile TV: the smart and the strategic
May 2008 FEATURE STORY Mobile TV: the smart and the strategic Given the myriad options available for mobile TV, successful services will be the result of smart choices and strategic partnerships. Martin
Michael Kornfeld and Ulrich Reimers Institute for Communications Technology, Technische Universität Braunschweig
DVB-H the emerging standard for mobile data communication Michael Kornfeld and Ulrich Reimers Institute for Communications Technology, Technische Universität Braunschweig DVB-H (Digital Video Broadcasting
Case studies on migration from Analogue to DTTB of Hungary
Case studies on migration from Analogue to DTTB of Hungary 1. Policy and regulatory aspects (March 2009) The government program handled the case of the digital switchover in an emphasized mode in 2006.
Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container
Mobile Communications Chapter 6: Broadcast Systems Unidirectional distribution systems DAB DVB architecture Container High-speed Internet Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC
BENEFITS OF USING MULTIPLE PLP IN DVB-T2
BENEFITS OF USING MULTIPLE PLP IN DVB-T2 ENENSYS Technologies, France : http://www.enensys.com DVB-T2 has already achieved incredible success for delivering digital terrestrial television. More than 28
Study on the Comparison of the Transmitting Power between DRM+ and DAB/DAB+ in VHF Band III to Cover the same Service Area
Study on the Comparison of the Transmitting Power to Cover the same Service Area Ludwigshafen (Germany), 09.11.2015 Version 1.2 Content Management Summary... 3 Details of the Study... 5 1 Objective...
DAB Digital Radio Broadcasting. Dr. Campanella Michele
DAB Digital Radio Broadcasting Dr. Campanella Michele Intel Telecomponents Via degli Ulivi n. 3 Zona Ind. 74020 Montemesola (TA) Italy Phone +39 0995664328 Fax +39 0995932061 Email:[email protected]
AN INTRODUCTION TO DIGITAL MODULATION
AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation
RSPG public consultation related to the draft opinion on EU spectrum policy implications of the digital dividend.
RSPG public consultation related to the draft opinion on EU spectrum policy implications of the digital dividend Vodafone comments Vodafone welcomes the opportunity to comment on the draft RSPG Opinion
New markets HEVC DVB T2 Germany. Herbert Tillmann
New markets HEVC DVB T2 Germany Herbert Tillmann Why DVB-T2 and HEVC? Media Consumption and Digital Terrestrial Broadcast The gain in efficiency of DVB-T2 Programs per Multiplex (portable, mobile) Broadcast
1. INTRODUCTION. 1.1 Background and Motivation. 1.2 The Digital Television Era
1. INTRODUCTION 1.1 Background and Motivation Despite unprecedented growth in the worldwide expansion of the internet, it is television that remains the most global and powerful of media. According to
International co-ordination of DVB-T frequencies in Europe
ITU-D Seminar Kiev, 13-15 November 2000 THE TRANSITION FROM SECAM TO DIGITAL BROADCASTING International co-ordination of DVB-T frequencies in Europe By J. Doeven; Nozema, The Netherlands 1. Introduction
Technical Overview of Single Frequency Network
White paper Technical Overview of Single Frequency Network Executive Summary: This paper describes the principles of Single Frequency Network. Scarcity of available spectrum & bandwidth is one of the main
BROADCASTING ACT (CHAPTER 28) Code of Practice for Television Broadcast Standards
BROADCASTING ACT (CHAPTER 28) Code of Practice for Television Broadcast Standards 1 In exercise of the powers conferred by section 6 of the Broadcasting Act (Cap. 28), the Media Development Authority of
ISDB-T T Transmission Technologies and Emergency Warning System
ISDB-T T Seminar ISDB-T T Transmission Technologies and Emergency Warning System 12 de Febrero 2008 Universidad Ricardo Palma, Lima, Perú DiBEG, JAPAN Hiroyuki FURUTA (NHK) Digital broadcasting experts
Mobile TV: An Assessment of EU Politics
Mobile TV: An Assessment of EU Politics Reza Tadayoni, Anders Henten, Iwona Windekilde center for Communication, Media and Information technologies (CMI) Copenhagen Institute of Technology Aalborg University,
BROADCASTING ACT (CHAPTER 28) Code of Practice for Television Broadcast Standards
BROADCASTING ACT (CHAPTER 28) Code of Practice for Television Broadcast Standards 1 In exercise of the powers conferred by section 6 of the Broadcasting Act (Cap. 28), the Media Development Authority of
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
DVB-S2 and DVB-RCS for VSAT and Direct Satellite TV Broadcasting
Hands-On DVB-S2 and DVB-RCS for VSAT and Direct Satellite TV Broadcasting Course Description This course will examine DVB-S2 and DVB-RCS for Digital Video Broadcast and the rather specialised application
Smart LNB. White Paper. May 2014
Smart LNB White Paper May 2014 This document contains information proprietary to Ayecka Communication Systems Ltd. and may not be reproduced in whole or in part without the express written consent of Ayecka
Why and how Germany is going HEVC! Herbert Tillmann
DVB T2 and HEVC in Germany Why and how Germany is going HEVC! Herbert Tillmann Why DVB-T2 and HEVC? Media Consumption and Digital Terrestrial Broadcast The gain in efficiency of DVB-T2 Programs per Multiplex
Terrestrial Media Delivery Beyond DVB-T2
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Terrestrial Media Delivery Beyond DVB-T2 Ulrich Reimers, Madrid, 12 March 2013 What I want to talk about 1. DVB-T and DVB-T2 in Germany
Convergence of Mobile Communications and Broadcasting: A long term perspective
Convergence of Mobile Communications and Broadcasting: A long term perspective J. Elsner, N. Grove, D. Burgkhardt, F. Jondral, A. Picot INFRADAY 2009, Berlin, 10.10.2009 Communications Engineering Lab
Mobile TV with DVB-H. Markus Lindqvist Director, Server & Network Solutions Multimedia, Nokia. 1 2005 Nokia Nseries
Mobile TV with DVB-H Markus Lindqvist Director, Server & Network Solutions Multimedia, Nokia 1 2005 Nokia Nseries MobileTV & Video User Paradigms Multiple ways to receive, download and play TV and video
Current topics of DTTB in Japan. Handheld reception service for ISDB-T
ISDB-T T Seminar Session 5 Current topics of DTTB in Japan One-Seg Handheld reception service for ISDB-T Venezuela 2006 August 29 th,2006 DiBEG Japan Yoshiki MARUYAMA tv asahi Menu Schedule FeatureFeature
4G LTE Opportunities & Challenges in DTT arena
4G LTE Opportunities & Challenges in DTT arena DigiTAG Workshop Istanbul 14-15 November 2013 Stan Baaijens, CEO Funke 1 Why 4G LTE (Long Term Evolution) The unrelenting growth of smartphone and tablet
Convergence between Broadcast and Mobile Broadband in the UHF band -a long term vision-
Convergence between Broadcast and Mobile Broadband in the UHF band -a long term vision- Paulo Marques, Instituto de Telecomunicacoes, Portugal, 7 th March 2014, ASPF#4, Brunei 1 Disclaimer The views and
Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces. Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011
Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011 Spectrum is the basis for any mobile radio communication service Satellites (1,5 2,2
Understanding DVB-T2. Key technical, business, & regulatory implications. Digital Terrestrial Television Action Group. www.digitag.
Understanding DVB-T2 Key technical, business, & regulatory implications www.digitag.org Digital Terrestrial Television Action Group Published by DigiTAG - The Digital Terrestrial Television Action Group
PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE
Mobile TV Business Opportunities: Facts and Fiction
Mobile TV Business Opportunities: Facts and Fiction Claudia Loebbecke Department of Business Administration, Media and Technology Management, University of Cologne, Germany [email protected]
Digital Video Broadcasting Conditional Access Architecture
Digital Video Broadcasting Conditional Access Architecture Introduction Digital Video Broadcasting (DVB) is a standard defining a one-to-many unidirectional data network for sending digital TV programs
Delivery Technologies and Business Models for Mobile Television Services 2015
Delivery Technologies and Business Models for Mobile Television Services 2015 Bangkok, Thailand Dr AMAL Punchihewa Director ABU Technology Asia-Pacific Broadcasting Union A Vice-Chair of World Broadcasting
Digital TV business models
Digital TV business models Peter MacAvock Caracas, Venezuela 10 th August 2005 [email protected] Copyright Digital Video Broadcasting Project DVB Digital TV business models Background Digital TV markets
Measurements on MPEG2 and DVB-T signals (1)
Measurements on MPEG2 and DVB-T signals (1) With the expansion of multi-frequency networks (MFNs) and single-frequency networks (SFNs) for DVB-T*, there is a growing demand for measuring instruments and
Mobile Multimedia Broadcasting
IPCableCom / MediaCom 2004 / Interactive Multimedia Workshop ITU, Geneva, 12-15 March 2002 Mobile Multimedia Broadcasting A MediaCom 2004 Presentation by Shuji Hirakawa, Ph.D, IEEE Fellow Media & Contents
High speed Internet in sparsely populated areas
T E C H N O L O G Y W H I T E P A P E R High speed Internet in sparsely populated areas Covering sparsely populated areas is not economically viable using conventional techniques. A solution combining
6774178922-55 3209361971-85. ARD and ZDF Comments on the Draft RSPG Opinion on the Radio Spectrum Policy Programme
ARD-Verbindungsbüro Brüssel ZDF-Europabüro 6774178922-55 3209361971-85 ARD and ZDF Comments on the Draft RSPG Opinion on the Radio Spectrum Policy Programme Introduction ARD and ZDF welcome the opportunity
wireless triple play network - www.air-tv.net
an innovative and integrated wireless network aimed at offering Triple Play services Introduction AIR is a wireless network that can be used to offer Triple Play economically, i.e. with a typical pay-back
THE FUTURE OF TERRESTRIAL BROADCASTING IN TURKEY. DigiTAG 19th General Assembly 17th December 2014 EBU Headquarters GENEVA
THE FUTURE OF TERRESTRIAL BROADCASTING IN TURKEY DigiTAG 19th General Assembly 17th December 2014 EBU Headquarters GENEVA THE FUTURE OF TERRESTRIAL BROADCASTING IN TURKEY Pepared by: Muhsin Kilic Head
Ministry of Information and Broadcasting Services
Republic of Zambia Ministry of Information and Broadcasting Services Digital Migration National Task Force Digital Terrestrial Television (DTT) Guide and Notes Introduction HAVE YOU HEARD OF DIGITAL TERRESTRIAL
Regulation on the quality and universal service of communications networks and services
FICORA 58 B/2014 M 1 (8) Unofficial translation Regulation on the quality and universal service of communications networks and services Issued in Helsinki on 19 December 2014 The Finnish Communications
Content. Empowered User- The Market Trend. Macro Environment- TV meets Telecoms Barriers to be removed-towards the successful story Conclusion
Mobile TV Technology and Information of the Future "Finding the right business model to make Mobile TV a success story! Bosco Eduardo Fernandes Joint UMTS Forum/GSMA Working Group Chair 1 Content Empowered
BMS Digital Microwave Solutions for National Security & Defense
BMS Digital Microwave Solutions for National Security & Defense Broadcast Microwave Services, Inc. P.O. Box 84630 San Diego, CA 92138 Phone: +1.800.669.9667 Email: [email protected] Web: www.bms-inc.com
Overview ISDB-T for sound broadcasting Terrestrial Digital Radio in Japan. Shunji NAKAHARA. NHK (Japan Broadcasting Corporation)
Overview ISDB-T for sound broadcasting Terrestrial Digital Radio in Japan Shunji NAKAHARA NHK (Japan Broadcasting Corporation) 2003/11/04 1 Contents Features of ISDB-T SB system Current status of digital
5.1 audio. How to get on-air with. Broadcasting in stereo. the Dolby "5.1 Cookbook" for broadcasters. Tony Spath Dolby Laboratories, Inc.
5.1 audio How to get on-air with the Dolby "5.1 Cookbook" for broadcasters Tony Spath Dolby Laboratories, Inc. This article is aimed at television broadcasters who want to go on-air with multichannel audio
Establishing the Next Generation of Video. Ferdinand Kayser, Chief Commercial Officer
Establishing the Next Generation of Video Ferdinand Kayser, Chief Commercial Officer INVESTOR DAY 2015, 17 June 2015 Positive long-term outlook for SES s Video business Video is a significant part of SES
ARD and ZDF welcome the opportunity to present their comments on the Consultation document.
ARD and ZDF Comments on the Consultation document Transforming the digital dividend opportunity into social benefits and economic growth in Europe of 10 July 2009 ARD is a registred in the European Commission
Accommodation of HDTV in the GE06 Plan
EBU TECH 3334 Accommodation of HDTV in the GE06 Plan Status Report Geneva February 2009 1 Page intentionally left blank. This document is paginated for recto-verso printing Tech 3334 Accommodation of HDTV
ATSC 3.0 Mobile Support. Luke Fay
ATSC 3.0 Mobile Support Luke Fay Outline Mobile Service definition LTE currently is used by mobile [cellular] operators to deliver mobile service. But let s look at what that means for broadcasters. Network
The Development and Regulatory Issues of Broadcast-type Mobile Television Service ( Mobile TV Service )
TUCAC Paper No. 2/2014 The Development and Regulatory Issues of Broadcast-type Mobile Television Service ( Mobile TV Service ) Telecommunications Users and Consumers Advisory Committee 15 May 2014 Overseas
Hybrid system and new business model
Hybrid system and new business model July 2014 Jérôme DAVID - Strategic Marketing Manager The explosion of data traffic over telecom networks is changing both business rules and network deployment methods
TR 036 TV PROGRAMME ACCOMMODATION IN A DVB-T2 MULTIPLEX FOR (U)HDTV WITH HEVC VIDEO CODING TECHNICAL REPORT VERSION 1.0
TV PROGRAMME ACCOMMODATION IN A DVB-T2 MULTIPLEX FOR (U)HDTV WITH HEVC VIDEO CODING TECHNICAL REPORT VERSION 1.0 Geneva March 2016 Page intentionally left blank. This document is paginated for two sided
5 in 1 DVB-T Transmitter & Dual Cast Agile Digital Transposer TV EQUIPMENT
The VHF/UHF Dual cast Digital Transposers/ Digital Transmitters set new standards for ATV and DVB-T transposer and transmitter technology by combining top performance with an extensive number of features
August-2015. Broadcaster Directions
August-2015 Broadcaster Directions 1 Why ATSC 3.0 now? The FCC has a current proceeding that will result in reverse auction of TV spectrum to FCC for ultimate resale to the wireless Multiple Network Operators
DVB-SH. Radio Network Planning Tool. (Release 4.2)
DVB-SH Radio Network Planning Tool (Release 4.2) by AWE Communications GmbH. All rights reserved 1 1 Introduction 1.1 Overview Digital Video Broadcasting Satellite to Handheld (DVB-SH) aims to provide
1-MINIMUM REQUIREMENT SPECIFICATIONS FOR DVB-T SET-TOP-BOXES RECEIVERS (STB) FOR SDTV
1-MINIMUM REQUIREMENT SPECIFICATIONS FOR DVB-T SET-TOP-BOXES RECEIVERS (STB) FOR SDTV Standard definition television Terminology SHALL (mandatory): Denotes that the item is mandatory. SHOULD (recommended):
4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43
Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: [email protected] Mrs.
SuperSpeed USB 3.0: Ubiquitous Interconnect for Next Generation Consumer Applications
Arasan Chip Systems Inc. White Paper SuperSpeed USB 3.0: Ubiquitous Interconnect for Next Generation Consumer Applications By Somnath Viswanath Product Marketing Manager June, 2009 Overview The Universal
Solutions to enhance the performance & security of your networks & applications. www.phoenixdatacom.com
Solutions to enhance the performance & security of your networks & applications IPTV Problems What the data can tell you Liam Jackson Virgin Media Account Manager / Product Manager About Phoenix Datacom
Bringing Mobile Broadband to Rural Areas. Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks
Bringing Mobile Broadband to Rural Areas Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks Agenda Drivers in Mobile Broadband Why LTE? Market Status, Networks and Devices Implementation
ITC Specification of Digital Cable Television Transmissions in the United Kingdom. July 2002
Transmissions in the United Kingdom July 2002 Note: This document will be subject to revisions as the standards referred to are updated and revised. Independent Television Commission 33 Foley Street London
RWANDA UTILITIES REGULATORY AGENCY MANAGING THE CHANGE TO TERRESTRIAL DIGITAL BROADCAST IN RWANDA
RWANDA UTILITIES REGULATORY AGENCY MANAGING THE CHANGE FROM ANALOGUE TO TERRESTRIAL DIGITAL BROADCAST IN RWANDA Prepared by: RURA JANUARY 2008 TABLE OF CONTENTS LIST OF ABBREVIATIONS AND ACRONYMS... iv
Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ
Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ Q: What is a Wireless LAN (WLAN)? Q: What are the benefits of using a WLAN instead of a wired network connection? Q: Are Intel WLAN products
The 700 MHz Band. Impact of the UHF spectrum reallocation on TV markets in Europe. 38 th EPRA meeting, Vilnius, October 2013
38 th EPRA meeting, Vilnius, October 2013 The 700 MHz Band Impact of the UHF spectrum reallocation on TV markets in Europe Darko Ratkaj European Broadcasting Union FOUR WAYS TO RECEIVE TV SERVICES Terrestrial
Appendix A: Basic network architecture
Appendix A: Basic network architecture TELECOMMUNICATIONS LOCAL ACCESS NETWORKS Traditionally, telecommunications networks are classified as either fixed or mobile, based on the degree of mobility afforded
PLANNING DVB-T2 Advance and Challenge
Advance and Challenge This White Paper provides an overview of major techniques used in and their impact on service planning and operation of this new transmission technology. White Paper October 2010
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular
DAB + The additional audio codec in DAB
DAB + The additional audio codec in DAB 2007 Contents Why DAB + Features of DAB + Possible scenarios with DAB + Comparison of DAB + and DMB for radio services Performance of DAB + Status of standardisation
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS
Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS Research Report BUDAPEST, 2015 Contents 1 The early
Mobile TV: The time to act is now
SPEECH/07/154 Viviane Reding Member of the European Commission responsible for Information Society and Media Mobile TV: The time to act is now Mobile TV Conference, International CeBIT Summit Hannover,
DIGITAL TELEVISION AND RADIO SERVICES IN IRELAND AN INTRODUCTION
DIGITAL TELEVISION AND RADIO SERVICES IN IRELAND AN INTRODUCTION THE PURPOSE OF THIS DOCUMENT IS TO PROVIDE AN INTRODUCTION TO DIGITAL TELEVISION AND RADIO CONCEPTS AND CONCERNS, IN THE CONTEXT OF IRELAND
WHITE PAPER. Use of MPLS technology in mobile backhaul networks CONTENTS: Introduction. IP/MPLS Forum White Paper. February 2008. Introduction...
Introduction WHITE PAPER Use of MPLS technology in mobile backhaul networks Backhaul plays a vital role in mobile networks by acting as the link between Radio Access Network (RAN) equipment (Eg: radio
Demonstration of Internet Protocol Television(IPTV) Khai T. Vuong, Dept. of Engineering, Oslo University College.
Demonstration of Internet Protocol Television(IPTV) 1 What is IPTV? IPTV is a general term of IP+TV = IPTV Delivery of traditional TV channels and video-ondemand contents over IP network. 2 IPTV Definition
