Package SurvCorr. February 26, 2015
|
|
|
- Poppy Freeman
- 9 years ago
- Views:
Transcription
1 Type Package Title Correlation of Bivariate Survival Times Version 1.0 Date Package SurvCorr February 26, 2015 Author Meinhard Ploner, Alexandra Kaider and Georg Heinze Maintainer Georg Heinze Depends R (>= 3.0.2) Imports survival, fields Estimates correlation coefficients with associated confidence limits for bivariate, partially censored survival times. Uses the iterative multiple imputation approach proposed by Schemper, Kaider, Wakounig and Heinze, Statistics in Medicine Provides a scatterplot function to visualize the bivariate distribution, either on the original time scale or as copula. License GPL NeedsCompilation no Repository CRAN Date/Publication :18:35 R topics documented: SurvCorr-package diabetes kidney plot.survcorr print.survcorr summary.survcorr survcorr Index 10 1
2 2 SurvCorr-package SurvCorr-package Correlation Analysis of Survival Times by Iterative Multiple Imputation Details This R-package implements the iterative multiple imputation algorithm as proposed by Schemper, Kaider, Wakounig and Heinze (2013) for estimation of a correlation coefficient for bivariate possibly censored time-to-event data. Package: SurvCorr Type: Package Version: 1.0 Date: License: GPL The analysis of correlations within pairs of survival times is of interest to many research topics in medicine, such as the correlation of survival-type endpoints of twins, the correlation of times till failure in paired organs, or the correlation of survival time with a surrogate endpoint. The dependence of such times is assumed monotonic and thus quantification by rank correlation coefficients appropriate. The typical censoring of such times requires more involved methods of estimation and inference as have been developed in recent years. As an alternative to the maximum likelihood methodology for the normal copula approach (NCE) this package implements an iterative multiple imputation (IMI) method which requires only about 0.05% of the computing time of NCE, without sacrificing statistical performance. For IMI, survival probabilities at death or censoring times are first transformed to normal deviates. Then, those deviates which relate to censored times are iteratively augmented, by conditional multiple imputation, until convergence is obtained for the normal scores rank correlation, which is similar to Spearman s rank correlation. Schemper, Kaider, Wakounig and Heinze (2013) compared statistical properties of NCE and IMI by means of a Monte Carlo study and by means of three real data sets; two of them are available in this package. The package s main function is survcorr, accompanied by appropriate print and summary methods. A plot method can be used to visualize the bivariate distribution either as a copula, or as distribution of survival times. In the former case, one can plot original (uncensored) values along with univariately or bivariately imputed values. Author(s) Meinhard Ploner, Alexandra Kaider and Georg Heinze ( [email protected]) Schemper,M., Kaider,A., Wakounig,S. & Heinze,G. (2013): "Estimating the correlation of bivariate failure times under censoring", Statistics in Medicine, 32,
3 diabetes /sim diabetes Diabetes Data Format Source Diabetic retinopathy: how strongly are times to blindness of a treated and an untreated eye correlated in patients suffering from diabetic retinopathy? The analysis is based on a sample of n=197 paired failure times (censoring 73% and 49% for the treated and untreated eyes, respectively) described by Huster, Brookmeyer, and Self (1989). Both eyes of an individual are observed for the same time, and therefore dots on the diagonal generally indicate pairs of censored times. diabetes A data.frame containing 197 rows. Huster WJ, Brookmeyer R, Self SG. Modelling paired survival data with covariates. Biometrics 1989; 45: kidney Kidney Data Infections under dialysis: does time until infection of the first application of a portable dialysis machine correlate with the time until recurrence of infection during the second application? The infection occurs at the point of insertion of the catheter, and, when it occurs, the catheter is removed. After successful treatment of the infection, the catheter is reinserted again. In the data set of 38 patients, the times until infection in both periods are reported as well as corresponding censoring indicators. Censoring of the times till infection occurs if the catheter is removed because of other reasons than infection. kidney
4 4 plot.survcorr Format Source A data.frame containing 38 rows and 5 variables (ID, time1, status1, time2, status2). McGilchrist and Aisbett (1991) McGilchrist CA, Aisbett CW.Regression with frailty in survival analysis. Biometrics 1991; 47: plot.survcorr Plot Correlated Bivariate Survival Times Produces a scatterplot of bivariate survival times, either on the original times scale or as copula (uniform marginal distributions). Censored observations are inserted either by their imputed values (copula plot) or marked by arrows (survival times plot). The first time variable will be plotted on the y-axis, the second on the x-axis. ## S3 method for class survcorr plot(x, what = "uniform", imputation = 1, xlab = switch(what, copula= expression(hat(f)(t[2])), uniform = expression(hat(f)(t[2])), times = expression(t[2])), ylab = switch(what, copula = expression(hat(f)(t[1])), uniform = expression(hat(f)(t[1])), times = expression(t[1])), xlim, ylim, main = switch(what, copula = "Bivariate Copula",uniform = "Bivariate Copula", times = "Bivariate Survival Times"), legend = TRUE, cex.legend = switch(what, copula = 0.8, uniform = 0.8, times = 0.7), pch = "*", colevent = "black", colimput = "gray",...) Arguments x what imputation xlab an object of class survcorr what should be plotted: "uniform" or "copula" to plot the bivariate copula, "times" to plot the survival times. The default is to plot the copula. If the copula is plotted, then the index of the imputated data set to be used to replace censored observation can be given (e.g., imputation=1:5. Default: imputation=1) An optional x-axis label.
5 print.survcorr 5 ylab An optional y-axis label. xlim Optional limits for x-axis. ylim Optional limits for y-axis. main Optional title. legend Optional legend. cex.legend Optional font size of legend. pch Optional plot character. colevent Color of symbols representing uncensored times (default="black"). colimput Color of symbols representing imputations for censored times (default="gray").... Further options to be passed to the plot function. Value no return value; function is called for its side effects Author(s) Meinhard Ploner, Alexandra Kaider, Georg Heinze Schemper,M., Kaider,A., Wakounig,S. & Heinze,G. (2013): "Estimating the correlation of bivariate failure times under censoring", Statistics in Medicine, 32, /sim Examples ## Example 2 data(diabetes) obj <- survcorr(formula1=surv(time1, STATUS1) ~ 1, formula2=surv(time2, STATUS2) ~ 1, data=diabetes, M=100, MCMCSteps=10, alpha=0.05, epsilon=0.001) plot(obj, "times") plot(obj, "copula", imputation=1) plot(obj, "copula", imputation=7) print.survcorr Print Method for survcorr Objects Print method for survcorr objects (correlation of bivariate survival times). Summarizes most important results: estimated correlation coefficient and confidence interval.
6 6 summary.survcorr ## S3 method for class survcorr print(x,...) Arguments x a survcorr object... additional options passed to print Details print method for objects of class survcorr Value the estimated correlation coefficient and lower and upper (1-alpha) confidence limits Author(s) Meinhard Ploner, Alexandra Kaider, Georg Heinze Schemper,M., Kaider,A., Wakounig,S. & Heinze,G. (2013): "Estimating the correlation of bivariate failure times under censoring", Statistics in Medicine, 32, /sim summary.survcorr Summary Method for survcorr Objects Summarizes results of a correlation analysis of bivariate survival times ## S3 method for class survcorr summary(object,...) Arguments object a survcorr object... further arguments passed to summary
7 survcorr 7 Details Value Summarizes the results of a correlation analysis of bivariate survival times. Beside of the calculated correlation coefficient and its confidence interval, a contingency table of the bivariate event status, some of the most important input parameters, as well as posterior mean and variance of the transformed correlation coefficients are printed. NULL Author(s) Meinhard Ploner, Alexandra Kaider, Georg Heinze Schemper,M., Kaider,A., Wakounig,S. & Heinze,G. (2013): "Estimating the correlation of bivariate failure times under censoring", Statistics in Medicine, 32, /sim survcorr Correlation Analysis of Survival Times by Iterative Multiple Imputation This R-package implements the iterative multiple imputation algorithm as proposed by Schemper, Kaider, Wakounig and Heinze (2013) for estimation of a correlation coefficient for bivariate possibly censored time-to-event data. survcorr(formula1, formula2, data, methods = "imi", alpha = 0.05, intra = FALSE, M = 10, MCMCSteps = 10, epsilon = 0.001, maxiter = 100) Arguments formula1 formula2 data methods alpha intra Survival object for first time-to-event variable, e.g. Surv(time1, status1)~1 Survival object for second time-to-event variable, e.g. Surv(time2, status2)~1 Data set to look up variables Correlation method(s). Currently, only "imi" (iterative multiple imputation) is implemented. One minus confidence level (for confidence interval computation) If TRUE, an intraclass correlation coefficient will be computed, assuming that the two time-to-event variables are interchangeable in each observation.
8 8 survcorr M MCMCSteps epsilon maxiter Number of imputations (for IMI) Number of MCMCSteps (for IMI) Accuracy of numerical estimation of correlation coefficients Maximum number of iterations in IMI Details The analysis of correlations within pairs of survival times is of interest to many research topics in medicine, such as the correlation of survival-type endpoints of twins, the correlation of times till failure in paired organs, or the correlation of survival time with a surrogate endpoint. The dependence of such times is assumed monotonic and thus quantification by rank correlation coefficients appropriate. The typical censoring of such times requires more involved methods of estimation and inference as have been developed in recent years. As an alternative to the maximum likelihood methodology for the normal copula approach (NCE) this package implements an iterative multiple imputation (IMI) method which requires only about 0.05% of the computing time of NCE, without sacrificing statistical performance. For IMI, survival probabilities at death or censoring times are first transformed to normal deviates. Then, those deviates which relate to censored times are iteratively augmented, by conditional multiple imputation, until convergence is obtained for the normal scores rank correlation, which is similar to Spearman s rank correlation. Schemper, Kaider, Wakounig and Heinze (2013) compared statistical properties of NCE and IMI by means of a Monte Carlo study and by means of three real data sets; two of them are available in this package. Value rho ci.lower ci.upper simdata M MCMCSteps rj.trans rj.t.mean var df alpha call estimated correlation coefficient lower limit of confidence interval for rho upper limit of confidence interval for rho imputed data sets for each iteration, with components M (number of imputations), z1m, z2m (imputed normal deviates), delta1, delta2 (censoring indicators), t1, t2 (imputed non-censored survival times) number of imputations number of MCMC steps in iterative imputation the M atanh-transformed correlation coefficients from M imputed data sets the posterior mean of the atanh-transofmred correlation coefficients over the M imputations the variance of atanh(rho), with components within, between and total the number of degrees of freedom (important for confidence interval computation) 1-confidence level the function call (useful for making use of update(obj)) Author(s) Meinhard Ploner, Alexandra Kaider, Georg Heinze
9 survcorr 9 Schemper,M., Kaider,A., Wakounig,S. & Heinze,G. (2013): "Estimating the correlation of bivariate failure times under censoring", Statistics in Medicine, 32, /sim Examples ## Example 1 data(kidney) obj = survcorr(formula1=surv(time1, STATUS1) ~ 1, formula2=surv(time2, STATUS2) ~ 1, data=kidney, M=1000, MCMCSteps=10, alpha=0.05, epsilon=0.001) ## Example 2 data(diabetes) obj = survcorr(formula1=surv(time1, STATUS1) ~ 1, formula2=surv(time2, STATUS2) ~ 1, data=diabetes, M=100, MCMCSteps=10, alpha=0.05, epsilon=0.001) plot(obj, "times")
10 Index Topic IMI plot.survcorr, 4 print.survcorr, 5 summary.survcorr, 6 survcorr, 7 SurvCorr-package, 2 Topic correlation plot.survcorr, 4 print.survcorr, 5 summary.survcorr, 6 survcorr, 7 SurvCorr-package, 2 Topic datasets diabetes, 3 kidney, 3 Topic survival plot.survcorr, 4 print.survcorr, 5 summary.survcorr, 6 survcorr, 7 SurvCorr-package, 2 diabetes, 3 kidney, 3 plot (plot.survcorr), 4 plot.survcorr, 4 print (print.survcorr), 5 print.survcorr, 5 summary (summary.survcorr), 6 summary.survcorr, 6 Surv (survcorr), 7 SurvCorr (SurvCorr-package), 2 survcorr, 7 SurvCorr-package, 2 10
Package survpresmooth
Package survpresmooth February 20, 2015 Type Package Title Presmoothed Estimation in Survival Analysis Version 1.1-8 Date 2013-08-30 Author Ignacio Lopez de Ullibarri and Maria Amalia Jacome Maintainer
Package smoothhr. November 9, 2015
Encoding UTF-8 Type Package Depends R (>= 2.12.0),survival,splines Package smoothhr November 9, 2015 Title Smooth Hazard Ratio Curves Taking a Reference Value Version 1.0.2 Date 2015-10-29 Author Artur
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma [email protected] The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
Package plan. R topics documented: February 20, 2015
Package plan February 20, 2015 Version 0.4-2 Date 2013-09-29 Title Tools for project planning Author Maintainer Depends R (>= 0.99) Supports the creation of burndown
More details on the inputs, functionality, and output can be found below.
Overview: The SMEEACT (Software for More Efficient, Ethical, and Affordable Clinical Trials) web interface (http://research.mdacc.tmc.edu/smeeactweb) implements a single analysis of a two-armed trial comparing
Package ATE. R topics documented: February 19, 2015. Type Package Title Inference for Average Treatment Effects using Covariate. balancing.
Package ATE February 19, 2015 Type Package Title Inference for Average Treatment Effects using Covariate Balancing Version 0.2.0 Date 2015-02-16 Author Asad Haris and Gary Chan
Package empiricalfdr.deseq2
Type Package Package empiricalfdr.deseq2 May 27, 2015 Title Simulation-Based False Discovery Rate in RNA-Seq Version 1.0.3 Date 2015-05-26 Author Mikhail V. Matz Maintainer Mikhail V. Matz
Package neuralnet. February 20, 2015
Type Package Title Training of neural networks Version 1.32 Date 2012-09-19 Package neuralnet February 20, 2015 Author Stefan Fritsch, Frauke Guenther , following earlier work
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
5 Correlation and Data Exploration
5 Correlation and Data Exploration Correlation In Unit 3, we did some correlation analyses of data from studies related to the acquisition order and acquisition difficulty of English morphemes by both
Each function call carries out a single task associated with drawing the graph.
Chapter 3 Graphics with R 3.1 Low-Level Graphics R has extensive facilities for producing graphs. There are both low- and high-level graphics facilities. The low-level graphics facilities provide basic
Package retrosheet. April 13, 2015
Type Package Package retrosheet April 13, 2015 Title Import Professional Baseball Data from 'Retrosheet' Version 1.0.2 Date 2015-03-17 Maintainer Richard Scriven A collection of tools
Graphics in R. Biostatistics 615/815
Graphics in R Biostatistics 615/815 Last Lecture Introduction to R Programming Controlling Loops Defining your own functions Today Introduction to Graphics in R Examples of commonly used graphics functions
CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
Package zic. September 4, 2015
Package zic September 4, 2015 Version 0.9 Date 2015-09-03 Title Bayesian Inference for Zero-Inflated Count Models Author Markus Jochmann Maintainer Markus Jochmann
Package dsmodellingclient
Package dsmodellingclient Maintainer Author Version 4.1.0 License GPL-3 August 20, 2015 Title DataSHIELD client site functions for statistical modelling DataSHIELD
Package CoImp. February 19, 2015
Title Copula based imputation method Date 2014-03-01 Version 0.2-3 Package CoImp February 19, 2015 Author Francesca Marta Lilja Di Lascio, Simone Giannerini Depends R (>= 2.15.2), methods, copula Imports
Data exploration with Microsoft Excel: analysing more than one variable
Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical
Two Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
An introduction to IBM SPSS Statistics
An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive
Package RIGHT. March 30, 2015
Type Package Title R Interactive Graphics via HTML Version 0.2.0 Date 2015-03-30 Package RIGHT March 30, 2015 Author ChungHa Sung, TaeJoon Song, JongHyun Bae, SangGi Hong, Jae W. Lee, and Junghoon Lee
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Directions for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
Using Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
Package ERP. December 14, 2015
Type Package Package ERP December 14, 2015 Title Significance Analysis of Event-Related Potentials Data Version 1.1 Date 2015-12-11 Author David Causeur (Agrocampus, Rennes, France) and Ching-Fan Sheu
Multivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
Tests for Two Survival Curves Using Cox s Proportional Hazards Model
Chapter 730 Tests for Two Survival Curves Using Cox s Proportional Hazards Model Introduction A clinical trial is often employed to test the equality of survival distributions of two treatment groups.
R 2 -type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models
Faculty of Health Sciences R 2 -type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models Inference & application to prediction of kidney graft failure Paul Blanche joint work with M-C.
sample median Sample quartiles sample deciles sample quantiles sample percentiles Exercise 1 five number summary # Create and view a sorted
Sample uartiles We have seen that the sample median of a data set {x 1, x, x,, x n }, sorted in increasing order, is a value that divides it in such a way, that exactly half (i.e., 50%) of the sample observations
Point Biserial Correlation Tests
Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable
Pearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Package cgdsr. August 27, 2015
Type Package Package cgdsr August 27, 2015 Title R-Based API for Accessing the MSKCC Cancer Genomics Data Server (CGDS) Version 1.2.5 Date 2015-08-25 Author Anders Jacobsen Maintainer Augustin Luna
Confidence Intervals for Spearman s Rank Correlation
Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence
APPLIED MISSING DATA ANALYSIS
APPLIED MISSING DATA ANALYSIS Craig K. Enders Series Editor's Note by Todd D. little THE GUILFORD PRESS New York London Contents 1 An Introduction to Missing Data 1 1.1 Introduction 1 1.2 Chapter Overview
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)
Package dsstatsclient
Maintainer Author Version 4.1.0 License GPL-3 Package dsstatsclient Title DataSHIELD client site stattistical functions August 20, 2015 DataSHIELD client site
Chapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Package polynom. R topics documented: June 24, 2015. Version 1.3-8
Version 1.3-8 Package polynom June 24, 2015 Title A Collection of Functions to Implement a Class for Univariate Polynomial Manipulations A collection of functions to implement a class for univariate polynomial
DATA ANALYSIS. QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University
DATA ANALYSIS QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Package CIFsmry. July 10, 2016. Index 6
Type Package Package CIFsmry July 10, 2016 Title Weighted summary of cumulative incidence functions Version 1.0.1.1 Date 2013-10-10 Author Jianing Li Maintainer Jianing Li Depends R(>= 3.0.1)
Package mcmcse. March 25, 2016
Version 1.2-1 Date 2016-03-24 Title Monte Carlo Standard Errors for MCMC Package mcmcse March 25, 2016 Author James M. Flegal , John Hughes and Dootika Vats
Optimization of sampling strata with the SamplingStrata package
Optimization of sampling strata with the SamplingStrata package Package version 1.1 Giulio Barcaroli January 12, 2016 Abstract In stratified random sampling the problem of determining the optimal size
Getting started with qplot
Chapter 2 Getting started with qplot 2.1 Introduction In this chapter, you will learn to make a wide variety of plots with your first ggplot2 function, qplot(), short for quick plot. qplot makes it easy
Package GSA. R topics documented: February 19, 2015
Package GSA February 19, 2015 Title Gene set analysis Version 1.03 Author Brad Efron and R. Tibshirani Description Gene set analysis Maintainer Rob Tibshirani Dependencies impute
Scatter Plots with Error Bars
Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each
Lab 13: Logistic Regression
Lab 13: Logistic Regression Spam Emails Today we will be working with a corpus of emails received by a single gmail account over the first three months of 2012. Just like any other email address this account
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte
A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn
A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps
containing Kendall correlations; and the OUTH = option will create a data set containing Hoeffding statistics.
Getting Correlations Using PROC CORR Correlation analysis provides a method to measure the strength of a linear relationship between two numeric variables. PROC CORR can be used to compute Pearson product-moment
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Interpretation of Somers D under four simple models
Interpretation of Somers D under four simple models Roger B. Newson 03 September, 04 Introduction Somers D is an ordinal measure of association introduced by Somers (96)[9]. It can be defined in terms
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Association Between Variables
Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi
Simple Linear Regression, Scatterplots, and Bivariate Correlation
1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.
Binary Diagnostic Tests Two Independent Samples
Chapter 537 Binary Diagnostic Tests Two Independent Samples Introduction An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This can be done by comparing summary
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Package uptimerobot. October 22, 2015
Type Package Version 1.0.0 Title Access the UptimeRobot Ping API Package uptimerobot October 22, 2015 Provide a set of wrappers to call all the endpoints of UptimeRobot API which includes various kind
Package tagcloud. R topics documented: July 3, 2015
Package tagcloud July 3, 2015 Type Package Title Tag Clouds Version 0.6 Date 2015-07-02 Author January Weiner Maintainer January Weiner Description Generating Tag and Word Clouds.
Package bigdata. R topics documented: February 19, 2015
Type Package Title Big Data Analytics Version 0.1 Date 2011-02-12 Author Han Liu, Tuo Zhao Maintainer Han Liu Depends glmnet, Matrix, lattice, Package bigdata February 19, 2015 The
Descriptive Analysis
Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,
Package TRADER. February 10, 2016
Type Package Package TRADER February 10, 2016 Title Tree Ring Analysis of Disturbance Events in R Version 1.2-1 Date 2016-02-10 Author Pavel Fibich , Jan Altman ,
Package sendmailr. February 20, 2015
Version 1.2-1 Title send email using R Package sendmailr February 20, 2015 Package contains a simple SMTP client which provides a portable solution for sending email, including attachment, from within
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected]
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected] Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2
Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables
Practical Differential Gene Expression. Introduction
Practical Differential Gene Expression Introduction In this tutorial you will learn how to use R packages for analysis of differential expression. The dataset we use are the gene-summarized count data
Package copa. R topics documented: August 9, 2016
Package August 9, 2016 Title Functions to perform cancer outlier profile analysis. Version 1.41.0 Date 2006-01-26 Author Maintainer COPA is a method to find genes that undergo
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Package DCG. R topics documented: June 8, 2016. Type Package
Type Package Package DCG June 8, 2016 Title Data Cloud Geometry (DCG): Using Random Walks to Find Community Structure in Social Network Analysis Version 0.9.2 Date 2016-05-09 Depends R (>= 2.14.0) Data
Imputing Values to Missing Data
Imputing Values to Missing Data In federated data, between 30%-70% of the data points will have at least one missing attribute - data wastage if we ignore all records with a missing value Remaining data
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
Paper DV-06-2015. KEYWORDS: SAS, R, Statistics, Data visualization, Monte Carlo simulation, Pseudo- random numbers
Paper DV-06-2015 Intuitive Demonstration of Statistics through Data Visualization of Pseudo- Randomly Generated Numbers in R and SAS Jack Sawilowsky, Ph.D., Union Pacific Railroad, Omaha, NE ABSTRACT Statistics
Chapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -
Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures
Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the
Viewing Ecological data using R graphics
Biostatistics Illustrations in Viewing Ecological data using R graphics A.B. Dufour & N. Pettorelli April 9, 2009 Presentation of the principal graphics dealing with discrete or continuous variables. Course
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Homework 11. Part 1. Name: Score: / null
Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College [email protected]
Portfolio Distribution Modelling and Computation Harry Zheng Department of Mathematics Imperial College [email protected] Workshop on Fast Financial Algorithms Tanaka Business School Imperial College
Package cpm. July 28, 2015
Package cpm July 28, 2015 Title Sequential and Batch Change Detection Using Parametric and Nonparametric Methods Version 2.2 Date 2015-07-09 Depends R (>= 2.15.0), methods Author Gordon J. Ross Maintainer
Journal of Statistical Software
JSS Journal of Statistical Software January 2011, Volume 38, Issue 5. http://www.jstatsoft.org/ Lexis: An R Class for Epidemiological Studies with Long-Term Follow-Up Martyn Plummer International Agency
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]
Package SHELF. February 5, 2016
Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
