THE EFFECT OF CONCUSSION ON THE METABOLIC COST OF TRANSPORT IN WALKING. Jessica A. La Farga. A Thesis Presented to

Size: px
Start display at page:

Download "THE EFFECT OF CONCUSSION ON THE METABOLIC COST OF TRANSPORT IN WALKING. Jessica A. La Farga. A Thesis Presented to"

Transcription

1 THE EFFECT OF CONCUSSION ON THE METABOLIC COST OF TRANSPORT IN WALKING By Jessica A. La Farga A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Kinesiology: Exercise Science Committee Membership Dr. Justus Ortega, Committee Chair Dr. Rock Braithwaite, Committee Member and Graduate Coordinator Beth Larson, M.S., Committee Member July, 2015

2 Abstract THE EFFECT OF CONCUSSION ON THE METABOLIC COST OF TRANSPORT IN WALKING Jessica A. La Farga A concussion is a type of traumatic brain injury that results in an overall decrease in executive function. Previous literature has reported that significant reductions in balance occur in the concussed during the acute phases of recovery. However, it is unknown whether changes in stability associated with concussive injury result in changes to conservation of mechanical energy and metabolic cost during walking. The purpose of this study was to determine the effect of concussion the mechanics and energetics of walking. I hypothesized that within the first 2-7 days following injury, individuals who have sustained a concussion would exhibit a greater the metabolic cost of walking and impaired inverted pendulum mechanics. To address this problem, I collected neurocognitive, metabolic, and kinematic data on 14 normal subjects (5 female and 9 male) and 10 concussed subjects (5 female and 5 male). I found no significant differences in the metabolic cost of transport due to concussive status across the speeds of 0.75 m s -1, 1.25 m s -1, and 1.50 m s -1 (p<.05). Key words: concussion, inverted pendulum, cost of transport, executive function ii

3 Acknowledgements To Rhonda, To Terry, To Kevin, To Jenn, To Cecelia. To using my brain because I can. To the women in this world who are not given the same opportunity. To the lessons that I learned in 256B. To the mentors who taught me true grit. To the relentless hearts that raised me- Thank you. iii

4 Table of Contents PAGE Abstract... ii Acknowledgements... iii Table of Contents... iv List of Tables... vi List of Figures... vii Introduction... 1 The Neurophysiology of Concussion... 1 Executive Function and Postural Stability... 2 Determinants of Walking Energetics... 4 Altered Walking Mechanics in the Concussed... 6 Assumptions... 7 Delimitations... 8 Operational Definitions... 8 Methods Subjects Protocol The Metabolic Cost of Transport Walking Mechanics Neurocognitive Assessment Statistics iv

5 Results Metabolic Cost of Transport Walking Mechanics Neurocognitive Function Discussion References v

6 List of Tables Table 1. Subject Characteristics. 25 Table 2. Spatio-temporal Variables...26 Table 3. Inverted Pendulum Mechanics Variables...27 Table 4. Neurocognitive Performance Composite Scores.28 vi

7 List of Figures Figure 1. Cost of Transport vs. Speed...29 Figure 2. Inverted Pendulum Energy Recovery vs. Speed Figure 3. External Work vs. Speed...31 Figure 4. Gross Metabolic Power vs. Speed vii

8 1 Introduction A concussion is a type of brain injury that is caused when an impulsive force is transmitted through the head at a relatively low velocity (Paul McCrory et al., 2013). The injury may or may not involve loss of consciousness (P. McCrory et al., 2009; Paul McCrory, et al., 2013). Transient physiological changes challenge the brain s ability to integrate multiple forms of sensory information and lead to an increased difficulty in maintaining balance during walking. In healthy adults, the metabolic cost of maintaining balance has been shown to account for as much as 5-8% of the total metabolic cost of walking (J. Maxwell Donelan, Shipman, Kram, & Kuo, 2004; J. D. Ortega, Fehlman, & Farley, 2008). Moreover, changes in walking mechanics similar to those observed in concussed individuals have been associated with increases in the metabolic cost of walking. The Neurophysiology of Concussion A concussion is caused by direct or indirect biomechanical forces (Paul McCrory, et al., 2013; Signoretti et al., 2001) and the results in a transient period of axonal injury and metabolic disturbances (Barkhoudarian, Hovda, & Giza, 2011; Giza & Hovda, 2001). As a force is transmitted through the brain, it will stretch and compresses the cell membranes of the neurons (Barkhoudarian, et al., 2011; Giza & Hovda, 2001). Breaches in the neuronal membrane cause diffuse depolarization, indiscriminate neurotransmitter release, and may overstress the sodium / potassium pump (Barkhoudarian, et al., 2011; Giza & Hovda, 2001). If restoration of neurometabolism is

9 2 mismanaged, then chronic unresolved disturbances may result in the loss of microtubule structure and may eventually lead to apoptosis (Baldwin, Fugaccia, Brown, Brown, & Scheff, 1996; Barkhoudarian, et al., 2011; Gavett, Stern, Cantu, Nowinski, & McKee, 2010; Giza & Hovda, 2001). Research has found that repetitive trauma to the brain leads to a progressive and distinctive taupathy that is characterized by wide disposition of neurofibrillary tangles, relative absence of amyloid-b tau deposits, (Gavett, et al., 2010; McKee et al., 2009; McKee et al., 2010) and is recognized by the medical community as chronic traumatic encephalopathy (CTE) (McKee, et al., 2009; Omalu et al., 2006; Omalu et al., 2005; Stern et al., 2011; Yi, Padalino, Chin, Montenegro, & Cantu, 2013). Acute symptoms due to receiving a concussion are reported to resolve in the first 24 hrs. to 7 days after an injury has occurred (Signoretti, et al., 2001). Cognitive, emotional, physical, or sleeping symptoms are commonly reported (Moser et al., 2007). Manifestations of cognitive dysfunctions include impaired attention, memory, processing speed and reaction time (Schatz, Pardini, Lovell, Collins, & Podell, 2006). Depression, anger, and irritability are commonly reported as changes in emotion (Chen, Kareken, Fastenau, Trexler, & Hutchins, 2003). Physical symptoms such as light sensitivity, sound sensitivity, dizziness, nausea, and vomiting also occur. Finally, changes in balance are also commonly reported and used to measure the severity of concussion in the acute phases of concussion recovery (Kevin M. Guskiewicz, 2001). Executive Function and Postural Stability Postural stability is essential for the maintenance of balance in both static (still) and dynamic (moving) tasks. Postural control is an attention demanding process that requires

10 3 the use of executive function (Resch, May, Tomporowski, & Ferrara, 2011). Executive function describes the processes of integrating information through various neural networks located in the cerebral cortex, cerebellum, basal ganglia, brain stem, and spinal cord, amongst other balance systems (Geurts, Ribbers, Knoop, & van Limbeek, 1996; K. M. Guskiewicz, 2003). Dynamic stability is the ability to respond to changes in balance during movement, and is a process that requires coordination of numerous muscle groups in a specific sequence and magnitude in order to respond to perturbations in balance. The concussed experience altered brain function, which results in a decrease in postural control. Researchers and medical personnel can observe the acute period of postural instability by utilizing static balance tests such as the Balance Error Scoring System (BESS), the Clinical Test of Sensory Integration and Balance (CTSIB), the Sensory Organization Test (SOT), and the Romberg Test (Bell, Guskiewicz, Clark, & Padua, 2011; Murray, Ambati, Contreras, Salvatore, & Reed-Jones, 2014). These tests report that the greatest changes in stability occur within hours of receiving a concussion (Kevin M. Guskiewicz, 2001; K. M. Guskiewicz, 2003). Changes in stability are reported as an increase in sway velocity in the anterior/posterior (A-P) or the mediolateral (M-L) directions (Geurts, et al., 1996; Kevin M. Guskiewicz, 2001; K. M. Guskiewicz et al., 2003). Concussion related changes in gait stability have been observed during obstacle crossing tasks as significantly faster CoM motion in the M-L direction (R. D. Catena, van Donkelaar, & Chou, 2009; Chou, Kaufman, Walker-Rabatin, Brey, & Basford, 2004), significantly slower peak anterior velocities during walking (R. Catena, Donkelaar, & Chou, 2007), and an increase sway velocity in the M-L direction during static balance tests in conditions calling for reduced proprioceptive input (Kevin M.

11 4 Guskiewicz, 2001). Overall, the concussed are reported to and have a significantly slower preferred walking speed, walk with shorter stride lengths, and experience an increase in step width variability (Chou, et al., 2004). Determinants of Walking Energetics Walking is an energy-requiring task that is accomplished by the cyclical transfer the center of mass (CoM) from one stance leg to the next (Kuo, Donelan, & Ruina, 2005) Cavagna, Willems et al. (2002). During walking, the stance leg acts as an inverted pendulum that allows for the exchange of potential energy (PE) and kinetic energy (KE). More specifically, during the first half of the gait cycle as the center of mass rises in height and slows down, KE is transferred into PE. During the second half of the gait cycle as the center of mass is lowed and accelerated forward, PE is transferred back in KE. The magnitude of inverted pendulum energy exchange depends on three key factors including 1) the magnitude of KE and PE fluctuations, 2) the relative phase angle between KE and PE and 3) the rates of decrease and increase of PE and KE. In a perfect inverted pendulum KE and PE would have exactly the same magnitude and fluctuate exactly opposite one another leading to 100% conservation of mechanical energy (Cavagna & Franzetti, 1986). However, walking only recovers about 65% of the mechanical energy exchange via the inverted pendulum mechanics. The rest of the mechanical energy required for walking must them be supplied by the mechanical work performed by the muscles of the body. (Johnston, 1984). The greatest recovery of mechanical energy occurs at the intermediate speeds of walking, i.e m s -1. At

12 5 these intermediate walking speeds, the metabolic cost of moving the body a given distance (cost of transporting) is minimized (J. M. Donelan, Kram, & Kuo, 2001b). At faster and slower walking speed both the mechanical work required for walking and the metabolic cost of walking increase as the inverted pendulum exchange of mechanical energy decreases.. During walking the body must perform mechanical work to lift and accelerate the body. The amount of mechanical work performed during walking is inversely related to the inverted pendulum exchange of mechanical energy and thus is directly related to the metabolic cost of walking (J. M. Donelan, Kram, & Kuo, 2002b). Mechanical energy is conserved the most when the fluctuations of PE and KE 180 degrees out of phase with each other (Cavagna, et al., 2002; Johnston, 1984). When the inverted pendulum exchange of mechanical energy is altered, the body must perform more external work to lift and accelerate the CoM, and thus use more metabolic energy to travel the same distance. Thus, inverted pendulum mechanics heavily influence the amount of metabolic energy required for walking. There are certain parameters that contribute to inverted pendulum energy recovery. In addition to choosing energetically optimal walking speeds (Kuo, et al., 2005), humans choose a stride frequency (strides per second) that minimizes energy expenditure by optimizing external and internal work (J. M. Donelan, Kram, & Kuo, 2002a; Minetti, Capelli, Zamparo, di Prampero, & Saibene, 1995). Other parameters that dictate the amount of mechanical energy recovered in a system include stride length and stride width. (Minetti, et al., 1995).

13 6 Altered Walking Mechanics in the Concussed The concussed tend to walk with characteristics similar to other populations known to have conservative gait mechanics. Those populations with diminished balance typically use a slower preferred walking speed (Fait, McFadyen, Swaine, & Cantin, 2009; Pai & Patton, 1997), shorter stride lengths (Pai & Patton, 1997; Parker, Osternig, Lee, Donkelaar, & Chou, 2005), a reduction in sagittal plane, A-P CoM velocity (R. D. Catena, et al., 2009) and an increase in ML CoM velocity (R. Catena, et al., 2007). Research has found that walking with an increased step width causes an increase in external work to redirect the CoM in the ML direction (Ortega & Farley, 2007). Moreover, prior research suggests that walking at a slower walking speed and with a greater step frequency increases the overall metabolic cost of walking (Cavagna & Franzetti, 1986). Prior to this study, there was not sufficient literature investigating the effect of mild traumatic brain injuries such as a concussion on walking energetics and walking mechanics. Conservative gait mechanics typically observed during the acute phase of recovery may lead to impaired inverted pendulum energy exchange and a higher cost of transport during walking. The purpose of this research project was to determine if young adults who have sustained a concussion exhibit impaired walking mechanics including reduced mechanical energy exchange, increased mechanical work and thus a greater metabolic cost of transport during walking in the concussed. Based on evidence that the concussed individuals walk slower with a shorter stride length and have reduced stability compared to healthy controls, I hypothesized that the metabolic cost of transport will be greater in concussed as a result of impaired inverted pendulum mechanics. I predict that

14 7 individuals diagnosed with a concussion via ImPACT Test (ImPACT Applications, Inc., Pittsburgh, PA) will consume metabolic energy at a faster rate and perform a greater amount of mechanical work during walking. I also predict that the difference in rate of metabolic energy consumption between concussed and healthy subjects will be proportional to the difference in mechanical work performed. In order to better understand the potential mechanisms that may be responsible for change in metabolic cost and mechanical work resulting from concussion. I will also determine any difference in the percentage of mechanical energy recovered via inverted pendulum energy exchange. Assumptions The following were assumptions of the study: 1. Participants completed the medical history questionnaire and Immediate Post Injury and Cognitive Test (ImPACT ) accurately. 2. Participants were free of any orthopedic, cognitive, or neuromuscular diseases (other than concussion). 3. The equipment was calibrated correctly. 4. The data collected was valid & reliable. 5. Subjects walked with their own normal walking mechanics at each speed. 6. Subjects had experienced a concussive injury at least 24 hours after, and no more than seven days after a concussion.

15 8 Delimitations The following factors influenced the external validity of the study: 1. Participation in this study was delimited by its inclusion criteria (age, free of neurological and orthopedic, etc.). 2. The study did not include participants who had received a concussion in the past year. 3. The study was limited to 24 participants (14 healthy and 10 concussed). The study did not have equally balanced groups. 4. The study only included people living in Humboldt County, CA. 5. The results of the study will be generalizable to concussed young adults who (a) are between ages of 18-35, (b) and have no history of neurological, orthopedic, or cardiovascular diseases. 6. The study did not observe the cumulative effects of concussion. 7. There is no previous literature observing the metabolic changes, if any, in the concussed. This being said, the concussed were tested up to the seventh day past receiving a concussion. Researchers felt it appropriate to cast a widenet in hopes to aide in subject recruitment, adherence, symptom resolution, and data collection. Operational Definitions 1. Double support phase: the portion of the gait cycle when both feet are on the ground.

16 9 2. Executive function: The generalized term for the management of cognitive integration, including memory, reasoning, and execution. 3. External Mechanical Work (J kg -1 ): The work associated with lifting and accelerating the center of mass during walking normalized per kilogram of body mass. 4. Gravitational Potential Energy (PE, J kg -1 ): A form of mechanical energy associated with the height of the center of mass normalized per kilogram of body mass; Potential energy = (mass)(gravity)(height). 5. Inverted Pendulum Mechanics: Theory of describing walking locomotion, where the center of mass is above the pivot point (foot). 6. Kinetic Energy (KE, J kg -1 ):A form of mechanical energy associated with motion of the center of mass normalized per kilogram of body mass; Kinetic Energy = ½ (mass)(velocity) Mechanical Power: The rate of performing mechanical work (Watt kg -1 ) 8. Metabolic Cost: The rate of chemical energy consumption. Metabolic cost is most often normalized to body mass and is expressed as J kg -1 s Metabolic cost of transport (J kg -1 m -1 ) : Metabolic cost moving one kilogram of body mass one meter. 10. Stance time: the time that either foot is on the ground during a gait cycle including both double support and single support phase. 11. Single support phase: the portion of the gait cycle when only one foot is on the ground.

17 Stride frequency (Hz): strides per second measured from the duration of a gait cycle from foot strike of one foot the next ipsilateral foot strike. 13. Stride length: the distance traveled by the center of mass over the course of a gait cycle, from foot strike of one foot the next ipsilateral foot strike. 14. Swing phase: the time that either foot is NOT on the ground during a gait cycle and occurs after toe off until the subsequent foot strike.

18 11 Methods Subjects Subjects were recruited through the North Coast Concussion Program, the Humboldt State Student Health Center, local hospitals, and word of mouth. Twenty four participants [N = 24; 10 concussed and 14 healthy] were included in this study. All subjects were between the ages of 18 and 35 years (concussed 21.4 yrs. ± 3.1; healthy 22.0 yrs. ±2.6), free of any orthopedic, neuromuscular, or cognitive (other than concussion) diseases that may have altered inverted pendulum mechanics. To be included in the study, concussed subjects must have sustained a direct or indirect injury to the head and exhibit a significant decrease in cognitive function ImPACT Test administered by the North Coast Concussion Program (NCCP) within seven days of injury. The healthy group was composed of members of the Humboldt State University and Humboldt County community. Protocol Subjects participated in an experimental session that was approximately 2.5 hours long. After the orientation, each subject completed a neurocognitive assessment (approximately 30 minutes) and a walking assessment (approximately 90 minutes). The neurocognitive assessment took measures of neurocognitive function and symptom severity. To complete the test, subjects were taken to a quiet, segregated room where they were given a general overview of how the neurocognitive test was set designed in

19 12 adherence with NCCP protocol. Next, the walking assessment occurred and individuals were then taken to the HSU Redwood Bowl Track and directed to walk two laps (approximately 800m). Researchers measured the time required to cover a meter section of course. This measurement was performed twice over the course of the test and averaged to calculate preferred walking speed (PWS). Next, I collected anthropometric measurements: leg length (mm), height (mm), and weight (kg). I used a caliper to measure ankle width, knee width, elbow width, wrist width, and hand thickness. After collecting all anthropometric measurements, I placed retro reflective marker balls on designated anatomical landmarks in preparation of data collection with motion capture software. These anthropometric measurements would later be used to construct a body model used for data analysis. Kinematic data was collected using Vicon Nexus (Los Angeles, CA) at a sampling rate of 100 Hz. Subjects completed a total of five treadmill trials; 1 standing trial and 4 speed trials. A resting baseline metabolic trial was collected before the treadmill trials began. Next, subjects completed the four 6-minutes walking trials at four randomized speeds:.75m s -1, 1.25m s -1, 1.50 m s -1, and PWS). These trials were separated by a 3-5 minute rest period. The Metabolic Cost of Transport The metabolic cost of transport was determined using open circuit indirect calorimetry (Parvo Medics TrueOne2400, Sandy, Utah, USA). Indirect calorimetry measured the rates of oxygen consumption (V O 2 ) and carbon dioxide production (V CO 2 ) during a standing resting trial and each treadmill walking trial. Using the rates of O 2 and

20 13 CO 2 during the last two minutes of each trial when metabolic steady state has been achieved and a standard equation (Brockway, 1987), we calculated the rate of metabolic energy consumption for each trials (J s -1 ). I subtracted the standing metabolic rate from the walking metabolic rate to obtain a net metabolic power for each trial (J s -1 ). We divided net metabolic power by body mass (kg) and walking speed calculates cost of transport (J kg -1 m -1 ). Gross power (GP) was calculated by dividing the amount of work performed over time (Watt; J s -1 kg -1 ). Walking Mechanics Kinematic data was collected using a three-dimensional motion capture system (Vicon Nexus 1.8.5; Vicon, Centennial, CO) and a treadmill (Trackmaster Vision Inc.; Newton, Kansas) placed in the middle of the biomechanics laboratory and surrounded by 8 opto-electric cameras. We placed lightweight retro reflective spheres in accordance with Helen-Hayes Plug in Gait Full Body marker set to identify anatomical landmarks and designate lower and upper extremity segments. The thirty-two retro reflective marker balls were placed on the same anatomical positions of all subjects as follows: (2) toe, (2)heel, (2) ankle, (2) shank, (2) knee, (2) thigh, (2) anterior superior iliac spine, (2) posterior superior iliac spine, (2) radial wrist, (2) ulnar wrist, (2) elbow, (2) shoulder, (2) front head, and (2) back head. Additional retro-reflective marker balls were placed on the manubrium of the sternum, mid-clavicle, cervical spine seven, thoracic spine ten, and on the medial border of the right scapula.

21 14 Data was analyzed using Vicon Nexus 1.8.5, a digital motion capture and analysis program. Raw marker ball coordinate data was digitized and smoothed using a fourthorder, zero-lag digital Butterworth filter with a cutoff frequency of 6 Hz. Data was then imported into Visual 3D Version 5.0 (Germantown, Maryland) 3-D motion analysis software. Marker ball location was used to determine body segment, joint and whole body center of mass motion for ten consecutive strides of each trial. Center of mass motion (position and velocity) was then used to calculate the gravitation potential energy, or PE, (Joules), kinetic energy, or KE, (Joules), and total energy, PE + KE (Joules). I calculated the positive individual limb work performed on the center of mass by integrating each limb's power with respect to time for the time intervals when its power was positive (J. M. Donelan, et al., 2002b). I calculated the positive limb work because the positive limb work reflects the net positive external work performed on the center of mass to maintain walking speed (Ortega & Farley, 2007). In addition to center of mass motion, other spatio-temporal parameters that influence inverted pendulum energy and were measured included stride length, stride frequency, stride width, stride width variability, single support time, double support time, stance time, and swing time. Medio-lateral distance between proximal end position of the foot at ipsilateral heel strike to the proximal end position of the foot at the next contralateral heel strike. Stride width was calculated by taking a stride vector, and the step in between, and computing the cross product (distance between the stride vector and the opposing step (heel) position. Stride frequency (Hz) was determined by measuring the time required to take 20 strides during the last minute. Stride length (m) was calculated as the anterior-posterior distance traveled by the center of mass from one foot strike to

22 15 the subsequent ipsilateral foot strike and then averaged over 10 consecutive strides of each trial. As an additional measure of the potential for mechanical energy exchange during single support, we quantified the relative timing of gravitational potential energy and kinetic energy fluctuations by calculating phase angle (Cavagna & Franzetti, 1986): PPhaaaaaa AAAAAAAAAA = tt TT (1) where t represents the time interval between minimum kinetic energy and maximum gravitational potential energy, and T represents the time interval between consecutive foot strikes. Thus when the minimum kinetic energy and maximum gravitational potential occurred simultaneously as required for optimal energy exchange, phase angle was 180. Neurocognitive Assessment The neurocognitive assessment was completed using the Immediate Post- Concussion Assessment and Cognitive Testing software (ImPACT Applications, Inc., Pittsburgh, PA). The ImPACT Test is a video-game like program that takes approximately minutes to completes and includes a demographic section, symptom inventory, and six subtests measuring attention, memory, processing speed, and reaction time. The symptom inventory includes examinee self-report of 22 symptoms using a 7- point Likert-type rating scale (0 6) that when summed, provides an overall symptom score. The six subtests yield four individual composite scores including Verbal Memory, Visual Memory, Visual Motor (processing) Speed, Impulse Control and Reaction time.

23 16 Statistics The group by task interactions and the differences between groups were examined using SPSS 22.0 (SPSS Inc., Chicago, IL). A two (normal vs. concussed status) by three (speeds:.75m s -1, 1.25m s -1, and 1.50 m s -1 ) mixed model statistical model of variance (MANOVA) to determine the effect of status and the effect of speed on the metabolic cost of transport, walking mechanics. In addition, a one-way between groups multivariate analysis of variance (MANOVA) was used to determine the effect of concussion on neurocognitive test performance (p<.05). A post-hoc univariate analysis of variance (ANOVA) was used to determine group differences in each of the six cognitive domains: verbal memory, visual memory, visual motor speed, impulse control, reaction time, and a self-reported symptom score (p<.05).

24 17 Results Metabolic Cost of Transport Concussion did not have a significant effect on the metabolic cost of walking across the range of speeds tested (A=.72, F (5, 59) = 4.61, P=.53). While metabolic cost of transport was nearly identical between healthy and concussed subjects at the two lowest speeds, concussed subjects tended to have a lower cost of transport at the fastest speed of 1.50 m s -1 (Figure 1). Speed had a significant effect on cost of transport in both groups (A=.09, F(10,118) = 27.78, P=.0001) such that cost of transport was minimized at intermediate speed of 1.25 m s -1 and increase at slower and faster walking speed. Similarly, speed had a significant effect on gross metabolic power whereby gross metabolic power increased by an average 65% across the range of speeds (p<.0001). Walking Mechanics Across the range of speeds tested, concussed subjects exhibited similar walking mechanics when compared to healthy controls (A=.671, F (18, 45) = 1.22, p<.05). Both the concussed and the healthy used similar stride lengths (P=.725) and stride widths (P=.491), and exhibited a similar stance time (P=.669), swing time (P=.338), and double limb support time (P=.819; Table 2).

25 18 Both healthy and concussed subjects preferred to walk at similar speeds (P>.05; Table 1). Moreover, when concussed individuals walk at the same speeds as healthy controls they use similar gait mechanics (P=.284). Across the range of speeds tested, concussed subjects conserved a similar amount of mechanical energy via inverted pendulum mechanics (P=.072) and performed a similar amount of external mechanical work (P=.441; Figure 2). At the slowest speed of 0.75 m s -1, both groups recovered a similar amount of mechanical energy and performed a similar amount of mechanical work. However, at the faster speed of 1.25 m s -1, concussed subjects recovered 28% less mechanical energy as compared to healthy subjects. The difference in inverted pendulum energy recovery at 1.25 m s -1 is likely related to the fact that at this speed, concussed subjects performed 32% more external mechanical work compared to healthy subjects. However, at the fastest speed of 1.50 m s -1, concussed subjects recovered 10% less inverted pendulum energy but performed similar rates of external mechanical work. Although concussed and healthy subject had a similar fluctuations in potential energy (P=.533) and a similar phase angle between kinetic potential energy fluctuations (P=.692) across the range of speeds (Table 2), concussed subjects walked with ~45% smaller fluctuation in kinetic energy (P>.0001) (Table 3). Across the range of speeds tested, concussed and healthy gait mechanics changed similarly (P<.0001; Table 3). In both groups, both stride length and stride frequency increased by 24% and 36% respectively (P<.0001). Individuals from both groups spent more time in stance at the speed of 0.75 m s -1 and less time in stance at the fastest speed of 1.50 m s -1 (P<.001). Also, across the range of speeds tested, individuals spent more time in swing at the fastest speed of 1.50 m s -1 (P<.001). Specifically, from slowest to

26 19 fastest speed, stance time decreased by 42% and swing time increased by 20%. Both groups also, decreased the time spent in double limb support by 51% from the slowest to fastest speed. Related to these changes in gait kinematics, the recovery of mechanical energy decreased by 24% from the slowest to fastest speed (P<.0001). This decrease in mechanical energy recovery across the range of speeds is likely the results of a 5-fold increase in the external mechanical work performed (P<.0001). Moreover, while fluctuation in PE increased 3 fold across the range of speeds, fluctuations in KE also increased by 3-fold (P<.0001). However, the phase angle between PE and KE decreased by 6% when comparing the slowest speed to the fastest speed (P=.016). Overall, stride width and stride width variability did not change across the range of speeds (P=.112). Neurocognitive Function Concussion has a significant effect on neurocognitive function (P=.0005; Table 2). When compared to healthy subjects, concussed subjects had a decrease of 24%, 25%, and 29% in the verbal memory composite, visual memory motor composite, and reaction time composites, respectively. The concussed also have an increase of 57% in the impulse composite domain when compared to healthy subject scores. Overall, the average symptom report for healthy individuals was 2 at the time of testing; the average symptom report for concussed individuals was 33.

27 20 Discussion This investigation was the first to show that concussion is not associated with significantly different walking metabolics. This study was in support of previous literature describing that participants show significant differences in gait patterns when compared to healthy controls (Martini et al., 2011). I hypothesized that individuals in the acute phase of recovery would exhibit a greater metabolic cost of transport and impaired inverted pendulum mechanics as compared to healthy controls across each walking speed. I specifically predicted that 1) individuals diagnosed with a concussion via ImPACT Test (ImPACT Applications, Inc., Pittsburgh, PA) would consume metabolic energy at a faster rate and perform a greater amount of mechanical work during walking in the acute phase of recovery and 2) the difference in the rate of metabolic energy consumption between the concussed and healthy subjects would be proportional to the difference in mechanical work performed and the difference in mechanical energy recovered during walking. Contrary to our hypothesis, this study demonstrates that during the acute phase of recovery, concussed individuals consume a similar amount of metabolic energy for walking as healthy young adults across a wide range of walking speeds. Moreover, concussed individuals walk with similar gait mechanics as healthy adults at these speeds. My hypothesis was based on previous studies suggesting that walking mechanics change

28 21 significantly following a concussion. However, in these previous studies, the concussed were tested at a self-selected pace. In these prior studies, the preferred walking speed was always shown to be slower in concussed subjects as compared to healthy adults (R. Catena, et al., 2007; D. Howell, Osternig, Van Donkelaar, Mayr, & Chou, 2013; D. R. Howell, Osternig, & Chou, 2013). In contrast, my study was designed to test differences in walking energetics and mechanics as a result of concussion at the same speed. My reasoning for testing subjects at the same speed is that many of the difference in walking mechanics observed as a result of concussion mimic the differences typically associated with difference in speed. Moreover to date, there have not been studies examining the differences, in the metabolic cost of transport due to concussion at the same speeds. There are several determinants of the metabolic cost of transport. In walking, the cost of performing external mechanical work is a key determinant of walking energetics and is believed to account for as much as 50% of the total metabolic cost of transport (J. M. Donelan, Kram, & Kuo, 2001a). In my study, concussed subjects performed a similar amount of external mechanical work as healthy controls at each of the speeds tested. Thus, concussed adults likely have a similar metabolic cost of walking as healthy adults as a result of performing a similar amount of mechanical work at the speeds tested. The cost of maintaining balance is another key determinant of the metabolic cost of walking. In healthy adults, maintaining balance accounts for about 10% of the overall metabolic cost of waking. Maintaining balance is dependent on keeping the CoM within the base of support, and is oftentimes referred to as postural control. Once the CoM travels outside of the bases of support, it has left the feasible stability region and muscle effort must be applied to return balance (Pai & Patton, 1997). Changes in postural

29 22 stability during walking are often quantified using step width and step width variability (Standard deviation). Prior studies have shown that at preferred walking speed, postural stability is impaired in concussed individuals. In the present study, concussed individuals used similar step width and step width variability as healthy controls. Previous literature has found that most individuals who receive a concussion have static balance restored within 72 hours of impact (Kevin M. Guskiewicz, 2001). In the present study, only five of the subjects were tested within 72 hours of injury. The remaining 5 individuals were tested within seven days of their injury, with the average day of testing being day 5. Thus the lack of a measurable difference in step width may be related to the time frame in which the subjects were tested. However, it should be noted that these results are similar to those of some other prior studies that have shown that only 30% of those who receive a concussion actually report changes in balance (Murray, et al., 2014). Of the ten individuals included in this sample, not all of them may have manifested their concussive symptoms in the balance domain. Thus, another reason I did not see an increase cost of walking in concussed individual may also be related to the fact that they did not exhibit any significant signs of postural instability during walking. The cost of supporting body weight and the cost of leg swing both contribute to the metabolic cost of walking. Although the cost of supporting body weight and the cost of leg swing are believed to constitute significant portion of the total cost of walking, there is no evidence in the literature that would suggest that either of these factors are different in concussed individuals. This is further supported by the results of the present study that showed no difference in stance time or swing time; two factors that greatly influence the cost of supporting body weight and cost of leg swing, respectively.

30 23 The amount of external work performed on a system exacts a proportional metabolic cost (Kuo, et al., 2005) and this metabolic cost is minimized at intermittent speeds (J. M. Donelan, et al., 2001b). Moreover, there is a U-curve relationship between speed, the metabolic cost of transport, and external work. In agreeing with (J. M. Donelan, et al., 2001a), the metabolic cost for both groups was minimized at the intermittent speed of 1.25m s -1. The concussed and the healthy consumed metabolic energy at similar metabolic rates. The results of this study were not supportive of our second prediction, which stated that the difference in rate of metabolic energy consumption between concussed and healthy subjects would be proportional to the difference in mechanical work performed. At the very slow speed of.75m s -1 and fastest speed of 1.50 m s -1, the concussed consumed metabolic energy at a similar rate and a used similar amount of external work as health adults. However, at 1.25m s -1, concussed consumed similar amounts of metabolic energy, but performed 24% more external work than the healthy controls. The results indicate that there was not a consistent relationship between external work rates, metabolic cost, and speed in the concussed. This lack of consistent relations between metabolic cost and work may be related to the fact that less than half of the concussed subjects were tested within the first 72 hours following their injury when concussion related difference in gait mostly seen. Future research should investigate if changes to walking metabolics are present in a population exclusive to the first hours after receiving a concussion. In regards to neurocognitive data, researchers chose a one-way MANOVA to evaluate the effect of status on the composite domains that constituted the ImPACT test

31 24 based on previous research. There were several limitations to this study. First, this study was limited to a relatively small sample size. The numbers of participants in each group was not balanced, nor were the genders balanced. Previous research has found that females may respond to symptom manifestation differently than males. Future researchers may want to test these sexes separately during their physiological rehabilitation process. Secondly, this study was limited to including individuals who received a concussion up to seven days after the injury occurred. This was done to aide in subject recruitment. Future studies should test for significant changes in balance in the first hours of concussion, 14 days post-concussion, and 28 days post-concussion in attempts to evaluate the acute and relatively long-time changes that occur due to concussion. Third, this study did not control for lifelong history of concussion. Overall, the results of this study will help victims, medical professionals, and sports organizations have a better understanding of another way this subtype of brain injury effects all members of the community. The results of this study added to the research community in several ways including our understandings of 1) how concussion affects gait mechanics across a range of walking speeds and 2) how concussion affects walking energetics. The research, medical, and sport-for-profit communities are striving to understand how to best manage the wide range of symptoms that define what is known as a concussion today. Although this study found no significant differences in metabolic cost at the speeds of.75m s -1, 1.25m s -1, and 1.50m s -1, the concussed experienced altered kinematics that affect how they interpreted and responded to their environment.

32 25 Table 1. Subject characteristics (Mean ±SEM) with statistics for concussed and healthy walkers. Asterisk indicates the only significant group difference (p<.05). Healthy(n=14; 9M, 5 F) Concussed (n=10; 5M, 5 F) Age, years 22.0 ± ± 3.1 Height, m 1.7 ± ±.1 Body mass, kg 76.1 ± ± 9.8 Days Tested Since Concussion Standing metabolic rate, W/kg 1.3 ± ±.6* 1.3 ± m s -1, gross metabolic power, W kg ± ±.3* 1.25 m s-1, gross metabolic power, W kg ± ± 0.3* 1.50 m s-1, gross metabolic power, W kg ± ± 0.2*

33 26 Table 2. Spatio-temporal strides variables (Mean ± SEM) with statistics for concussed and healthy subjects. Asterisk indicates significant group difference (p<.05). Speed 0.75 m s -1 Healthy (n=14) Concussed (n=10) Stance Time, % of stride 66.9 ± ±.7 Swing Time, % of stride 33.2 ± ±.7 Stride Frequency, Hz 0.7 ± ± 0.0 Stride Length, Leg Length 1.0 ± ± 0.0 Stride Width, meters.1 ±.0.1 ±.0 Speed 1.25 m s -1 Stance Time, % of stride 63.7 ± ±.8 Swing Time, % of stride 36.3 ± ±.8 Stride Frequency, Hz 0.9 ± ± 0.0 Stride Length, Leg Length 1.4 ± ± 0.0 Stride Width, meters.1 ±.0.1 ±.0 Speed 1.50 m s -1 Stance Time, % of stride 62.7 ± ±.7 Swing Time, % of stride 37.3 ± ±.7 Stride Frequency, Hz 1.0 ± ± 0.0 Stride Length, Leg Length 1.5 ± ± 0.0 Stride Width, meters.1 ±.0.1 ±.0

34 27 Table 3. Inverted Pendulum Mechanics variables (Mean ± SEM) with statistics for concussed and healthy subjects. Asterisk indicates significant group difference (p<.05). Speed 0.75 m s -1 Healthy (n=14) Concussed (n=10) Delta KE, J 1.9 ± ± 0.4 Delta PE, J 5.7 ± ± 0.9 Pendulum Recovery, % J 66.9 ± ± 3.0 External Work, J/kg 2.6 ± ± 0.5 Phase Angle 275 ± ± 4.0 Speed 1.25 m s -1 Delta KE, J 5.8 ± ± 0.6* Delta PE, J 15.4 ± ± 2.1 Pendulum Recovery, % J 64.1 ± ± 3.8 External Work, J/kg 8.3 ± ± 1.6 Speed 1.50 m s -1 Phase Angle 265 ± ± 4.0 Delta KE, J 7.4 ± ± 0.7* Delta PE, J 20.7 ± ± 3.0 Pendulum Recovery, % J 54.2 ± ± 3.4 External Work, J kg ± ± 2.7 Phase Angle 266 ± ± 5

35 28 Table 4. Results for Neurocognitive Performance Composite Scores and Symptom Score (Mean ± SEM) via ImPACT. Asterisk indicates the only significant group difference (p<.05). Healthy (n=14; 9M, 5F) Concussed (n=10; 5M, 5F) Verbal Memory 93.1 ± ± 4.2* Visual Memory 77.1 ± ± 3.8 Visual Motor 44.4 ± ± 2.3* Reaction Time 0.5 ± ± 0.1 Impulse Control 6.3 ± ± 1.3 Symptom Score 1.9 ± ± 8.1*

36 29 Figure 1. Mean (SE) gross metabolic cost of transport as a function of speed in healthy walkers ( ) and concussed walkers ( ). Asterisks (*) indicate significant differences between healthy walkers and concussed walkers (P<.05).

37 30 Figure 2. Mean (SE) gross inverted pendulum energy recovery as a function of walking speed in healthy walkers ( ) and concussed walkers ( ). Symbols shown on vertical axis represent standing metabolic rate of both groups. Asterisks (*) indicate significant differences between healthy and concussed walkers (P<.05).

38 31 Figure 3. Mean (SE) gross metabolic external work as a function of speed in healthy walkers ( ) and concussed walkers ( ). Asterisks (*) indicate significant differences between healthy walkers and concussed walkers (P<.05).

39 32 Figure 4. Mean (SE) gross metabolic power as a function of speed in healthy walkers ( ) and concussed walkers ( ). Asterisks (*) indicate significant differences between healthy walkers and concussed walkers (P<.05).

40 33 References Baldwin, S. A., Fugaccia, I., Brown, D. R., Brown, L. V., & Scheff, S. W. (1996). Bloodbrain barrier breach following cortical contusion in the rat. Journal of Neurosurgury, 85(3), doi: /jns Barkhoudarian, G., Hovda, D. A., & Giza, C. C. (2011). The molecular pathophysiology of concussive brain injury. Clinical Sports Medicine, 30(1), 33-48, vii-iii. doi: /j.csm S (10)00075-X [pii] Bell, D. R., Guskiewicz, K. M., Clark, M. A., & Padua, D. A. (2011). Systematic Review of the Balance Error Scoring System. Sports Health: A Multidisciplinary Approach, 3(3), doi: / Brockway, J. M. (1987). Derivation of formulae used to calculate energy expenditure in man. Human Nutritional Clinical Nutrition, 41(6), Catena, R., Donkelaar, P., & Chou, L.-S. (2007). Cognitive task effects on gait stability following concussion. Experimental Brain Research, 176(1), doi: /s Catena, R. D., van Donkelaar, P., & Chou, L. S. (2009). Different gait tasks distinguish immediate vs. long-term effects of concussion on balance control. Journal of Neuroengenering Rehabilitation, 6, 25. doi: [pii] / Cavagna, G. A., & Franzetti, P. (1986). The determinants of the step frequency in walking in humans. Journal of Physiology, 373, Cavagna, G. A., Willems, P. A., Legramandi, M. A., & Heglund, N. C. (2002). Pendular energy transduction within the step in human walking. Journal Experimental Biology, 205(Pt 21), Chen, S. H. A., Kareken, D. A., Fastenau, P. S., Trexler, L. E., & Hutchins, G. D. (2003). A study of persistent post-concussion symptoms in mild head trauma using positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry, 74(3), doi: /jnnp Chou, L.-S., Kaufman, K. R., Walker-Rabatin, A. E., Brey, R. H., & Basford, J. R. (2004). Dynamic instability during obstacle crossing following traumatic brain injury. Gait & Posture, 20(3), doi: Donelan, J. M., Kram, R., & Kuo, A. D. (2001a). Mechanical and metabolic determinants of the preferred step width in human walking. Proceedings of the Royal Society of London [Biolological Sciences], 268(1480),

41 Donelan, J. M., Kram, R., & Kuo, A. D. (2001b). Mechanical and metabolic determinants of the preferred step width in human walking. Proc Biol Sci, 268(1480), doi: /rspb Donelan, J. M., Kram, R., & Kuo, A. D. (2002a). Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. Journal Experimental Biology, 205(Pt 23), Donelan, J. M., Kram, R., & Kuo, A. D. (2002b). Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics, 35(1), doi: S [pii] Donelan, J. M., Shipman, D. W., Kram, R., & Kuo, A. D. A. D. (2004). Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal of Biomechanics, 37(6), Fait, P., McFadyen, B. J., Swaine, B., & Cantin, J. F. (2009). Alterations to locomotor navigation in a complex environment at 7 and 30 days following a concussion in an elite athlete. Brain Injury, 23(4), doi: [pii] / Gavett, B. E., Stern, R. A., Cantu, R. C., Nowinski, C. J., & McKee, A. C. (2010). Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Research Theapy, 2(3), 18. doi: /alzrt42alzrt42 [pii] Geurts, A. C., Ribbers, G. M., Knoop, J. A., & van Limbeek, J. (1996). Identification of static and dynamic postural instability following traumatic brain injury. Archives of Physiology and Medicine Rehabilitation, 77(7), doi: S (96) [pii] Giza, C. C., & Hovda, D. A. (2001). The Neurometabolic Cascade of Concussion. Journal of Athletic Training, 36(3), Guskiewicz, K. M. (2001). Postural Stability Assessment Following Concussion: One Piece of the Puzzle. Clinical Journal of Sport Medicine, 11(3), Guskiewicz, K. M. (2003). Assessment of postural stability following sport-related concussion. Current Sports Medicine Reports, 2(1), Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W.,... Kelly, J. P. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. Journal of the American Medical Association, 290(19), doi: /jama /19/2549 [pii] Howell, D., Osternig, L., Van Donkelaar, P., Mayr, U., & Chou, L.-S. (2013). Effects of concussion on attention and executive function in adolescents. Medicine and Science in Sports and Exercise, 45(6), Howell, D. R., Osternig, L. R., & Chou, L.-S. (2013). Dual-Task Effect on Gait Balance Control in Adolescents With Concussion. Archives of Physical Medicine and Rehabilitation, 94(8), doi: Johnston, I. A. (1984). Muscles and movement: muscles, reflexes, and locomotion. Science, 226(4680), doi: 226/4680/1308 [pii] /science

42 Kuo, A. D., Donelan, J. M., & Ruina, A. (2005). Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions. Exercise and Sport Sciences Reviews, 33(2), Martini, D. N., Sabin, M. J., DePesa, S. A., Leal, E. W., Negrete, T. N., Sosnoff, J. J., & Broglio, S. P. (2011). The Chronic Effects of Concussion on Gait. Archives of Physical Medicine and Rehabilitation, 92(4), doi: McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport - the Third International Conference on Concussion in Sport held in Zurich, November Physiology and Sports Medicine, 37(2), doi: /psm McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvořák, J., Echemendia, R. J.,... Turner, M. (2013). Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November British Journal of Sports Medicine, 47(5), doi: /bjsports McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E.,... Stern, R. A. (2009). Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), doi: /NEN.0b013e3181a9d503 McKee, A. C., Gavett, B. E., Stern, R. A., Nowinski, C. J., Cantu, R. C., Kowall, N. W.,... Budson, A. E. (2010). TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. Journal of Neuropathology and Experimental Neurology, 69(9), doi: /NEN.0b013e3181ee7d85 Minetti, A. E., Capelli, C., Zamparo, P., di Prampero, P. E., & Saibene, F. (1995). Effects of stride frequency on mechanical power and energy expenditure of walking. Medicine Science Sports Exercise, 27(8), Moser, R. S., Iverson, G. L., Echemendia, R. J., Lovell, M. R., Schatz, P., Webbe, F. M.,... Barth, J. T. (2007). Neuropsychological evaluation in the diagnosis and management of sports-related concussion. Archives of Clinical Neuropsychology, 22(8), doi: Murray, N. G., Ambati, V. N. P., Contreras, M. M., Salvatore, A. P., & Reed-Jones, R. J. (2014). Assessment of oculomotor control and balance post-concussion: A preliminary study for a novel approach to concussion management. Brain Injury, 28(4), doi: doi: / Omalu, B. I., DeKosky, S. T., Hamilton, R. L., Minster, R. L., Kamboh, M. I., Shakir, A. M., & Wecht, C. H. (2006). Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery, 59(5), ; discussion doi: /01.NEU [pii] Omalu, B. I., DeKosky, S. T., Minster, R. L., Kamboh, M. I., Hamilton, R. L., & Wecht, C. H. (2005). Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 57(1), ; discussion Ortega, J. D., & Farley, C. T. (2007). Individual limb work does not explain the greater metabolic cost of walking in elderly adults (Vol. 102). 35

Impaired Executive Function in Concussed Athletes

Impaired Executive Function in Concussed Athletes Ursinus College Digital Commons @ Ursinus College Neuroscience Summer Fellows Student Research 7-22-2015 Impaired Executive Function in Concussed Athletes Marisa Gretz Ursinus College, magretz@ursinus.edu

More information

Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees. Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D.

Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees. Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D. Neuromechanical Redundancy for Gait Compensation in Transtibial Amputees Kinsey Herrin, B.S. Advisor: Young-Hui Chang, Ph.D. 1 Transtibial Amputees Limb length Ankle Normal joint mobility Direct muscular

More information

mtbi Concussion, Post Concussion Syndrome and mtbi

mtbi Concussion, Post Concussion Syndrome and mtbi mtbi Concussion, Post Concussion Syndrome and mtbi Barry Willer PhD bswiller@buffalo.edu Immediate Symptoms Secondary Symptoms Cognitive Issues Ideally with Baseline Understanding Persistent Symptoms

More information

IF IN DOUBT, SIT THEM OUT.

IF IN DOUBT, SIT THEM OUT. IF IN DOUBT, SIT THEM OUT. Scottish Sports Concussion Guidance: Grassroots sport and general public Modified from World Rugby s Guidelines on Concussion Management for the General Public Introduction The

More information

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994 Gait Cycle: The period of time from one event (usually initial contact) of one foot to the following occurrence of the same event with the same foot. Abbreviated GC. Gait Stride: The distance from initial

More information

Michael J. Sileo, MD. Orthopedic Associates of Long Island (OALI)

Michael J. Sileo, MD. Orthopedic Associates of Long Island (OALI) Michael J. Sileo, MD Orthopedic Associates of Long Island (OALI) ! Jeremy Thode, AD! Center Moriches BOE ! Safety of our student-athletes is our Number 1 concern! NYS is now forcing our hand " Referees

More information

LIBERTY UNIVERSITY CONCUSSION PROTOCOL Page 1

LIBERTY UNIVERSITY CONCUSSION PROTOCOL Page 1 Liberty University Sports Medicine Concussion / Traumatic Brain Injury Protocol The Liberty University Sports Medicine Department recognizes that head injuries, particularly sportinduced concussions, pose

More information

How to increase Bat Speed & Bat Quickness / Acceleration

How to increase Bat Speed & Bat Quickness / Acceleration How to increase Bat Speed & Bat Quickness / Acceleration What is Bat Speed? Bat Speed: Bat speed is measured in miles per hour (MPH) and considers only the highest speed of the bat head (peak velocity)

More information

The Use of the Lokomat System in Clinical Research

The Use of the Lokomat System in Clinical Research International Neurorehabilitation Symposium February 12, 2009 The Use of the Lokomat System in Clinical Research Keith Tansey, MD, PhD Director, Spinal Cord Injury Research Crawford Research Institute,

More information

What is a concussion? What are the symptoms of a concussion? What happens to the brain during a concussion?

What is a concussion? What are the symptoms of a concussion? What happens to the brain during a concussion? What is a concussion? The working definition used today for concussion is a complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces (developed by the consensus

More information

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) Normative Data

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) Normative Data Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) Normative Data Version 2.0 Only 2003 Grant L. Iverson, Ph.D. University of British Columbia & Riverview Hospital Mark R. Lovell, Ph.D.

More information

Original research papers

Original research papers Pol. J. Sport Tourism, 9, 8-7 DOI:.78/v97---z 8 Original research papers THE IMPACT OF ANKLE JOINT STIFFENING BY SKI EQUIPMENT ON MAINTENANCE OF BODY BALANCE The impact of ski equipment on body balance

More information

Neuropsychological Assessment in Sports-Related Concussion: Part of a Complex Puzzle

Neuropsychological Assessment in Sports-Related Concussion: Part of a Complex Puzzle Neuropsychological Assessment in Sports-Related Concussion: Part of a Complex Puzzle Jillian Schuh, PhD 1, 2, John Oestreicher, PhD 1, & Linda Steffen, PsyD 1 1 Catalpa Health 2 Department of Neurology,

More information

Traumatic brain injury (TBI)

Traumatic brain injury (TBI) Traumatic brain injury (TBI) A topic in the Alzheimer s Association series on understanding dementia. About dementia Dementia is a condition in which a person has significant difficulty with daily functioning

More information

Skate Australia Concussion Guidelines

Skate Australia Concussion Guidelines Skate Australia Concussion Guidelines Introduction Forces strong enough to cause concussion are common in all roller sports. Even though helmets are worn in most disciplines, the risk of concussion is

More information

THE MANAGEMENT OF CONCUSSION IN AUSTRALIAN FOOTBALL

THE MANAGEMENT OF CONCUSSION IN AUSTRALIAN FOOTBALL THE MANAGEMENT OF CONCUSSION IN AUSTRALIAN FOOTBALL AFL Research board AFL MEDICAL OFFICERS' ASSOCIATION THE MANAGEMENT OF CONCUSSION IN AUSTRALIAN FOOTBALL This document has been published by the AFL

More information

NFL Head, Neck and Spine Committee s Protocols Regarding Diagnosis and Management of Concussion

NFL Head, Neck and Spine Committee s Protocols Regarding Diagnosis and Management of Concussion NFL Head, Neck and Spine Committee s Protocols Regarding Diagnosis and Management of Concussion Introduction Concussion is an important injury for the professional football player, and the diagnosis, prevention,

More information

Post-Concussion Syndrome

Post-Concussion Syndrome Post-Concussion Syndrome Anatomy of the injury: The brain is a soft delicate structure encased in our skull, which protects it from external damage. It is suspended within the skull in a liquid called

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

Revised 10-4-10 Bethel Park s Sports Concussion and Closed Head Injury Protocol and Procedures for Student-Athletes

Revised 10-4-10 Bethel Park s Sports Concussion and Closed Head Injury Protocol and Procedures for Student-Athletes Bethel Park s Sports Concussion and Closed Head Injury Protocol and Procedures for Student-Athletes If the Certified Athletic Trainer of Bethel Park School District has a concern that a student-athlete

More information

Concussion Rates per Sport

Concussion Rates per Sport PSE4U UNIT 1: SPORTS-RELATED HEAD INJURIES DUE DATE: LATE PENALTY (-5% PER WEEK): K/U T/I C A FINAL MARK 10 10 10 32 62 PART A: BRAINSTORMING [T/I /10] [C /10] 1.) Construct a mind-map: research the amount

More information

INTERNATIONAL RUGBY BOARD Putting players first

INTERNATIONAL RUGBY BOARD Putting players first Summary Principles Concussion must be taken extremely seriously to safeguard the long term welfare of Players. Players suspected of having concussion must be removed from play and must not resume play

More information

National Football League Head, Neck and Spine Committee s Protocols Regarding Return to Participation Following Concussion

National Football League Head, Neck and Spine Committee s Protocols Regarding Return to Participation Following Concussion National Football League Head, Neck and Spine Committee s Protocols Regarding Return to Participation Following Concussion Introduction The management of concussion is important to football players, healthcare

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Highlights from the 2008 Consensus Statement on Concussion in Sport

Highlights from the 2008 Consensus Statement on Concussion in Sport Highlights from the 2008 Consensus Statement on Concussion in Sport The NFHS Sports Medicine Advisory Committee (SMAC) regularly discusses and reviews the latest medical evidence regarding sports-related

More information

BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008

BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008 BESTest Balance Evaluation Systems Test Fay Horak PhD Copyright 2008 TEST NUMBER/SUBJECT CODE DATE EXAMINER NAME EXAMINER Instructions for BESTest 1. Subjects should be tested with flat heeled shoes or

More information

THE RELATIONSHIP BETWEEN POSTURE AND HEALTH

THE RELATIONSHIP BETWEEN POSTURE AND HEALTH THE RELATIONSHIP BETWEEN POSTURE AND HEALTH Roger Sperry, Ph.D. (Nobel Prize in Physiology or Medicine 1981) discovered that 90% of the brain's activity is used to balance your body within the gravitational

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

Concussion: Sideline Assessment

Concussion: Sideline Assessment Concussion: Sideline Assessment Damion A. Martins, MD Director, Orthopedics & Sports Medicine Program Director, Sports Medicine Fellowship - Atlantic Health System Director of Internal Medicine - New York

More information

Review of Last Lecture - TE

Review of Last Lecture - TE Gait Review of Last Lecture - TE Interventions to increase flexibility Generating muscle force depends on Open chain vs. closed chain PNF Balance strategies Benefits of aerobic exercise Gait An individual

More information

Defined as a complex process affecting the brain, induced by traumatic biomechanical forces.

Defined as a complex process affecting the brain, induced by traumatic biomechanical forces. Concussion Protocol Defined as a complex process affecting the brain, induced by traumatic biomechanical forces. May be caused by a direct blow to the head, face, neck or elsewhere on the body with force

More information

Validity of ImPACT 1. Running Head: VALIDITY OF ImPACT. Validity of ImPACT for Measuring Attention & Processing Speed

Validity of ImPACT 1. Running Head: VALIDITY OF ImPACT. Validity of ImPACT for Measuring Attention & Processing Speed Validity of ImPACT 1 Running Head: VALIDITY OF ImPACT Validity of ImPACT for Measuring Attention & Processing Speed Following Sports-Related Concussion Grant L. Iverson, Ph.D. University of British Columbia

More information

THE JAVELIN THROW AND THE ROLE OF SPEED IN THROWING EVENTS

THE JAVELIN THROW AND THE ROLE OF SPEED IN THROWING EVENTS THE JAVELIN THROW AND THE ROLE OF SPEED IN THROWING EVENTS By Peter Ogiolda German coach Peter Ogiolda presents an analysis of the different phases of the javelin technique and examines the importance

More information

First Year. PT7040- Clinical Skills and Examination II

First Year. PT7040- Clinical Skills and Examination II First Year Summer PT7010 Anatomical Dissection for Physical Therapists This is a dissection-based, radiographic anatomical study of the spine, lower extremity, and upper extremity as related to physical

More information

Traumatic Brain Injury in Young Athletes. Andrea Halliday, M.D. Oregon Neurosurgery Specialists

Traumatic Brain Injury in Young Athletes. Andrea Halliday, M.D. Oregon Neurosurgery Specialists Traumatic Brain Injury in Young Athletes Andrea Halliday, M.D. Oregon Neurosurgery Specialists Variability in defining concussion Lack of reliable biomarkers for concussions Reliance on subjective system

More information

Concussion Guidance for the General Public

Concussion Guidance for the General Public CONCUSSION FACTS A concussion is a brain injury. All concussions are serious. Concussions can occur without loss of consciousness. All athletes with any symptoms following a head injury must be removed

More information

OPTIMAL CORE TRAINING FOR FUNCTIONAL GAINS AND PEAK PERFORMANCE: CXWORX

OPTIMAL CORE TRAINING FOR FUNCTIONAL GAINS AND PEAK PERFORMANCE: CXWORX OPTIMAL CORE TRAINING FOR FUNCTIONAL GAINS AND PEAK PERFORMANCE: CXWORX Jinger S. Gottschall 1, Jackie Mills 2, and Bryce Hastings 2 1 The Pennsylvania State University, University Park, USA 2 Les Mills

More information

Objectives. Definition. Epidemiology. The journey of an athlete

Objectives. Definition. Epidemiology. The journey of an athlete Sport Concussion Chantel Debert MD MSc FRCPC CSCN Physical Medicine and Rehabilitation Department of Clinical Neurosciences Hotchkiss Brain Institute, University of Calgary Objectives Definition Epidemiology

More information

Recovering from a Mild Traumatic Brain Injury (MTBI)

Recovering from a Mild Traumatic Brain Injury (MTBI) Recovering from a Mild Traumatic Brain Injury (MTBI) What happened? You have a Mild Traumatic Brain Injury (MTBI), which is a very common injury. Some common ways people acquire this type of injury are

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

ABOUT THE FUNCTIONAL FITNESS TEST: ABOUT THE AUTHORS:

ABOUT THE FUNCTIONAL FITNESS TEST: ABOUT THE AUTHORS: The Interactive Health Partner Wellness Program addresses fall prevention with assessments and outcomes tracking in an easy to use, comprehensive online system. Website: www.interactivehealthpartner.com

More information

Head Injury / Concussion Education. Faculty and Staff

Head Injury / Concussion Education. Faculty and Staff Head Injury / Concussion Education Faculty and Staff MA 105 CMR 201.000 Massachusetts law requires that one educational session per year will be provided for teaching staff regarding the signs and symptoms

More information

Concussion Management Program for Red Bank Catholic High School Athletic Department

Concussion Management Program for Red Bank Catholic High School Athletic Department Concussion Management Program for Red Bank Catholic High School Athletic Department *This document should be used as a framework for a successful concussion management program but is not intended to replace

More information

Prevention & Management of ACL Injury. Ian Horsley PhD, MCSP Lee Herrington PhD, MCSP

Prevention & Management of ACL Injury. Ian Horsley PhD, MCSP Lee Herrington PhD, MCSP Prevention & Management of ACL Injury Ian Horsley PhD, MCSP Lee Herrington PhD, MCSP ACL injury ACL injury 30/100,000, 40% sports injuries (NHS) Limited statistics in UK related to sport Rugby Union 2002-2004

More information

Footwear Science Publication details, including instructions for authors and subscription information: http://www.tandfonline.

Footwear Science Publication details, including instructions for authors and subscription information: http://www.tandfonline. This article was downloaded by: [University of Nebraska at Omaha], [Nick Stergiou] On: 20 April 2012, At: 12:35 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

The Core of the Workout Should Be on the Ball

The Core of the Workout Should Be on the Ball The Core of the Workout Should Be on the Ball Paul J. Goodman, MS, CSCS New technology and high priced machines and equipment that claim to aid in enhancing performance have inundated the market in recent

More information

Coaches Course Syllabus HB 2038 ~ Natasha s Law

Coaches Course Syllabus HB 2038 ~ Natasha s Law Coaches Course Syllabus HB 2038 ~ Natasha s Law Introduction: This syllabus contains an outline of the required elements for the two hour coaches concussion education training mandated by HB 2038 (Sec.

More information

Sport Concussion in New Zealand ACC National Guidelines

Sport Concussion in New Zealand ACC National Guidelines Sport Concussion in New Zealand ACC National Guidelines This guideline document has been produced to inform National Sports Organisations (NSOs), and recreation, education and health sectors in their development

More information

ANKLE STRENGTHENING INTRODUCTION EXERCISES SAFETY

ANKLE STRENGTHENING INTRODUCTION EXERCISES SAFETY ANKLE STRENGTHENING INTRODUCTION Welcome to your Ankle Strengthening exercise program. The exercises in the program are designed to improve your ankle strength, fitness, balance and dynamic control. The

More information

Case Studies Updated 10.24.11

Case Studies Updated 10.24.11 S O L U T I O N S Case Studies Updated 10.24.11 Hill DT Solutions Cervical Decompression Case Study An 18-year-old male involved in a motor vehicle accident in which his SUV was totaled suffering from

More information

LEVEL I SKATING TECHNICAL. September 2007 Page 1

LEVEL I SKATING TECHNICAL. September 2007 Page 1 SKATING September 2007 Page 1 SKATING SKILLS The game of Ice Hockey is a fast-paced, complex, team sport, which demands quick thinking, fast reactions and special athletic skills. Skating is the most important

More information

2014 Neurologic Physical Therapy Professional Education Consortium Webinar Course Descriptions and Objectives

2014 Neurologic Physical Therapy Professional Education Consortium Webinar Course Descriptions and Objectives Descriptions and Neuroplasticity Health care providers are facing greater time restrictions to render services to the individual with neurological dysfunction. However, the scientific community has recognized

More information

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Mechanical terminology The three directions in which forces are applied to human tissues are compression, tension,

More information

Dynamics of Vertical Jumps

Dynamics of Vertical Jumps Dr Stelios G. Psycharakis Dynamics of Vertical Jumps School of Life, Sport & Social Sciences, Edinburgh Napier University, Edinburgh, UK Introduction A vertical jump is a movement that is used in a plethora

More information

4 Energy transformations in the pole vault

4 Energy transformations in the pole vault 358 Chapter IV. Elasticity 4 Energy transformations in the pole vault Abstract by N.P. Linthorne Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge,

More information

Kinesiology Graduate Course Descriptions

Kinesiology Graduate Course Descriptions Kinesiology Graduate Course Descriptions KIN 601 History of Exercise and Sport Science 3 credits Historical concepts, systems, patterns, and traditions that have influenced American physical activity and

More information

Montreal Cognitive Assessment (MoCA) as Screening tool for cognitive impairment in mtbi.

Montreal Cognitive Assessment (MoCA) as Screening tool for cognitive impairment in mtbi. Montreal Cognitive Assessment (MoCA) as Screening tool for cognitive impairment in mtbi. Suresh Kumar, M.D. AUTHOR Director of: Neurology & Headaches Center Inc. Neurocognitve &TBI Rehabilitation Center

More information

12. Physical Therapy (PT)

12. Physical Therapy (PT) 1 2. P H Y S I C A L T H E R A P Y ( P T ) 12. Physical Therapy (PT) Clinical presentation Interventions Precautions Activity guidelines Swimming Generally, physical therapy (PT) promotes health with a

More information

Closed Automobile Insurance Third Party Liability Bodily Injury Claim Study in Ontario

Closed Automobile Insurance Third Party Liability Bodily Injury Claim Study in Ontario Page 1 Closed Automobile Insurance Third Party Liability Bodily Injury Claim Study in Ontario Injury Descriptions Developed from Newfoundland claim study injury definitions No injury Death Psychological

More information

1 REVISOR 5223.0070. (4) Pain associated with rigidity (loss of motion or postural abnormality) or

1 REVISOR 5223.0070. (4) Pain associated with rigidity (loss of motion or postural abnormality) or 1 REVISOR 5223.0070 5223.0070 MUSCULOSKELETAL SCHEDULE; BACK. Subpart 1. Lumbar spine. The spine rating is inclusive of leg symptoms except for gross motor weakness, bladder or bowel dysfunction, or sexual

More information

Gait. Maturation of Gait Beginning ambulation ( Infant s gait ) Upper Limb. Lower Limb

Gait. Maturation of Gait Beginning ambulation ( Infant s gait ) Upper Limb. Lower Limb Gait Terminology Gait Cycle : from foot strike to foot strike Gait Phase : stance (60%) : swing (40%) Velocity : horizontal speed along progression Cadence : no. of steps per unit time Step length : distance

More information

Contact your Doctor or Nurse for more information.

Contact your Doctor or Nurse for more information. A spinal cord injury is damage to your spinal cord that affects your movement, feeling, or the way your organs work. The injury can happen by cutting, stretching, or swelling of the spinal cord. Injury

More information

Current Concepts of Low Back Pain. Terry L. Grindstaff, PhD, PT, ATC, SCS, CSCS

Current Concepts of Low Back Pain. Terry L. Grindstaff, PhD, PT, ATC, SCS, CSCS Current Concepts of Low Back Pain Terry L. Grindstaff, PhD, PT, ATC, SCS, CSCS 28% population reports LBP in past 3 months (CDC 2010) 60% recurrence rate (Turner et al, 1992) Low Back Pain Low Back Pain

More information

Biomarkers and treatments for mild traumatic brain injury: from bench to fieldside

Biomarkers and treatments for mild traumatic brain injury: from bench to fieldside Biomarkers and treatments for mild traumatic brain injury: from bench to fieldside Sandy R Shultz, PhD Department of Medicine The University of Melbourne Australian Rules Football Rugby Findings from

More information

CONDITIONING PROGRAM

CONDITIONING PROGRAM CONDITIONING PROGRAM Speed and Agility are two major components of sport that need to be trained just like strength, size, and power are developed in the weight room. It is true that no matter what your

More information

DEVELOPMENT OF 3D GAIT ANALYZER SOFTWARE BASED ON MARKER POSITION DATA

DEVELOPMENT OF 3D GAIT ANALYZER SOFTWARE BASED ON MARKER POSITION DATA Invited Paper DEVELOPMENT OF 3D GAIT ANALYZER SOFTWARE BASED ON MARKER POSITION DATA Sandro Mihradi 1, Agri I. Henda 1, Tatacipta Dirgantara 2, Andi I. Mahyuddin 1 1 Mechanical Design Research Group, Mechanical

More information

The Human Balance System

The Human Balance System PO BOX 13305 PORTLAND, OR 97213 FAX: (503) 229-8064 (800) 837-8428 INFO@VESTIBULAR.ORG WWW.VESTIBULAR.ORG The Human Balance System A Complex Coordination of Central and Peripheral Systems By the Vestibular

More information

Neural Plasticity and Locomotor Recovery: Robotics in Research

Neural Plasticity and Locomotor Recovery: Robotics in Research International Neurorehabilitation Symposium February 12, 2009 Neural Plasticity and Locomotor Recovery: Robotics in Research Keith Tansey, MD, PhD Director, Spinal Cord Injury Research Crawford Research

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

CONCUSSION AND HEAD INJURY AWARENESS POLICY TRAINING C I T Y O F S O U T H J O R D A N 9 / 2 0 1 1

CONCUSSION AND HEAD INJURY AWARENESS POLICY TRAINING C I T Y O F S O U T H J O R D A N 9 / 2 0 1 1 CONCUSSION AND HEAD INJURY AWARENESS POLICY TRAINING C I T Y O F S O U T H J O R D A N 9 / 2 0 1 1 UTAH STATE LEGISLATION 2011 General Legislative Session House Bill 204: Enacts the Protection of Athletes

More information

Handicap after acute whiplash injury A 1-year prospective study of risk factors

Handicap after acute whiplash injury A 1-year prospective study of risk factors 1 Handicap after acute whiplash injury A 1-year prospective study of risk factors Neurology 2001;56:1637-1643 (June 26, 2001) Helge Kasch, MD, PhD; Flemming W Bach, MD, PhD; Troels S Jensen, MD, PhD From

More information

Concussion in Athletes: Identification, Evaluation and Educational Considerations Mary Ann Dugan, MSN, CRNP, FNP-BC

Concussion in Athletes: Identification, Evaluation and Educational Considerations Mary Ann Dugan, MSN, CRNP, FNP-BC Concussion in Athletes: Identification, Evaluation and Educational Considerations Mary Ann Dugan, MSN, CRNP, FNP-BC Pediatric Nursing 30 th Annual Conference Saturday, August 2, 2014 Objectives: 1. Definition

More information

League of Denial Video guide and questions I

League of Denial Video guide and questions I League of Denial Video guide and questions I Part I Mike Webster 0:00-21:37 minutes Vocabulary concussion - a stunning, damaging, or shattering effect from a hard blow; especially : a jarring injury of

More information

Functions of the Brain

Functions of the Brain Objectives 0 Participants will be able to identify 4 characteristics of a healthy brain. 0 Participants will be able to state the functions of the brain. 0 Participants will be able to identify 3 types

More information

Integrated Neuropsychological Assessment

Integrated Neuropsychological Assessment Integrated Neuropsychological Assessment Dr. Diana Velikonja C.Psych Neuropsychology, Hamilton Health Sciences, ABI Program Assistant Professor, Psychiatry and Behavioural Neurosciences Faculty of Health

More information

Athletics (Throwing) Questions Javelin, Shot Put, Hammer, Discus

Athletics (Throwing) Questions Javelin, Shot Put, Hammer, Discus Athletics (Throwing) Questions Javelin, Shot Put, Hammer, Discus Athletics is a sport that contains a number of different disciplines. Some athletes concentrate on one particular discipline while others

More information

Attention & Memory Deficits in TBI Patients. An Overview

Attention & Memory Deficits in TBI Patients. An Overview Attention & Memory Deficits in TBI Patients An Overview References Chan, R., et.al.. (2003). Are there sub-types of attentional deficits in patients with persisting post- concussive symptoms? A cluster

More information

IMGPT: Exercise After a Heart Attack 610 944 8140 805 N. RICHMOND ST (Located next to Fleetwood HS) Why is exercise important following a heart

IMGPT: Exercise After a Heart Attack 610 944 8140 805 N. RICHMOND ST (Located next to Fleetwood HS) Why is exercise important following a heart Why is exercise important following a heart attack? Slow progression back into daily activity is important to strengthen the heart muscle and return blood flow to normal. By adding aerobic exercises, your

More information

Rehabilitation and Private Pay Applications TRAZER Based Solutions

Rehabilitation and Private Pay Applications TRAZER Based Solutions TRAZER Based Solutions This overview provides the background to assist rehabilitation professionals in evaluating how TRAZER technology can be used to enhance patient care and expand their business opportunities.

More information

Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research. Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD

Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research. Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD A Gender Comparison of Lower Extremity Landing Biomechanics Utilizing Different Tasks: Implications in ACL Injury Research Adam Hernandez Erik Swartz, PhD ATC Dain LaRoche, PhD Anterior Cruciate Ligament

More information

THE SPEED PROGRAM THE following is A list Of POinTS THAT PRODucE RESulTS in SPEED improvement: CHANGE THE GAME

THE SPEED PROGRAM THE following is A list Of POinTS THAT PRODucE RESulTS in SPEED improvement: CHANGE THE GAME THE SPEED PROGRAM Remember, perfect technique is the #1 emphasis with the BFS Speed Program. Faster times will follow perfect technique. The Speed Program is as follows: 1. Start with a Sprint Learning

More information

Passive Range of Motion Exercises

Passive Range of Motion Exercises Exercise and ALS The physical or occupational therapist will make recommendations for exercise based upon each patient s specific needs and abilities. Strengthening exercises are not generally recommended

More information

Dr. Enas Elsayed. Brunnstrom Approach

Dr. Enas Elsayed. Brunnstrom Approach Brunnstrom Approach Learning Objectives: By the end of this lab, the student will be able to: 1. Demonstrate different reflexes including stimulus and muscle tone response. 2. Demonstrate how to evoke

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Concussion/MTBI Certification Series. Featuring: Frederick R Carrick, DC, PhD Distinguished Professor of Neurology, Life University

Concussion/MTBI Certification Series. Featuring: Frederick R Carrick, DC, PhD Distinguished Professor of Neurology, Life University Concussion/MTBI Certification Series Featuring: Frederick R Carrick, DC, PhD Distinguished Professor of Neurology, Life University Please note that spaces are limited for this specialty certification program.

More information

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics

KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics KIN 335 - Biomechanics LAB: Ground Reaction Forces - Linear Kinetics Reading Assignment: 1) Luhtanen, P. and Komi, P.V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Strength and Conditioning Program

Strength and Conditioning Program Strength and Conditioning Program Guidelines All speed work must be performed when the body is fully rested. Proper sprinting techniques must be taught and mastered by the player. Adequate rest must follow

More information

The type of cancer Your specific treatment Your pre training levels before diagnose (your current strength and fitness levels)

The type of cancer Your specific treatment Your pre training levels before diagnose (your current strength and fitness levels) Exercise and Breast Cancer: Things you can do! Cancer within the fire service is one of the most dangerous threats to our firefighter s health & wellness. According to the latest studies firefighters are

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

W i f(x i ) x. i=1. f(x i ) x = i=1

W i f(x i ) x. i=1. f(x i ) x = i=1 Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

More information

NEW ZEALAND RUGBY LEAGUE CONCUSSION / HEAD INJURY POLICY

NEW ZEALAND RUGBY LEAGUE CONCUSSION / HEAD INJURY POLICY NEW ZEALAND RUGBY LEAGUE CONCUSSION / HEAD INJURY POLICY February 2015 New Zealand Rugby League Medical panel The aim of the policy is to provide information on concussion to all those involved in rugby

More information

Strength Training for the Runner

Strength Training for the Runner Strength Training for the Runner Strength Training for the Runner What? The goal of resistance training for runners is not necessarily adding muscle mass but 1. improving muscular strength, 2. improving

More information

A compressive dressing that you apply around your ankle, and

A compressive dressing that you apply around your ankle, and Ankle Injuries & Treatment The easiest way to remember this is: R.I.C.E. Each of these letters stands for: Rest. Rest your ankle. Do not place weight on it if it is very tender. Avoid walking long distances.

More information

Concussion in Children Lecture Summary Sports Medicine Australia

Concussion in Children Lecture Summary Sports Medicine Australia Concussion in Children Lecture Summary Sports Medicine Australia Nicole Pates BSc (Physiotherapy) Postgraduate Certificate in Physiotherapy (Paediatrics) A recent survey of parents of school aged children

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System I. Organization of the Nervous System Objectives: List the general functions of the nervous system Explain the structural and functional classifications of the nervous system

More information

Speed is one of the most sought

Speed is one of the most sought Off-Ice Speed and Quickness for Ice Hockey Shane Domer, MEd, CSCS, NSCA-CPT Speed is one of the most sought after characteristics in athletics. The athlete that possesses both speed and quickness will

More information

Four-week specific training to increase speed, power and agility

Four-week specific training to increase speed, power and agility Four-week specific training to increase speed, power and agility Adam King B.S., David Buchanan RKT, Kevin Barcal B.S. Completed at ProSport Training and Rehab., Inc. Rolling Meadows, IL www.prosporttraining.com

More information

Sports Neuropsychology: Definition, Qualifications, and Training Guidelines

Sports Neuropsychology: Definition, Qualifications, and Training Guidelines Sports Neuropsychology: Definition, Qualifications, and Training Guidelines An Official Position of the Sports Neuropsychology Society Preamble Clinical neuropsychology has a long history, and clinical

More information