T and Strain Rate: Thermoplastics C 20 C 40 C

Size: px
Start display at page:

Download "T and Strain Rate: Thermoplastics 0 0 0.1 0.2 0.3 4 C 20 C 40 C"

Transcription

1 T and Strain Rate: Thermoplastics Decreasing T... --increases E --increases TS --decreases %EL Increasing strain rate... --same effects as decreasing T. σ(mpa) C 20 C 40 C Data for the semicrystalline polymer: PMMA (Plexiglas) 20 to C Adapted from Fig. 15.3, Callister 6e. (Fig is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", Symposium on Plastics, American Society for Testing and Materials, Philadelphia, PA, 1944.) ε

2 Elastic, Viscoleastic and Viscous Behavior Input: Constant Stress Response: Elastic Response: Viscoelastic Response: Viscous

3 Time Dependent Deformation Stress relaxation test: --strain to εο and hold. --observe decrease in stress with time. ε o tensile test time Relaxation modulus: E r (t) = σ(t) ε o strain σ( t) Data: Large drop in Er for T > Tg Er(10s) in MPa (amorphous polystyrene) T( C) Tg Sample Tg(C) values: PE (low Mw) PE (high Mw) PVC PS PC rigid solid (small relax) transition region viscous liquid (large relax) Adapted from Fig. 15.7, Callister 6e. (Fig is from A.V. Tobolsky, Properties and Structures of Polymers, John Wiley and Sons, Inc., 1960.) Selected values from Table 15.2, Callister 6e.

4 More on the Relaxation Modulus Schematic E r (t) for a thermoplastic E r (t) for amorphous polystyrene

5 More (again!) on the Relaxation Modulus A: Crystalline isotactic B: Lightly cross-linked atactic C: Amorphous Relaxation Modulus: Polystyrene

6 Fracture of Polymers Crazing (thermoplastics) Formation of localized yielding Fibrillar bridges between microvoids Molecular chain reorientation + bridge fibers = increased fracture toughness Crazing in Polyeythylene Oxide

7 Fatigue in Polymers Fatigue in polymers Less studied than in metals Strong dependence on testing frequency (why?)

8 Melting and the Glass Transition Temperature Melting Temperature T m Transition to a viscous liquid Can occur over a range of T Depends on sample history! Glass Transition Temperature T g Amorphous or semicrystalline polymers Transition Rubbery solid to a rigid solid

9 Factors Influencing T m and T g Melting Temperature T m as chain stiffness e.g., add double bonds on chain T m with bulky side chains or polar side groups e.g., polypropylene: T m = 175 C; polyethylene: T m = 175 C e.g., polyvinyl chloride: T m = 175 C; polyethylene: T m = 175 C Tm with significant side branching Weaker interchain interactions, low density Similar trends for the Glass Transition Temperature Cross-linking: T g

10 Thermoplastics: --little cross linking --ductile --soften w/heating --polyethylene (#2) polypropylene (#5) polycarbonate polystyrene (#6) Thermoplastics vs. Thermosets Thermosets: --large cross linking (10 to 50% of mers) --hard and brittle --do NOT soften w/heating --vulcanized rubber, epoxies, polyester resin, phenolic resin T mobile liquid crystalline solid viscous liquid Callister, rubber Fig tough plastic partially crystalline solid Molecular weight Adapted from Fig , Callister 6e. (Fig is from F.W. Billmeyer, Jr., Textbook of Polymer Science, 3rd ed., John Wiley and Sons, Inc., 1984.) Tm Tg

11 Liquid Crystalline Polymers

12 Summary General drawbacks to polymers: -- E, σy, Kc, Tapplication are generally small. -- Deformation is often T and time dependent. -- Result: polymers benefit from composite reinforcement. Thermoplastics (PE, PS, PP, PC): -- Smaller E, σy, Tapplication -- Larger Kc -- Easier to form and recycle Elastomers (rubber): -- Large reversible strains! Thermosets (epoxies, polyesters): -- Larger E, σy, Tapplication -- Smaller Kc Table 15.3 Callister 6e: Good overview of applications and trade names of polymers.

13 Chapter 16: Composite Materials ISSUES TO ADDRESS... What are the classes and types of composites? Why are composites used instead of metals, ceramics, or polymers? How do we estimate composite stiffness & strength? What are some typical applications?

14 Terminology/Classification Composites: --Multiphase material w/significant proportions of ea. phase. Matrix: --The continuous phase --Purpose is to: transfer stress to other phases protect phases from environment --Classification: MMC, CMC, PMC metal ceramic polymer Dispersed phase: --Purpose: enhance matrix properties. MMC: increase σy, TS, creep resist. CMC: increase Kc PMC: increase E, σy, TS, creep resist. --Classification: Particle, fiber, structural woven fibers 0.5mm cross section view 0.5mm Reprinted with permission from D. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47.

15 Composite Survey: Particle-I Particle-reinforced Fiber-reinforced Structural Examples: -Spheroidite matrix: steel ferrite (α) (ductile) 60µm particles: cementite (Fe3C) (brittle) Adapted from Fig , Callister 6e. (Fig is copyright United States Steel Corporation, 1971.) -WC/Co cemented carbide matrix: cobalt (ductile) Vm: 10-15vol%! 600µm particles: WC (brittle, hard) Adapted from Fig. 16.4, Callister 6e. (Fig is courtesy Carboloy Systems, Department, General Electric Company.) -Automobile tires matrix: rubber (compliant) particles: C (stiffer) Adapted from Fig. 16.5, Callister 6e. (Fig is courtesy Goodyear Tire and Rubber Company.) 0.75µm

16 Composite Survey: Particle-II Particle-reinforced Fiber-reinforced Elastic modulus, Ec, of composites: -- two approaches. Data: Cu matrix w/tungsten particles E(GPa) upper limit: rule of mixtures E c = V m E m + V p E p lower limit: 1 = V m + V p E c E m E p Structural Adapted from Fig. 16.3, Callister 6e. (Fig is from R.H. Krock, ASTM Proc, Vol. 63, 1963.) vol% tungsten (Cu) (W) Application to other properties: -- Electrical conductivity, σe: Replace E by σe. -- Thermal conductivity, k: Replace E by k.

17 Composite Survey: Fiber-I Particle-reinforced Fiber-reinforced Aligned Continuous fibers Examples: --Metal: γ'(ni3al)-α(mo) by eutectic solidification. matrix: α (Mo) (ductile) Structural --Glass w/sic fibers formed by glass slurry Eglass = 76GPa; ESiC = 400GPa. 2µm fibers:γ (Ni3Al) (brittle) From W. Funk and E. Blank, Creep deformation of Ni3Al-Mo in-situ composites", Metall. Trans. A Vol. 19(4), pp , Used with permission. (a) (b) fracture surface From F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, (a) Fig. 4.22, p. 145 (photo by J. Davies); (b) Fig , p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings). Used with permission of CRC Press, Boca Raton, FL.

18 Composite Survey: Fiber-II Particle-reinforced Fiber-reinforced Discontinuous, random 2D fibers Example: Carbon-Carbon --process: fiber/pitch, then burn out at up to 2500C. --uses: disk brakes, gas (b) turbine exhaust flaps, nose cones. Other variations: --Discontinuous, random 3D --Discontinuous, 1D (a) view onto plane Structural C fibers: very stiff very strong C matrix: less stiff less strong fibers lie in plane Adapted from F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, (a) Fig. 4.24(a), p. 151; (b) Fig. 4.24(b) p (Courtesy I.J. Davies) Reproduced with permission of CRC Press, Boca Raton, FL.

19 Composite Survey: Fiber-III Particle-reinforced Fiber-reinforced Structural Critical fiber length for effective stiffening & strengthening: fiber strength in tension fiber diameter fiber length > 15 σ f d τ c Ex: For fiberglass, fiber length > 15mm needed shear strength of fiber-matrix interface Why? Longer fibers carry stress more efficiently! Shorter, thicker fiber: fiber length < 15 σ f d τ c σ(x) Adapted from Fig. 16.7, Callister 6e. Longer, thinner fiber: fiber length > 15 σ f d τ c σ(x) Poorer fiber efficiency Better fiber efficiency

20 Composite Survey: Fiber-IV Particle-reinforced Estimate of Ec and TS: --valid when Fiber-reinforced fiber length > 15 σ f d τ c -- Elastic modulus in fiber direction: Structural E c = E m V m + KE f V f efficiency factor: --aligned 1D: K = 1 (anisotropic) --random 2D: K = 3/8 (2D isotropy) --random 3D: K = 1/5 (3D isotropy) --TS in fiber direction: Values from Table 16.3, Callister 6e. (Source for Table 16.3 is H. Krenchel, Fibre Reinforcement, Copenhagen: Akademisk Forlag, 1964.) (TS) c = (TS) m V m + (TS) f V f (aligned 1D)

21 Composite Survey: Structural Particle-reinforced Fiber-reinforced Structural Stacked and bonded fiber-reinforced sheets -- stacking sequence: e.g., 0/90 -- benefit: balanced, in-plane stiffness Sandwich panels -- low density, honeycomb core -- benefit: small weight, large bending stiffness face sheet adhesive layer honeycomb Adapted from Fig , Callister 6e. Adapted from Fig , Callister 6e. (Fig is from Engineered Materials Handbook, Vol. 1, Composites, ASM International, Materials Park, OH, 1987.

22 Composite Benefits CMCs: Increased toughness Force particle-reinf un-reinf fiber-reinf Bend displacement MMCs: Increased creep resistance εss (s -1 ) Al E(GPa) Al w/sic whiskers σ(mpa) PMCs: Increased E/ρ PMCs G=3E/8 K=E ceramics metal/ metal alloys polymers Density, ρ [Mg/m 3 ] Adapted from T.G. Nieh, "Creep rupture of a silicon-carbide reinforced aluminum composite", Metall. Trans. A Vol. 15(1), pp , Used with permission.

23 Summary Composites are classified according to: -- the matrix material (CMC, MMC, PMC) -- the reinforcement geometry (particles, fibers, layers). Composites enhance matrix properties: -- MMC: enhance σy, TS, creep performance -- CMC: enhance Kc -- PMC: enhance E, σy, TS, creep performance Particulate-reinforced: -- Elastic modulus can be estimated. -- Properties are isotropic. Fiber-reinforced: -- Elastic modulus and TS can be estimated along fiber dir. -- Properties can be isotropic or anisotropic. Structural: -- Based on build-up of sandwiches in layered form.

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol 14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit

More information

HW 10. = 3.3 GPa (483,000 psi)

HW 10. = 3.3 GPa (483,000 psi) HW 10 Problem 15.1 Elastic modulus and tensile strength of poly(methyl methacrylate) at room temperature [20 C (68 F)]. Compare these with the corresponding values in Table 15.1. Figure 15.3 is accurate;

More information

Thermoplastic composites

Thermoplastic composites Thermoplastic composites Definition By definition, a thermoplastic is a material based on polymer (macromolecular compound) which can be shaped, in a liquid (viscous) state at a temperature either higher

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Classification

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

PROCESSING OF VARIOUS MATERIALS

PROCESSING OF VARIOUS MATERIALS 4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good

More information

Polymers: Introduction

Polymers: Introduction Chapter Outline: Polymer Structures Hydrocarbon and Polymer Molecules Chemistry of Polymer Molecules Molecular Weight and Shape Molecular Structure and Configurations Copolymers Polymer Crystals Optional

More information

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters

Injection Molding. Materials. Plastics 2.008. Outline. Polymer. Equipment and process steps. Considerations for process parameters Outline 2.008 Polymer Equipment and process steps Injection Molding Considerations for process parameters Design for manufacturing, tooling and defects 1 2.008 spring 2004 S. Kim 2 Materials Solid materials

More information

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS David A. Grewell Branson Ultrasonics Corporation ABSTRACT This paper reviews effects of amplitude and force control during

More information

4.461: Building Technology 1 CONSTRUCTION AND MATERIALS FALL TERM 2004 SCHOOL OF ARCHITECTURE AND PLANNING: MIT

4.461: Building Technology 1 CONSTRUCTION AND MATERIALS FALL TERM 2004 SCHOOL OF ARCHITECTURE AND PLANNING: MIT 4.461: Building Technology 1 CONSTRUCTION AND MATERIALS Professor John E. Fernandez FALL TERM 2004 SCHOOL OF ARCHITECTURE AND PLANNING: MIT Concrete and Composites Stadelhofen Station Zurich Santiago Calatrava

More information

Effect of Sterilization Techniques on Polymers

Effect of Sterilization Techniques on Polymers Effect of Sterilization Techniques on Polymers Contents of Presentation Introduction to Polymers Properties and Stability of Polymers Affect of Ionising Radiation and Ethylene Oxide on Polymers The need

More information

How To Improve Mechanical Properties Of A Composite Material

How To Improve Mechanical Properties Of A Composite Material Usak University Journal of Material Sciences journal homepage: http://uujms.usak.edu.tr Research article Mechanical properties of bi axial glass fiber and pistachio shell reinforced polyester composites

More information

4 Thermomechanical Analysis (TMA)

4 Thermomechanical Analysis (TMA) 172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.

More information

Composite Design Fundamentals. David Richardson

Composite Design Fundamentals. David Richardson Composite Design Fundamentals David Richardson Contents A review of the fundamental characteristics of composites Stiffness and Strength Anisotropic Role of fibre, matrix and interface Composite failure

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

Materials Selection for Mechanical Design I

Materials Selection for Mechanical Design I Materials Selection for Mechanical Design I A Brief Overview of a Systematic Methodology Jeremy Gregory Research Associate Laboratory for Energy and Environment Jeremy Gregory and Randolph Kirchain, 2005

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department CONTENT Composite Materials Metal

More information

PROCESSING, PERFORMANCE, AND CHARACTERIZATION OF CONTINUOUS FIBER CERAMIC COMPOSITES WITH NANOPARTICLES

PROCESSING, PERFORMANCE, AND CHARACTERIZATION OF CONTINUOUS FIBER CERAMIC COMPOSITES WITH NANOPARTICLES PROCESSING, PERFORMANCE, AND CHARACTERIZATION OF CONTINUOUS FIBER CERAMIC COMPOSITES WITH NANOPARTICLES David Narahara Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822

More information

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004

What is a mold? Casting. Die casting. Injection Molding Machine. Injection Molding. 2.008 Design & Manufacturing II. Spring 2004 2.008 Design & Manufacturing II What is a mold? From Webster: a cavity in which a substance is shaped: as (1) : a matrix for casting metal (2) : a form in which food is given a decorative shape Spring

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

COMPARISON BETWEEN GLASS AND FLAX NON-CRIMP STITCHED FABRICS

COMPARISON BETWEEN GLASS AND FLAX NON-CRIMP STITCHED FABRICS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPARISON BETWEEN GLASS AND FLAX NON-CRIMP STITCHED FABRICS L. Bizet 1 *, S. Guéret 1, C. Re 1, P. Ouagne 2 1 Laboratoire Ondes et Milieux Complexes,

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

ME349 Engineering Design Projects

ME349 Engineering Design Projects ME349 Engineering Design Projects Introduction to Materials Selection The Material Selection Problem Design of an engineering component involves three interrelated problems: (i) selecting a material, (ii)

More information

Thermal cover:layout 1 1/18/11 3:56 PM Page 2 TA Instruments

Thermal cover:layout 1 1/18/11 3:56 PM Page 2 TA Instruments TA Instruments Thermomechanical Analysis Sensitive Measurement, Unmatched Versatility TMA Q400EM/Q400 SPECIFICATIONS 98 The Q400EM is the industry s leading research-grade thermomechanical analyzer with

More information

CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES

CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES J. G. H. Bouwmeester*,

More information

Developments in Low Temperature Testing of Rubber Materials

Developments in Low Temperature Testing of Rubber Materials Developments in Low Temperature Testing of Rubber Materials Technical report 01/4, 2nd edition Nov 2010 Göran Spetz Elastocon AB SWEDEN Introduction The low temperature properties of rubber materials are

More information

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager PERKIN ELMER Polymers technical note CHARACTERIZATION OF POLYMERS BY W.J. Sichina, National Marketing Manager Thermomechanical analysis () is one of the important characterization techniques in the field

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Development of an innovative bio-based structural adhesive

Development of an innovative bio-based structural adhesive Development of an innovative bio-based structural adhesive Blanca Palomo, R&D Engineer blanca.palomo@rescoll.fr RESCOLL Independent research company located in Pessac (33) specialized in technologic innovation

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

New Developments in Adhesive Resins for Oriented Barrier // PP Film Applications. Development Center Materials Lab.

New Developments in Adhesive Resins for Oriented Barrier // PP Film Applications. Development Center Materials Lab. New Developments in Adhesive Resins for Oriented Barrier // PP Film Applications Development Center Materials Lab. HIROTAKA UOSAKI Contents 1. Characteristics of Adhesive Resins 2. New Developments in

More information

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson The Fundamental Principles of Composite Material Stiffness Predictions David Richardson Contents Description of example material for analysis Prediction of Stiffness using Rule of Mixtures (ROM) ROM with

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ GLOBAL MANUFACTURING ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ Changing Schedule: 5-24/8 - Fabrication of Plastic, Ceramics and Composites 6-26/8 Fabrication of Ceramics

More information

Fundamentals of Friction and Wear of Automobile Brake Materials

Fundamentals of Friction and Wear of Automobile Brake Materials Fundamentals of Friction and Wear of Automobile Brake Materials Shyam Bahadur, PhD., Fellow ASME, Fellow ASTM University Professor and Professor of Mechanical Engineering, Iowa State University, Ames,

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

TENSILE TESTING PRACTICAL

TENSILE TESTING PRACTICAL TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in

More information

Resistance of Plastics to Gamma Irradiation

Resistance of Plastics to Gamma Irradiation Elastomers 1 MATERIAL TOLERANCE LEVEL (kgy) COMMENTS Butyl 50 Sheds particulate after irradiation. Ethylene Propylene 100 200 Crosslinks, yellows slightly. Diene Monomer (EPDM) Fluoro Elastomer 50 Avoid

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

The Pipe/Soil Structure Actions and Interactions

The Pipe/Soil Structure Actions and Interactions Chapter 4 The Pipe/Soil Structure Actions and Interactions Lester H. Gabriel, Ph.D., P.E. THE PIPE/SOIL STRUCTURE ACTIONS AND INTERACTIONS Composite Structures Principles of Analysis Predictability of

More information

ASTM D 1599 Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings

ASTM D 1599 Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings ASTM D 1599 Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings This test method establishes the short-time hydraulic failure pressure of pipe and

More information

Material Optimization and Weight Reduction of Drive Shaft Using Composite Material

Material Optimization and Weight Reduction of Drive Shaft Using Composite Material IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 1 (Nov. - Dec. 2013), PP 39-46 Material Optimization and Weight Reduction of Drive Shaft

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

Glassy polymers and the nature of the glass transition. The factors that affect Tg

Glassy polymers and the nature of the glass transition. The factors that affect Tg Thermal Transitions: Crystallization, Melting and the Glass Transition Today: Glassy polymers and the nature of the glass transition The factors that affect Tg Plasticizers Chapter 8 in CD (Polymer Science

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DMA/SDTA861 e STAR e System Innovative Technology Versatile Modularity Swiss Quality Dynamic Mechanical Analysis Sets New Standards DMA/SDTA861 e Precise Measurement Technology

More information

LOW VELOCITY IMPACT ANALYSIS OF LAMINATED FRP COMPOSITES

LOW VELOCITY IMPACT ANALYSIS OF LAMINATED FRP COMPOSITES LOW VELOCITY IMPACT ANALYSIS OF LAMINATED FRP COMPOSITES B. KRANTHI KUMAR 1 M.Tech student, Department of Mechanical Engineering, Godavari Institute of Engineering and Technology, Rajahmundry, Andhrapradesh,

More information

Scotch-Weld TM. Acrylic Adhesives. DP8405NS Green. Product Data Sheet. Date: March 2014 Supersedes: August 2013

Scotch-Weld TM. Acrylic Adhesives. DP8405NS Green. Product Data Sheet. Date: March 2014 Supersedes: August 2013 Scotch-Weld TM Product Data Sheet Acrylic Adhesives Date: Supersedes: August 2013 Product Description 3M TM Scotch-Weld Acrylic Adhesives are high performance, twopart acrylic adhesives that offer good

More information

Composites Manufacturing. ME 338: Manufacturing Processes II Instructor: Ramesh Singh; Notes: Prof. Singh/ Ganesh Soni

Composites Manufacturing. ME 338: Manufacturing Processes II Instructor: Ramesh Singh; Notes: Prof. Singh/ Ganesh Soni Composites Manufacturing 1 Composites 2 What is a composite Material? Two or more chemically distinct materials combined to have improved properties Natural/synthetic Wood is a natural composite of cellulose

More information

A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX

A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX CD01-006 A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX H.R. Pakravan 1, M. Jamshidi 2, M. Latifi 3 1 M.Sc. student, Textile Engineering Department, Amirkabir University, Tehran,

More information

Lecture 18 Strain Hardening And Recrystallization

Lecture 18 Strain Hardening And Recrystallization -138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing

More information

Composites and light weight metals - the best of two worlds

Composites and light weight metals - the best of two worlds nasjonalt senter for komposittkompetanse Composites and light weight metals - the best of two worlds Conference: Lettmetall 2010 Geilo 11th and 12th February 2010 Iver E. Jensen, General Manager, Norwegian

More information

Polymer Melt Rheology. Introduction to Viscoelastic Behavior. Time-Temperature Equivalence

Polymer Melt Rheology. Introduction to Viscoelastic Behavior. Time-Temperature Equivalence Topics to be Covered Polymer Melt Rheology Introduction to Viscoelastic Behavior Time-Temperature Equivalence Chapter 11 in CD (Polymer Science and Engineering) Polymer Melt Rheology δ τ xy Newton s Law

More information

The influence of annealing on dynamical mechanical properties of polyamide 6 / fiber glass composites

The influence of annealing on dynamical mechanical properties of polyamide 6 / fiber glass composites of Achievements in Materials and Manufacturing Engineering VOLUME 19 ISSUE 2 December 2006 The influence of annealing on dynamical mechanical properties of polyamide 6 / fiber glass composites J. Koszkul*,

More information

Tensile Testing of Steel

Tensile Testing of Steel C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

More information

Lecture 14. Chapter 8-1

Lecture 14. Chapter 8-1 Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling

More information

Integrated Circuit Packaging and Thermal Design

Integrated Circuit Packaging and Thermal Design Lezioni di Tecnologie e Materiali per l Elettronica Integrated Circuit Packaging and Thermal Design Danilo Manstretta microlab.unipv.it danilo.manstretta@unipv.it Introduction to IC Technologies Packaging

More information

NUMERICAL ANALYSIS OF GLULAM BEAMS WITHOUT AND WITH GFRP REINFORCEMENT

NUMERICAL ANALYSIS OF GLULAM BEAMS WITHOUT AND WITH GFRP REINFORCEMENT 10th International Conference on Composite Science and Technology ICCST/10 A.L. Araújo, J.R. Correia, C.M. Mota Soares, et al. (Editors) IDMEC 2015 NUMERICAL ANALYSIS OF GLULAM BEAMS WITHOUT AND WITH GFRP

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

9. Direct screwing into plastics and metal

9. Direct screwing into plastics and metal 9. Direct screwing into plastics and metal 9.1 Direct screwing into plastics The use of plastics is gaining in importance through new application possibilities. Optimised thread pitch Advantages here are

More information

3. Test Methods for Evaluation of ESCR of Plastics

3. Test Methods for Evaluation of ESCR of Plastics 3. Test Methods for Evaluation of ESCR of Plastics A common laboratory request for ESC-prone polymers is to check ESCR performance for quality control, competitive product evaluations, and research and

More information

Environmental Stress Crack Resistance of Polyethylene Pipe Materials

Environmental Stress Crack Resistance of Polyethylene Pipe Materials Environmental Stress Crack Resistance of Polyethylene Pipe Materials ROBERT B. TAMPA, Product Development and Service Engineer* Abstract Slow crack growth is a phenomenon that can occur in most plastics.

More information

Electronic Materials able to detect, amplify and transmit electrical signals in a complex manner are light weight, compact and energy efficient

Electronic Materials able to detect, amplify and transmit electrical signals in a complex manner are light weight, compact and energy efficient CHAPTER 1 Knowledge and Comprehension Problems: 1.1 What are the main classes of engineering materials? Answer1.1: Metallic, polymeric, ceramic, composite, and electronic materials are the five main classes.

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

INVESTIGATION OF MECHANICAL PROPERTIES OF POLYESTER REINFORCED WITH HEMP FIBRE (LONG FIBRES AND MAT) FOR PATELLAR IMPLANT APPLICATION

INVESTIGATION OF MECHANICAL PROPERTIES OF POLYESTER REINFORCED WITH HEMP FIBRE (LONG FIBRES AND MAT) FOR PATELLAR IMPLANT APPLICATION International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 154-163, Article ID: IJMET_07_01_016 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

PRODUCT DATA SHEET PRODUCT DESCRIPTION. Compressive Strength (0 ) ETW (1) ASTM D6641 176 ksi 1210 MPa

PRODUCT DATA SHEET PRODUCT DESCRIPTION. Compressive Strength (0 ) ETW (1) ASTM D6641 176 ksi 1210 MPa PRODUCT TYPE Polyetheretherketone (PEEK) Thermoplastic Resin System SERVICE TEMPERATURE Approximately 250 F (121 C) FEATURES Ambient temperature storage Flame retardant Low moisture absorption Good impact

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

Elements of Addition Polymerization. Branching and Tacticity. The Effect of Crystallinity on Properties

Elements of Addition Polymerization. Branching and Tacticity. The Effect of Crystallinity on Properties Topics to be Covered Elements of Addition Polymerization Branching and Tacticity The Effect of Crystallinity on Properties Chapters 1 & 2 in CD (Polymer Science and Engineering) What Are Polyolefins? The

More information

Predictive Modeling of Composite Materials & Structures: State-of-the-Art Solutions and Future Challenges.

Predictive Modeling of Composite Materials & Structures: State-of-the-Art Solutions and Future Challenges. Predictive Modeling of Composite Materials & Structures: State-of-the-Art Solutions and Future Challenges. Roger A. Assaker Roger.Assaker@e-Xstream.com www.e-xstream.com Short Abstract Computer Aided Engineering

More information

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

15. MODULUS OF ELASTICITY

15. MODULUS OF ELASTICITY Chapter 5 Modulus of Elasticity 5. MODULUS OF ELASTICITY The modulus of elasticity (= Young s modulus) E is a material property, that describes its stiffness and is therefore one of the most important

More information

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12 WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12 87 88 GOOD INDUSTRY PRACTICES 12 WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12.1 BACKGROUND Most roofs in Singapore are constructed using reinforced

More information

Solid shape molding is not desired in injection molding due to following reasons.

Solid shape molding is not desired in injection molding due to following reasons. PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

More information

Chlorinated polyethylene ELASLEN TM. Application for Wire and Cable

Chlorinated polyethylene ELASLEN TM. Application for Wire and Cable Chlorinated polyethylene ELASLEN TM Application for Wire and Cable 1 About the company Company Name : SHOWA DENKO K.K. Type of Industry : Diversified Chemical Company Formed : June 1, 1939 Employee : 10,577

More information

HIGH PERFORMANCE M5 FIBER FOR BALLISTICS / STRUCTURAL COMPOSITES

HIGH PERFORMANCE M5 FIBER FOR BALLISTICS / STRUCTURAL COMPOSITES HIGH PERFORMANCE M5 FIBER FOR BALLISTICS / STRUCTURAL COMPOSITES ABSTRACT The ballistic impact potential of M5 fiber-based armor systems is estimated using an armor materials by design model for personnel

More information

Estimation of Long-Term Change in Physical Property of Optical Fiber Coating Considering Effect of Humidity

Estimation of Long-Term Change in Physical Property of Optical Fiber Coating Considering Effect of Humidity INFOCOMMUNICATIONS Estimation of Long-Term Change in Physical Property of Optical Fiber Coating Considering Effect of Humidity Kazuyuki SOHMA*, Noriaki IWAGUCHI, Takehiko KAWANO, Takashi FUJII and Yasushi

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Worldwide tank building applications using PP-Sheets: The effect of Foaming on properties

Worldwide tank building applications using PP-Sheets: The effect of Foaming on properties Worldwide tank building applications using PP-Sheets: The effect of Foaming on properties Marcus Hoffmann 1, Dominic Müller 1, Marco Stallmann 1, Matt Curtis 2 1 Simona AG Teichweg 16, 55606 Kirn, Germany

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

CERAMICS: Properties 2

CERAMICS: Properties 2 CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental

More information

Design and Analysis of a Storage Container Used in Missile

Design and Analysis of a Storage Container Used in Missile Design and of a Storage Container Used in Missile 75 Prudvi Raju. Devarapalli M.Tech Student Technology, Ongole Venkata Ramesh Mamilla Associate Professor Technology Ongole M.V. Mallikarjun Professor Technology

More information

TA INSTRUMENTS DYNAMIC MECHANICAL ANALYZER

TA INSTRUMENTS DYNAMIC MECHANICAL ANALYZER TA INSTRUMENTS DYNAMIC MECHANICAL ANALYZER THE TA INSTRUMENTS DYNAMIC MECHANICAL ANALYZER The TA Instruments Q800 is the culmination of years of engineering expertise in Dynamic Mechanical Analyzers. TA

More information

Engineering materials and their properties

Engineering materials and their properties Engineering materials and their properties 3.1 Introduction and synopsis Materials, one might say, are the food of design. This chapter presents the menu: the full shopping list of materials. A successful

More information

Composite Materials. Mary P. Shafer. Fabric Development, Inc. Quakertown, PA 18951

Composite Materials. Mary P. Shafer. Fabric Development, Inc. Quakertown, PA 18951 Composite Materials Mary P. Shafer Fabric Development, Inc. Quakertown, PA 18951 Composite Material Two inherently different materials that when combined together produce a material with properties that

More information

High-Tech Plastics for Lightweight Solutions

High-Tech Plastics for Lightweight Solutions High-Tech Plastics for Lightweight Solutions Julian Haspel, High Performance Materials, Global Application Development Mobility Days Prague, November 22nd 2012 Agenda Plastic / metal hybrid technology

More information

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING T. Shimizu *, H. Koinuma, K. Nagai Mitsubishi Heavy Industries,

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF SECTION

MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF SECTION MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF Nylon 6/6 meets MIL-M20693B "A" Type 1, LP410A, and ASTM D789-66 Type 1, GDE 2 All test performed per ASTM specifications. Parts

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Technical Data Sheet February 2014

Technical Data Sheet February 2014 Scotch-Weld Technical Data Sheet February 2014 Product Description s are high performance, two-part acrylic adhesives that offer excellent shear, peel, and impact performance. These toughened products

More information

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP A COMPARISON TO TRADITIONAL METALLIC MATERIALS Prepared by: Kevin Schmit, Project Engineer Specialty

More information

100 Year Service Life of Polypropylene And Polyethylene Gravity Sewer Pipes. Summary Technical Report

100 Year Service Life of Polypropylene And Polyethylene Gravity Sewer Pipes. Summary Technical Report December 2014 100 Year Service Life of Polypropylene And Polyethylene Gravity Sewer Pipes A TEPPFA Project in cooperation with Borealis and LyondellBasell Summary Technical Report (Based on Extracts of

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information