arxiv: v1 [cs.cv] 18 May 2015
|
|
|
- Kellie Tucker
- 9 years ago
- Views:
Transcription
1 U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, and Thomas Brox arxiv: v1 [cs.cv] 18 May 2015 Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany WWW home page: Abstract. There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at 1 Introduction In the last two years, deep convolutional networks have outperformed the state of the art in many visual recognition tasks, e.g. [7,3]. While convolutional networks have already existed for a long time [8], their success was limited due to the size of the available training sets and the size of the considered networks. The breakthrough by Krizhevsky et al. [7] was due to supervised training of a large network with 8 layers and millions of parameters on the ImageNet dataset with 1 million training images. Since then, even larger and deeper networks have been trained [12]. The typical use of convolutional networks is on classification tasks, where the output to an image is a single class label. However, in many visual tasks, especially in biomedical image processing, the desired output should include localization, i.e., a class label is supposed to be assigned to each pixel. Moreover, thousands of training images are usually beyond reach in biomedical tasks. Hence, Ciresan et al. [1] trained a network in a sliding-window setup to predict the class label of each pixel by providing a local region (patch) around that pixel
2 input image tile 572 x x x ² ² 280² ² 198² 196² 392 x x x x 388 output segmentation map ² 138² 68² 136² ² 32² 64² 30² ² 28² ² 54² 52² 102² 100² conv 3x3, ReLU copy and crop max pool 2x2 up-conv 2x2 conv 1x1 Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations. as input. First, this network can localize. Secondly, the training data in terms of patches is much larger than the number of training images. The resulting network won the EM segmentation challenge at ISBI 2012 by a large margin. Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it is quite slow because the network must be run separately for each patch, and there is a lot of redundancy due to overlapping patches. Secondly, there is a trade-off between localization accuracy and the use of context. Larger patches require more max-pooling layers that reduce the localization accuracy, while small patches allow the network to see only little context. More recent approaches [11,4] proposed a classifier output that takes into account the features from multiple layers. Good localization and the use of context are possible at the same time. In this paper, we build upon a more elegant architecture, the so-called fully convolutional network [9]. We modify and extend this architecture such that it works with very few training images and yields more precise segmentations; see Figure 1. The main idea in [9] is to supplement a usual contracting network by successive layers, where pooling operators are replaced by upsampling operators. Hence, these layers increase the resolution of the output. In order to localize, high resolution features from the contracting path are combined with the upsampled
3 3 Fig. 2. Overlap-tile strategy for seamless segmentation of arbitrary large images (here segmentation of neuronal structures in EM stacks). Prediction of the segmentation in the yellow area, requires image data within the blue area as input. Missing input data is extrapolated by mirroring output. A successive convolution layer can then learn to assemble a more precise output based on this information. One important modification in our architecture is that in the upsampling part we have also a large number of feature channels, which allow the network to propagate context information to higher resolution layers. As a consequence, the expansive path is more or less symmetric to the contracting path, and yields a u-shaped architecture. The network does not have any fully connected layers and only uses the valid part of each convolution, i.e., the segmentation map only contains the pixels, for which the full context is available in the input image. This strategy allows the seamless segmentation of arbitrarily large images by an overlap-tile strategy (see Figure 2). To predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the input image. This tiling strategy is important to apply the network to large images, since otherwise the resolution would be limited by the GPU memory. As for our tasks there is very little training data available, we use excessive data augmentation by applying elastic deformations to the available training images. This allows the network to learn invariance to such deformations, without the need to see these transformations in the annotated image corpus. This is particularly important in biomedical segmentation, since deformation used to be the most common variation in tissue and realistic deformations can be simulated efficiently. The value of data augmentation for learning invariance has been shown in Dosovitskiy et al. [2] in the scope of unsupervised feature learning. Another challenge in many cell segmentation tasks is the separation of touching objects of the same class; see Figure 3. To this end, we propose the use of a weighted loss, where the separating background labels between touching cells obtain a large weight in the loss function. The resulting network is applicable to various biomedical segmentation problems. In this paper, we show results on the segmentation of neuronal structures in EM stacks (an ongoing competition started at ISBI 2012), where we out-
4 4 performed the network of Ciresan et al. [1]. Furthermore, we show results for cell segmentation in light microscopy images from the ISBI cell tracking challenge Here we won with a large margin on the two most challenging 2D transmitted light datasets. 2 Network Architecture The network architecture is illustrated in Figure 1. It consists of a contracting path (left side) and an expansive path (right side). The contracting path follows the typical architecture of a convolutional network. It consists of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for downsampling. At each downsampling step we double the number of feature channels. Every step in the expansive path consists of an upsampling of the feature map followed by a 2x2 convolution ( up-convolution ) that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to the loss of border pixels in every convolution. At the final layer a 1x1 convolution is used to map each 64- component feature vector to the desired number of classes. In total the network has 23 convolutional layers. To allow a seamless tiling of the output segmentation map (see Figure 2), it is important to select the input tile size such that all 2x2 max-pooling operations are applied to a layer with an even x- and y-size. 3 Training The input images and their corresponding segmentation maps are used to train the network with the stochastic gradient descent implementation of Caffe [6]. Due to the unpadded convolutions, the output image is smaller than the input by a constant border width. To minimize the overhead and make maximum use of the GPU memory, we favor large input tiles over a large batch size and hence reduce the batch to a single image. Accordingly we use a high momentum (0.99) such that a large number of the previously seen training samples determine the update in the current optimization step. The energy function is computed by a pixel-wise soft-max over the final feature map combined with the( cross entropy loss function. The soft-max is K ) defined as p k (x) = exp(a k (x))/ k =1 exp(a k (x)) where a k (x) denotes the activation in feature channel k at the pixel position x Ω with Ω Z 2. K is the number of classes and p k (x) is the approximated maximum-function. I.e. p k (x) 1 for the k that has the maximum activation a k (x) and p k (x) 0 for all other k. The cross entropy then penalizes at each position the deviation of p l(x) (x) from 1 using E = x Ω w(x) log(p l(x) (x)) (1)
5 5 a b c d Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) microscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors indicate different instances of the HeLa cells. (c) generated segmentation mask (white: foreground, black: background). (d) map with a pixel-wise loss weight to force the network to learn the border pixels. where l : Ω {1,..., K} is the true label of each pixel and w : Ω R is a weight map that we introduced to give some pixels more importance in the training. We pre-compute the weight map for each ground truth segmentation to compensate the different frequency of pixels from a certain class in the training data set, and to force the network to learn the small separation borders that we introduce between touching cells (See Figure 3c and d). The separation border is computed using morphological operations. The weight map is then computed as w(x) = w c (x) + w 0 exp ( (d 1(x) + d 2 (x)) 2 2σ 2 where w c : Ω R is the weight map to balance the class frequencies, d 1 : Ω R denotes the distance to the border of the nearest cell and d 2 : Ω R the distance to the border of the second nearest cell. In our experiments we set w 0 = 10 and σ 5 pixels. In deep networks with many convolutional layers and different paths through the network, a good initialization of the weights is extremely important. Otherwise, parts of the network might give excessive activations, while other parts never contribute. Ideally the initial weights should be adapted such that each feature map in the network has approximately unit variance. For a network with our architecture (alternating convolution and ReLU layers) this can be achieved by drawing the initial weights from a Gaussian distribution with a standard deviation of 2/N, where N denotes the number of incoming nodes of one neuron [5]. E.g. for a 3x3 convolution and 64 feature channels in the previous layer N = 9 64 = 576. ) (2) 3.1 Data Augmentation Data augmentation is essential to teach the network the desired invariance and robustness properties, when only few training samples are available. In case of
6 6 microscopical images we primarily need shift and rotation invariance as well as robustness to deformations and gray value variations. Especially random elastic deformations of the training samples seem to be the key concept to train a segmentation network with very few annotated images. We generate smooth deformations using random displacement vectors on a coarse 3 by 3 grid. The displacements are sampled from a Gaussian distribution with 10 pixels standard deviation. Per-pixel displacements are then computed using bicubic interpolation. Drop-out layers at the end of the contracting path perform further implicit data augmentation. 4 Experiments We demonstrate the application of the u-net to three different segmentation tasks. The first task is the segmentation of neuronal structures in electron microscopic recordings. An example of the data set and our obtained segmentation is displayed in Figure 2. We provide the full result as Supplementary Material. The data set is provided by the EM segmentation challenge [14] that was started at ISBI 2012 and is still open for new contributions. The training data is a set of 30 images (512x512 pixels) from serial section transmission electron microscopy of the Drosophila first instar larva ventral nerve cord (VNC). Each image comes with a corresponding fully annotated ground truth segmentation map for cells (white) and membranes (black). The test set is publicly available, but its segmentation maps are kept secret. An evaluation can be obtained by sending the predicted membrane probability map to the organizers. The evaluation is done by thresholding the map at 10 different levels and computation of the warping error, the Rand error and the pixel error [14]. The u-net (averaged over 7 rotated versions of the input data) achieves without any further pre- or postprocessing a warping error of (the new best score, see Table 1) and a rand-error of This is significantly better than the sliding-window convolutional network result by Ciresan et al. [1], whose best submission had a warping error of and a rand error of In terms of rand error the only better performing Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted by warping error. Rank Group name Warping Error Rand Error Pixel Error ** human values ** u-net DIVE-SCI IDSIA [1] DIVE IDSIA-SCI
7 7 a b c d Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the PhC-U373 data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the DIC-HeLa data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border). Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge Name PhC-U373 DIC-HeLa IMCB-SG (2014) KTH-SE (2014) HOUS-US (2014) second-best u-net (2015) algorithms on this data set use highly data set specific post-processing methods 1 applied to the probability map of Ciresan et al. [1]. We also applied the u-net to a cell segmentation task in light microscopic images. This segmenation task is part of the ISBI cell tracking challenge 2014 and 2015 [10,13]. The first data set PhC-U373 2 contains Glioblastoma-astrocytoma U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy (see Figure 4a,b and Supp. Material). It contains 35 partially annotated training images. Here we achieve an average IOU ( intersection over union ) of 92%, which is significantly better than the second best algorithm with 83% (see Table 2). The second data set DIC-HeLa 3 are HeLa cells on a flat glass recorded by differential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d and Supp. Material). It contains 20 partially annotated training images. Here we achieve an average IOU of 77.5% which is significantly better than the second best algorithm with 46%. 5 Conclusion The u-net architecture achieves very good performance on very different biomedical segmentation applications. Thanks to data augmentation with elastic defor- 1 The authors of this algorithm have submitted 78 different solutions to achieve this result. 2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University of California at Berkeley. Berkeley CA (USA) 3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam. The Netherlands
8 8 mations, it only needs very few annotated images and has a very reasonable training time of only 10 hours on a NVidia Titan GPU (6 GB). We provide the full Caffe[6]-based implementation and the trained networks 4. We are sure that the u-net architecture can be applied easily to many more tasks. Acknowlegements This study was supported by the Excellence Initiative of the German Federal and State governments (EXC 294) and by the BMBF (Fkz B). References 1. Ciresan, D.C., Gambardella, L.M., Giusti, A., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS. pp (2012) 2. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: NIPS (2014) 3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014) 4. Hariharan, B., Arbelez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization (2014), arxiv: [cs.cv] 5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classification (2015), arxiv: [cs.cv] 6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding (2014), arxiv: [cs.cv] 7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS. pp (2012) 8. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4), (1989) 9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2014), arxiv: [cs.cv] 10. Maska, M., (...), de Solorzano, C.O.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, (2014) 11. Seyedhosseini, M., Sajjadi, M., Tasdizen, T.: Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks. In: Computer Vision (ICCV), 2013 IEEE International Conference on. pp (2013) 12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014), arxiv: [cs.cv] 13. WWW: Web page of the cell tracking challenge, celltrackingchallenge/cell_tracking_challenge/welcome.html 14. WWW: Web page of the em segmentation challenge, isbi_challenge/ 4 U-net implementation, trained networks and supplementary material available at
Lecture 6: Classification & Localization. boris. [email protected]
Lecture 6: Classification & Localization boris. [email protected] 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014
Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection
CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. [email protected] 2 3 Object detection
CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015
CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing
Pedestrian Detection with RCNN
Pedestrian Detection with RCNN Matthew Chen Department of Computer Science Stanford University [email protected] Abstract In this paper we evaluate the effectiveness of using a Region-based Convolutional
Convolutional Feature Maps
Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview
Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083.
Fast R-CNN Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083. ECS 289G 001 Paper Presentation, Prof. Lee Result 1 67% Accuracy
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Image and Video Understanding
Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material
arxiv:1312.6034v2 [cs.cv] 19 Apr 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps arxiv:1312.6034v2 [cs.cv] 19 Apr 2014 Karen Simonyan Andrea Vedaldi Andrew Zisserman Visual Geometry Group,
arxiv:1502.01852v1 [cs.cv] 6 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun arxiv:1502.01852v1 [cs.cv] 6 Feb 2015 Abstract Rectified activation
Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016
Module 5 Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016 Previously, end-to-end.. Dog Slide credit: Jose M 2 Previously, end-to-end.. Dog Learned Representation Slide credit: Jose
Image Classification for Dogs and Cats
Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science [email protected] Abstract
Compacting ConvNets for end to end Learning
Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,
Bert Huang Department of Computer Science Virginia Tech
This paper was submitted as a final project report for CS6424/ECE6424 Probabilistic Graphical Models and Structured Prediction in the spring semester of 2016. The work presented here is done by students
Supporting Online Material for
www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks Matthew D. Zeiler Department of Computer Science Courant Institute, New York University [email protected] Rob Fergus Department
Pedestrian Detection using R-CNN
Pedestrian Detection using R-CNN CS676A: Computer Vision Project Report Advisor: Prof. Vinay P. Namboodiri Deepak Kumar Mohit Singh Solanki (12228) (12419) Group-17 April 15, 2016 Abstract Pedestrian detection
Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning
: Intro. to Computer Vision Deep learning University of Massachusetts, Amherst April 19/21, 2016 Instructor: Subhransu Maji Finals (everyone) Thursday, May 5, 1-3pm, Hasbrouck 113 Final exam Tuesday, May
Denoising Convolutional Autoencoders for Noisy Speech Recognition
Denoising Convolutional Autoencoders for Noisy Speech Recognition Mike Kayser Stanford University [email protected] Victor Zhong Stanford University [email protected] Abstract We propose the use of
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected]
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected] Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual
Efficient online learning of a non-negative sparse autoencoder
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil
Handwritten Digit Recognition with a Back-Propagation Network
396 Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
Deformable Part Models with CNN Features
Deformable Part Models with CNN Features Pierre-André Savalle 1, Stavros Tsogkas 1,2, George Papandreou 3, Iasonas Kokkinos 1,2 1 Ecole Centrale Paris, 2 INRIA, 3 TTI-Chicago Abstract. In this work we
Learning and transferring mid-level image representions using convolutional neural networks
Willow project-team Learning and transferring mid-level image representions using convolutional neural networks Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic 1 Image classification (easy) Is there
Transfer Learning for Latin and Chinese Characters with Deep Neural Networks
Transfer Learning for Latin and Chinese Characters with Deep Neural Networks Dan C. Cireşan IDSIA USI-SUPSI Manno, Switzerland, 6928 Email: [email protected] Ueli Meier IDSIA USI-SUPSI Manno, Switzerland, 6928
Introduction to Machine Learning CMU-10701
Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey
MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan
1 MulticoreWare Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan Focused on Heterogeneous Computing Multiple verticals spawned from core competency Machine Learning
Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks
1 Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks Tomislav Hrkać, Karla Brkić, Zoran Kalafatić Faculty of Electrical Engineering and Computing University of
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky University of Toronto [email protected] Ilya Sutskever University of Toronto [email protected] Geoffrey E. Hinton University
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
3D Object Recognition using Convolutional Neural Networks with Transfer Learning between Input Channels
3D Object Recognition using Convolutional Neural Networks with Transfer Learning between Input Channels Luís A. Alexandre Department of Informatics and Instituto de Telecomunicações Univ. Beira Interior,
arxiv:1506.03365v2 [cs.cv] 19 Jun 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop Fisher Yu Yinda Zhang Shuran Song Ari Seff Jianxiong Xiao arxiv:1506.03365v2 [cs.cv] 19 Jun 2015 Princeton
An Early Attempt at Applying Deep Reinforcement Learning to the Game 2048
An Early Attempt at Applying Deep Reinforcement Learning to the Game 2048 Hong Gui, Tinghan Wei, Ching-Bo Huang, I-Chen Wu 1 1 Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling
Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling Ming Liang Xiaolin Hu Bo Zhang Tsinghua National Laboratory for Information Science and Technology (TNList) Department
Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016
Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion
Multi-Column Deep Neural Network for Traffic Sign Classification
Multi-Column Deep Neural Network for Traffic Sign Classification Dan Cireşan, Ueli Meier, Jonathan Masci and Jürgen Schmidhuber IDSIA - USI - SUPSI Galleria 2, Manno - Lugano 6928, Switzerland Abstract
Taking Inverse Graphics Seriously
CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
SIGNAL INTERPRETATION
SIGNAL INTERPRETATION Lecture 6: ConvNets February 11, 2016 Heikki Huttunen [email protected] Department of Signal Processing Tampere University of Technology CONVNETS Continued from previous slideset
Do Convnets Learn Correspondence?
Do Convnets Learn Correspondence? Jonathan Long Ning Zhang Trevor Darrell University of California Berkeley {jonlong, nzhang, trevor}@cs.berkeley.edu Abstract Convolutional neural nets (convnets) trained
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
Fast R-CNN Object detection with Caffe
Fast R-CNN Object detection with Caffe Ross Girshick Microsoft Research arxiv code Latest roasts Goals for this section Super quick intro to object detection Show one way to tackle obj. det. with ConvNets
arxiv:1409.1556v6 [cs.cv] 10 Apr 2015
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION Karen Simonyan & Andrew Zisserman + Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk
A Dynamic Convolutional Layer for Short Range Weather Prediction
A Dynamic Convolutional Layer for Short Range Weather Prediction Benjamin Klein, Lior Wolf and Yehuda Afek The Blavatnik School of Computer Science Tel Aviv University [email protected], [email protected],
Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang
Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,
InstaNet: Object Classification Applied to Instagram Image Streams
InstaNet: Object Classification Applied to Instagram Image Streams Clifford Huang Stanford University [email protected] Mikhail Sushkov Stanford University [email protected] Abstract The growing
Deep Learning using Linear Support Vector Machines
Yichuan Tang [email protected] Department of Computer Science, University of Toronto. Toronto, Ontario, Canada. Abstract Recently, fully-connected and convolutional neural networks have been trained
The Delicate Art of Flower Classification
The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC [email protected] Note: The following is my contribution to a group project for a graduate machine learning
Face Recognition in Low-resolution Images by Using Local Zernike Moments
Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
LIBSVX and Video Segmentation Evaluation
CVPR 14 Tutorial! 1! LIBSVX and Video Segmentation Evaluation Chenliang Xu and Jason J. Corso!! Computer Science and Engineering! SUNY at Buffalo!! Electrical Engineering and Computer Science! University
Face detection is a process of localizing and extracting the face region from the
Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
Getting Started with Caffe Julien Demouth, Senior Engineer
Getting Started with Caffe Julien Demouth, Senior Engineer What is Caffe? Open Source Framework for Deep Learning http://github.com/bvlc/caffe Developed by the Berkeley Vision and Learning Center (BVLC)
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Visual Geometry Group, University of Oxford {karen,az}@robots.ox.ac.uk Abstract We investigate architectures
CAP 6412 Advanced Computer Vision
CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Jan 26, 2016 Today Administrivia A bigger picture and some common questions Object detection proposals, by Samer
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN Goal is to process 360 degree images and detect two object categories 1. Pedestrians,
Latest Advances in Deep Learning. Yao Chou
Latest Advances in Deep Learning Yao Chou Outline Introduction Images Classification Object Detection R-CNN Traditional Feature Descriptor Selective Search Implementation Latest Application Deep Learning
Image Super-Resolution Using Deep Convolutional Networks
1 Image Super-Resolution Using Deep Convolutional Networks Chao Dong, Chen Change Loy, Member, IEEE, Kaiming He, Member, IEEE, and Xiaoou Tang, Fellow, IEEE arxiv:1501.00092v3 [cs.cv] 31 Jul 2015 Abstract
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
The Visual Internet of Things System Based on Depth Camera
The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed
Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC
Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? Erjin Zhou [email protected] Zhimin Cao [email protected] Qi Yin [email protected] Abstract Face recognition performance improves rapidly
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing
Character Image Patterns as Big Data
22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,
Probabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg [email protected] www.multimedia-computing.{de,org} References
Deep Residual Networks
Deep Residual Networks Deep Learning Gets Way Deeper 8:30-10:30am, June 19 ICML 2016 tutorial Kaiming He Facebook AI Research* *as of July 2016. Formerly affiliated with Microsoft Research Asia 7x7 conv,
Lecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Selecting Receptive Fields in Deep Networks
Selecting Receptive Fields in Deep Networks Adam Coates Department of Computer Science Stanford University Stanford, CA 94305 [email protected] Andrew Y. Ng Department of Computer Science Stanford
GPU-Based Deep Learning Inference:
Whitepaper GPU-Based Deep Learning Inference: A Performance and Power Analysis November 2015 1 Contents Abstract... 3 Introduction... 3 Inference versus Training... 4 GPUs Excel at Neural Network Inference...
arxiv:submit/1533655 [cs.cv] 13 Apr 2016
Bags of Local Convolutional Features for Scalable Instance Search Eva Mohedano, Kevin McGuinness and Noel E. O Connor Amaia Salvador, Ferran Marqués, and Xavier Giró-i-Nieto Insight Center for Data Analytics
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].
1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very
Real-Time Grasp Detection Using Convolutional Neural Networks
Real-Time Grasp Detection Using Convolutional Neural Networks Joseph Redmon 1, Anelia Angelova 2 Abstract We present an accurate, real-time approach to robotic grasp detection based on convolutional neural
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
Accurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Scanners and How to Use Them
Written by Jonathan Sachs Copyright 1996-1999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types
Multi-view Face Detection Using Deep Convolutional Neural Networks
Multi-view Face Detection Using Deep Convolutional Neural Networks Sachin Sudhakar Farfade Yahoo [email protected] Mohammad Saberian Yahoo [email protected] Li-Jia Li Yahoo [email protected]
Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.
Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
Monotonicity Hints. Abstract
Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: [email protected] Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology
High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets
0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques
Morphological analysis on structural MRI for the early diagnosis of neurodegenerative diseases. Marco Aiello On behalf of MAGIC-5 collaboration
Morphological analysis on structural MRI for the early diagnosis of neurodegenerative diseases Marco Aiello On behalf of MAGIC-5 collaboration Index Motivations of morphological analysis Segmentation of
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
Convolutional Networks for Stock Trading
Convolutional Networks for Stock Trading Ashwin Siripurapu Stanford University Department of Computer Science 353 Serra Mall, Stanford, CA 94305 [email protected] Abstract Convolutional neural networks
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
Task-driven Progressive Part Localization for Fine-grained Recognition
Task-driven Progressive Part Localization for Fine-grained Recognition Chen Huang Zhihai He [email protected] University of Missouri [email protected] Abstract In this paper we propose a task-driven
Introduction to Deep Learning Variational Inference, Mean Field Theory
Introduction to Deep Learning Variational Inference, Mean Field Theory 1 Iasonas Kokkinos [email protected] Center for Visual Computing Ecole Centrale Paris Galen Group INRIA-Saclay Lecture 3: recap
