Network Security. Chapter 6 Random Number Generation. Prof. Dr.-Ing. Georg Carle
|
|
|
- Verity Baker
- 10 years ago
- Views:
Transcription
1 Network Security Chapter 6 Random Number Generation Prof. Dr.-Ing. Georg Carle Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen [email protected] Network Security, WS 2003/ Network Security Chapter 6 Random Number Generation Network Security, WS 2003/04 6.2
2 Tasks of Key Management (1) Generation: It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation process (see below) Otherwise, an attacker might reproduce the key generation process and easily find the key used to secure a specific communication Distribution: Distribution of some initial keys usually has to be performed manually / out of band Session key distribution is generally performed during an authentication exchange Examples: Diffie-Hellman, Otway-Rees, Kerberos, X.509 Storage: Keys, especially authentication keys, should be securely stored: either encrypted with a hard-to-guess pass-phrase, or better in a secure device like a smart-card Network Security, WS 2003/ Tasks of Key Management (2) Recovery: If a key has been lost (e.g. defect smart-card, floppy, accidentally erased) it should be possible to recover it, in order to to avoid loss of data Key recovery is not to be mixed up with key escrow (see below): If I can get my key back it s key recovery, if you can get my key back it s key escrow... :o) Revocation: If a key has been compromised, it should be possible to revoke that key, so that it can no longer be misused (cf. X.509) Destruction: Keys that are no longer used (e.g. old session keys) should be safely destroyed (cf. media security in lecture 1) Escrow: Mechanisms and architectures that shall allow government agencies (and only them) to obtain session keys in order to be able to eavesdrop on communications / to read stored data for law enforcement purposes Network Security, WS 2003/04 6.4
3 Random and Pseudo-Random Number Generation (1) A random bit generator is a device or algorithm, which outputs a sequence of statistically independent and unbiased binary digits. Remark: A random bit generator can be used to generate uniformly distributed random numbers, e.g. a random integer in the interval [0, n] can be obtained by generating a random bit sequence of length lg n + 1 and converting it into a number. If the resulting integer exceeds n it can be discarded and the process is repeated until an integer in the desired range has been generated. A pseudo-random bit generator (PRBG) is a deterministic algorithm which, given a truly random binary sequence of length k, outputs a binary sequence of length m >> k which appears to be random. The input to the PRBG is called the seed and the output is called a pseudo-random bit sequence. Network Security, WS 2003/ Random and Pseudo-Random Number Generation (2) Remarks: The output of a PRBG is not random, in fact the number of possible output sequences of length m is at most all small fraction 2 k / 2 m, as the PRBG produces always the same output sequence for one (fixed) seed The motivation for using a PRBG is that it might be too expensive to produce true random numbers of length m, e.g. by coin flipping, so just a smaller amount of random bits is produced and then a pseudo-random bit sequence is produced out of the k truly random bits In order to gain confidence in the randomness of a pseudo-random sequence, statistical tests are conducted on the produced sequences Example: A linear congruential generator produces a pseudo-random sequence of numbers y 1, y 2,... According to the linear recurrence y i = a y i-1 + b mod q with a, b, q being parameters characterizing the PRBG Unfortunately, this generator is predictable even when a, b and q are unknown, and should, therefore, not be used for cryptographic purposes Network Security, WS 2003/04 6.6
4 Random and Pseudo-Random Number Generation (3) Security requirements of PRBGs for use in cryptography: As a minimum security requirement the length k of the seed to a PRBG should be large enough to make brute-force search over all seeds infeasible for an attacker The output of a PRBG should be statistically indistinguishable from truly random sequences The output bits should be unpredictable for an attacker with limited resources, if he does not know the seed A PRBG is said to pass all polynomial-time statistical tests, if no polynomial-time algorithm can correctly distinguish between an output sequence of the generator and a truly random sequence of the same length with probability significantly greater than 0.5 Polynomial-time algorithm means, that the running time of the algorithm is bound by a polynomial in the length m of the sequence Network Security, WS 2003/ Random and Pseudo-Random Number Generation (4) A PRBG is said to pass the next-bit test, if there is no polynomial-time algorithm which, on input of the first m bits of an output sequence s, can predict the (m + 1) st bit s m+1 of the output sequence with probability significantly greater than 0.5 Theorem (universality of the next-bit test): A PRBG passes the next-bit test it passes all polynomial-time statistical tests For the proof, please see section 12.2 in [Sti95a] A PRBG that passes the next-bit test possibly under some plausible but unproved mathematical assumption such as the intractability of the factoring problem for large integers is called a cryptographically secure pseudo-random bit generator (CSPRBG) Network Security, WS 2003/04 6.8
5 Random Number Generation (1) Hardware-based random bit generators are based on physical phenomena, as: elapsed time between emission of particles during radioactive decay, thermal noise from a semiconductor diode or resistor, frequency instability of a free running oscillator, the amount a metal insulator semiconductor capacitor is charged during a fixed period of time, air turbulence within a sealed disk drive which causes random fluctuations in disk drive sector read latencies, and sound from a microphone or video input from a camera A hardware-based random bit generator should ideally be enclosed in some tamper-resistant device and thus shielded from possible attackers Network Security, WS 2003/ Random Number Generation (2) Software-based random bit generators, may be based upon processes as: the system clock, elapsed time between keystrokes or mouse movement, content of input- / output buffers user input, and operating system values such as system load and network statistics Ideally, multiple sources of randomness should be mixed, e.g. by concatenating their values and computing a cryptographic hash value for the combined value, in order to avoid that an attacker might guess the random value If, for example, only the system clock is used as a random source, than an attacker might guess random-numbers obtained from that source of randomness if he knows about when they were generated Network Security, WS 2003/
6 Random Number Generation (3) De-skewing: Consider a random generator that produces biased but uncorrelated bits, e.g. it produces 1 s with probability p 0.5 and 0 s with probability 1 - p, where p is unknown but fixed The following technique can be used to obtain a random sequence that is uncorrelated and unbiased: The output sequence of the generator is grouped into pairs of bits All pairs 00 and 11 are discarded For each pair 10 the unbiased generator produces a 1 and for each pair 01 it produces a 0 Another practical (although not provable) de-skewing technique is to pass sequences whose bits are correlated or biased through a cryptographic hash function such as MD-5 or SHA-1 Network Security, WS 2003/ Statistical Tests for Random Numbers The following tests allow to check, if a generated random or pseudorandom sequence inhibits certain statistical properties: Monobit Test: Are there equally many 1 s like 0 s? Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs? Poker Test: Are there equally many sequences n i of length q having the same value with q such that m / q 5 (2 q ) Runs Test: Are the numbers of runs (sequences containing only either 0 s or 1 s) of various lengths as expected for random numbers? Autocorrelation Test: Are there correlations between the sequence and (non-cyclic) shifted versions of it? Maurer s Universal Test: Can the sequence be compressed? The above descriptions just give the basic ideas of the tests. For a more detailed and mathematical treatment, please refer to sections and in [Men97a] Network Security, WS 2003/
7 Pseudo-Random Number Generation (1) There are a number of algorithms, that use cryptographic hash functions or encryption algorithms for generation of cryptographically secure pseudo random numbers Although these schemes can not be proven to be secure, they seem sufficient for most practical situations One such approach is the ANSI X9.17 generator: Input: a random and secret 64-bit seed s, integer m, and 3-DES key K Output: m pseudo-random 64-bit strings y 1, y 2,... Y m 1.) q = E(K, Date_Time) 2.) For i from 1 to m do 2.1) x i = E(K, (q s) 2.2) s = E(K, (x i q) 3.) Return(x 1, x 2,... x m ) This method is a U.S. Federal Information Processing Standard (FIPS) approved method for pseudo-randomly generating keys and initialization vectors for use with DES Network Security, WS 2003/ Secure Pseudo-Random Number Generation (1) The RSA-PRBG is a CSPRBG under the assumption that the RSA problem is intractable: Output: a pseudo-random bit sequence z 1, z 2,..., z k of length k 1.) Setup procedure: Generate two secret primes p, q suitable for use with RSA Compute n = p q and Φ = (p -1) (q -1) Select a random integer e such that 1 < e < Φ and gcd(e, Φ) = 1 2.) Select a random integer y 0 (the seed) such that y 0 [1, n] 3.) For i from 1 to k do 3.1) y i = (y i-1 ) e mod n 3.2) z i = the least significant bit of y i The efficiency of the generator can be slightly improved by taking the last j bits of every y i, with j = c lg(lg(n)) and c is a constant However, for a given bit-length m of n, a range of values for the constant c such that the algorithm still yields a CSPRBG has not yet been determined Network Security, WS 2003/
8 Secure Pseudo-Random Number Generation (2) The Blum-Blum-Shub-PRBG is a CSPRBG under the assumption that the integer factorization problem is intractable: Output: a pseudo-random bit sequence z 1, z 2,..., z k of length k 1.) Setup procedure: Generate two large secret and distinct primes p, q such that p, q are each congruent 3 modulo 4 and let n = p q 2.) Select a random integer s (the seed) such that s [1, n - 1] such that gcd(s, n) = 1 and let y 0 = s 2 mod n 3.) For i from 1 to k do 3.1) y i = (y i-1 ) 2 mod n 3.2) z i = the least significant bit of y i The efficiency of the generator can be improved using the same method as for the RSA generator with similar constraints on the constant c Network Security, WS 2003/
Network Security. Chapter 6 Random Number Generation
Network Security Chapter 6 Random Number Generation 1 Tasks of Key Management (1)! Generation:! It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation
Chair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics
Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
Authentication, digital signatures, PRNG
Multimedia Security Authentication, digital signatures, PRNG Mauro Barni University of Siena Beyond confidentiality Up to now, we have been concerned with protecting message content (i.e. confidentiality)
Security Analysis of DRBG Using HMAC in NIST SP 800-90
Security Analysis of DRBG Using MAC in NIST SP 800-90 Shoichi irose Graduate School of Engineering, University of Fukui hrs [email protected] Abstract. MAC DRBG is a deterministic random bit generator
CUNSHENG DING HKUST, Hong Kong. Computer Security. Computer Security. Cunsheng DING, HKUST COMP4631
Cunsheng DING, HKUST Lecture 08: Key Management for One-key Ciphers Topics of this Lecture 1. The generation and distribution of secret keys. 2. A key distribution protocol with a key distribution center.
CS 393 Network Security. Nasir Memon Polytechnic University Module 11 Secure Email
CS 393 Network Security Nasir Memon Polytechnic University Module 11 Secure Email Course Logistics HW 5 due Thursday Graded exams returned and discussed. Read Chapter 5 of text 4/2/02 Module 11 - Secure
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Introduction to Cryptography CS 355
Introduction to Cryptography CS 355 Lecture 30 Digital Signatures CS 355 Fall 2005 / Lecture 30 1 Announcements Wednesday s lecture cancelled Friday will be guest lecture by Prof. Cristina Nita- Rotaru
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Digital Signatures. Murat Kantarcioglu. Based on Prof. Li s Slides. Digital Signatures: The Problem
Digital Signatures Murat Kantarcioglu Based on Prof. Li s Slides Digital Signatures: The Problem Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies
Overview of Public-Key Cryptography
CS 361S Overview of Public-Key Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.1-6 slide 2 Public-Key Cryptography public key public key? private key Alice Bob Given: Everybody knows
ARCHIVED PUBLICATION
ARCHIVED PUBLICATION The attached publication, FIPS Publication 186-3 (dated June 2009), was superseded on July 19, 2013 and is provided here only for historical purposes. For the most current revision
MACs Message authentication and integrity. Table of contents
MACs Message authentication and integrity Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction MACs Constructing Secure MACs Secure communication and
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
Pulse Secure, LLC. January 9, 2015
Pulse Secure Network Connect Cryptographic Module Version 2.0 Non-Proprietary Security Policy Document Version 1.1 Pulse Secure, LLC. January 9, 2015 2015 by Pulse Secure, LLC. All rights reserved. May
Yale University Department of Computer Science
Yale University Department of Computer Science On Backtracking Resistance in Pseudorandom Bit Generation (preliminary version) Michael J. Fischer Michael S. Paterson Ewa Syta YALEU/DCS/TR-1466 October
EXAM questions for the course TTM4135 - Information Security May 2013. Part 1
EXAM questions for the course TTM4135 - Information Security May 2013 Part 1 This part consists of 5 questions all from one common topic. The number of maximal points for every correctly answered question
1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.
1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket
IT 4823 Information Security Administration Public Key Encryption Revisited April 5 Notice: This session is being recorded. Lecture slides prepared by Dr Lawrie Brown for Computer Security: Principles
Digital Signature Standard (DSS)
FIPS PUB 186-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard (DSS) CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY Information Technology Laboratory National Institute
Kleptography: The unbearable lightness of being mistrustful
Kleptography: The unbearable lightness of being mistrustful MOTI YUNG Google Inc. / Columbia University Joint work with Adam Young Background: -The time is the Mid 90 s: Cryptography is the big Equalizer
Algorithms and Parameters for Secure Electronic Signatures V.1.44 DRAFT May 4 th., 2001
Title: Algorithms and Parameters for Secure Electronic Signatures Source: This document is the outcome of the work of the Algorithms group (ALGO) working under the umbrella of - SG (European Electronic
Ch.9 Cryptography. The Graduate Center, CUNY.! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis
Ch.9 Cryptography The Graduate Center, CUNY! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis Why is Modern Cryptography part of a Complexity course? Short answer:! Because Modern Cryptography
Recommendation for Applications Using Approved Hash Algorithms
NIST Special Publication 800-107 Recommendation for Applications Using Approved Hash Algorithms Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February
Lecture 9 - Message Authentication Codes
Lecture 9 - Message Authentication Codes Boaz Barak March 1, 2010 Reading: Boneh-Shoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,
RSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
THE INTEL RANDOM NUMBER GENERATOR
THE INTEL RANDOM NUMBER GENERATOR, INC. WHITE PAPER PREPARED FOR INTEL CORPORATION Benjamin Jun and Paul Kocher April 22, 1999 Information in this white paper is provided without guarantee or warranty
SecureDoc Disk Encryption Cryptographic Engine
SecureDoc Disk Encryption Cryptographic Engine FIPS 140-2 Non-Proprietary Security Policy Abstract: This document specifies Security Policy enforced by SecureDoc Cryptographic Engine compliant with the
Authentication requirement Authentication function MAC Hash function Security of
UNIT 3 AUTHENTICATION Authentication requirement Authentication function MAC Hash function Security of hash function and MAC SHA HMAC CMAC Digital signature and authentication protocols DSS Slides Courtesy
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG
SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG Chung-Chih Li, Hema Sagar R. Kandati, Bo Sun Dept. of Computer Science, Lamar University, Beaumont, Texas, USA 409-880-8748,
SubmitedBy: Name Reg No Email Address. Mirza Kashif Abrar 790604-T079 kasmir07 (at) student.hh.se
SubmitedBy: Name Reg No Email Address Mirza Kashif Abrar 790604-T079 kasmir07 (at) student.hh.se Abid Hussain 780927-T039 abihus07 (at) student.hh.se Imran Ahmad Khan 770630-T053 imrakh07 (at) student.hh.se
Implementation and Comparison of Various Digital Signature Algorithms. -Nazia Sarang Boise State University
Implementation and Comparison of Various Digital Signature Algorithms -Nazia Sarang Boise State University What is a Digital Signature? A digital signature is used as a tool to authenticate the information
1 Message Authentication
Theoretical Foundations of Cryptography Lecture Georgia Tech, Spring 200 Message Authentication Message Authentication Instructor: Chris Peikert Scribe: Daniel Dadush We start with some simple questions
Public Key Cryptography. c Eli Biham - March 30, 2011 258 Public Key Cryptography
Public Key Cryptography c Eli Biham - March 30, 2011 258 Public Key Cryptography Key Exchange All the ciphers mentioned previously require keys known a-priori to all the users, before they can encrypt
Lecture 6 - Cryptography
Lecture 6 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07 Question 2 Setup: Assume you and I don t know anything about
Security Policy. Trapeze Networks
MP-422F Mobility Point Security Policy Trapeze Networks August 14, 2009 Copyright Trapeze Networks 2007. May be reproduced only in its original entirety [without revision]. TABLE OF CONTENTS 1. MODULE
Victor Shoup Avi Rubin. fshoup,[email protected]. Abstract
Session Key Distribution Using Smart Cards Victor Shoup Avi Rubin Bellcore, 445 South St., Morristown, NJ 07960 fshoup,[email protected] Abstract In this paper, we investigate a method by which smart
Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)
NIST Special Publication 800-56A Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised) Elaine Barker, Don Johnson, and Miles Smid C O M P U T E R S E C
Elements of Security
Elements of Security Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 15, 2015 Slideset 8: 1 Some Poetry Mary had a little key (It s all she could export)
Lecture 10: CPA Encryption, MACs, Hash Functions. 2 Recap of last lecture - PRGs for one time pads
CS 7880 Graduate Cryptography October 15, 2015 Lecture 10: CPA Encryption, MACs, Hash Functions Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Chosen plaintext attack model of security MACs
SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES
www.arpapress.com/volumes/vol8issue1/ijrras_8_1_10.pdf SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES Malek Jakob Kakish Amman Arab University, Department of Computer Information Systems, P.O.Box 2234,
CPE 462 VHDL: Simulation and Synthesis
CPE 462 VHDL: Simulation and Synthesis Topic #09 - a) Introduction to random numbers in hardware Fortuna was the goddess of fortune and personification of luck in Roman religion. She might bring good luck
Lecture 15 - Digital Signatures
Lecture 15 - Digital Signatures Boaz Barak March 29, 2010 Reading KL Book Chapter 12. Review Trapdoor permutations - easy to compute, hard to invert, easy to invert with trapdoor. RSA and Rabin signatures.
SNAPcell Security Policy Document Version 1.7. Snapshield
SNAPcell Security Policy Document Version 1.7 Snapshield July 12, 2005 Copyright Snapshield 2005. May be reproduced only in its original entirety [without revision]. TABLE OF CONTENTS 1. MODULE OVERVIEW...3
1 Signatures vs. MACs
CS 120/ E-177: Introduction to Cryptography Salil Vadhan and Alon Rosen Nov. 22, 2006 Lecture Notes 17: Digital Signatures Recommended Reading. Katz-Lindell 10 1 Signatures vs. MACs Digital signatures
Introduction. Digital Signature
Introduction Electronic transactions and activities taken place over Internet need to be protected against all kinds of interference, accidental or malicious. The general task of the information technology
Cryptographic Hash Functions Message Authentication Digital Signatures
Cryptographic Hash Functions Message Authentication Digital Signatures Abstract We will discuss Cryptographic hash functions Message authentication codes HMAC and CBC-MAC Digital signatures 2 Encryption/Decryption
Lecture 5 - CPA security, Pseudorandom functions
Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.
Fundamentals of Computer Security
Fundamentals of Computer Security Spring 2015 Radu Sion Intro Encryption Hash Functions A Message From Our Sponsors Fundamentals System/Network Security, crypto How do things work Why How to design secure
HASH CODE BASED SECURITY IN CLOUD COMPUTING
ABSTRACT HASH CODE BASED SECURITY IN CLOUD COMPUTING Kaleem Ur Rehman M.Tech student (CSE), College of Engineering, TMU Moradabad (India) The Hash functions describe as a phenomenon of information security
Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs
Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs Enes Pasalic University of Primorska Koper, 2014 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a
Cryptography and Network Security Digital Signature
Cryptography and Network Security Digital Signature Xiang-Yang Li Message Authentication Digital Signature Authentication Authentication requirements Authentication functions Mechanisms MAC: message authentication
IronKey Data Encryption Methods
IronKey Data Encryption Methods An IronKey Technical Brief November 2007 Information Depth:Technical Introduction IronKey is dedicated to building the world s most secure fl ash drives. Our dedication
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Eli Biham Dan Boneh Omer Reingold Abstract The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2
SECUDE AG. FinallySecure Enterprise Cryptographic Module. FIPS 140-2 Security Policy
SECUDE AG FinallySecure Enterprise Cryptographic Module (SW Version: 1.0) FIPS 140-2 Security Policy Document Version 2.4 04/22/2010 Copyright SECUDE AG, 2010. May be reproduced only in its original entirety
CRC Press has granted the following specific permissions for the electronic version of this book:
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: [email protected] Every day, millions of people
Archived NIST Technical Series Publication
Archived NIST Technical Series Publication The attached publication has been archived (withdrawn), and is provided solely for historical purposes. It may have been superseded by another publication (indicated
OFFICE OF THE CONTROLLER OF CERTIFICATION AUTHORITIES TECHNICAL REQUIREMENTS FOR AUDIT OF CERTIFICATION AUTHORITIES
OFFICE OF THE CONTROLLER OF CERTIFICATION AUTHORITIES TECHNICAL REQUIREMENTS FOR AUDIT OF CERTIFICATION AUTHORITIES Table of contents 1.0 SOFTWARE 1 2.0 HARDWARE 2 3.0 TECHNICAL COMPONENTS 2 3.1 KEY MANAGEMENT
CPSC 467b: Cryptography and Computer Security
CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 1 January 9, 2012 CPSC 467b, Lecture 1 1/22 Course Overview Symmetric Cryptography CPSC 467b, Lecture 1 2/22 Course Overview CPSC
CSE/EE 461 Lecture 23
CSE/EE 461 Lecture 23 Network Security David Wetherall [email protected] Last Time Naming Application Presentation How do we name hosts etc.? Session Transport Network Domain Name System (DNS) Data
Common Pitfalls in Cryptography for Software Developers. OWASP AppSec Israel July 2006. The OWASP Foundation http://www.owasp.org/
Common Pitfalls in Cryptography for Software Developers OWASP AppSec Israel July 2006 Shay Zalalichin, CISSP AppSec Division Manager, Comsec Consulting [email protected] Copyright 2006 - The OWASP
The Mathematics of the RSA Public-Key Cryptosystem
The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through
FIPS 140-2 Non- Proprietary Security Policy. McAfee SIEM Cryptographic Module, Version 1.0
FIPS 40-2 Non- Proprietary Security Policy McAfee SIEM Cryptographic Module, Version.0 Document Version.4 December 2, 203 Document Version.4 McAfee Page of 6 Prepared For: Prepared By: McAfee, Inc. 282
AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES
HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
Network Security. Modes of Operation. Steven M. Bellovin February 3, 2009 1
Modes of Operation Steven M. Bellovin February 3, 2009 1 Using Cryptography As we ve already seen, using cryptography properly is not easy Many pitfalls! Errors in use can lead to very easy attacks You
Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona [email protected] Copyright c 2012 Christian
Non-Black-Box Techniques In Crytpography. Thesis for the Ph.D degree Boaz Barak
Non-Black-Box Techniques In Crytpography Introduction Thesis for the Ph.D degree Boaz Barak A computer program (or equivalently, an algorithm) is a list of symbols a finite string. When we interpret a
QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University
QUANTUM COMPUTERS AND CRYPTOGRAPHY Mark Zhandry Stanford University Classical Encryption pk m c = E(pk,m) sk m = D(sk,c) m??? Quantum Computing Attack pk m aka Post-quantum Crypto c = E(pk,m) sk m = D(sk,c)
Randomized Hashing for Digital Signatures
NIST Special Publication 800-106 Randomized Hashing for Digital Signatures Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February 2009 U.S. Department
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 9: Authentication protocols, digital signatures Ion Petre Department of IT, Åbo Akademi University 1 Overview of
Cryptography and Network Security Chapter 10
Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 10 Other Public Key Cryptosystems Amongst the tribes of Central
Authentication Types. Password-based Authentication. Off-Line Password Guessing
Authentication Types Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4:
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
Guide to Data Field Encryption
Guide to Data Field Encryption Contents Introduction 2 Common Concepts and Glossary 3 Encryption 3 Data Field Encryption 3 Cryptography 3 Keys and Key Management 5 Secure Cryptographic Device 7 Considerations
The Misuse of RC4 in Microsoft Word and Excel
The Misuse of RC4 in Microsoft Word and Excel Hongjun Wu Institute for Infocomm Research, Singapore [email protected] Abstract. In this report, we point out a serious security flaw in Microsoft
Digital Signature. Raj Jain. Washington University in St. Louis
Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/
Recommendation for Cryptographic Key Generation
NIST Special Publication 800-133 Recommendation for Cryptographic Key Generation Elaine Barker Allen Roginsky http://dx.doi.org/10.6028/nist.sp.800-133 C O M P U T E R S E C U R I T Y NIST Special Publication
Key Management Interoperability Protocol (KMIP)
(KMIP) Addressing the Need for Standardization in Enterprise Key Management Version 1.0, May 20, 2009 Copyright 2009 by the Organization for the Advancement of Structured Information Standards (OASIS).
Post-Quantum Cryptography #4
Post-Quantum Cryptography #4 Prof. Claude Crépeau McGill University http://crypto.cs.mcgill.ca/~crepeau/waterloo 185 ( 186 Attack scenarios Ciphertext-only attack: This is the most basic type of attack
How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and
How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and non-repudiation. How to obtain a digital certificate. Installing
Improved Online/Offline Signature Schemes
Improved Online/Offline Signature Schemes Adi Shamir and Yael Tauman Applied Math. Dept. The Weizmann Institute of Science Rehovot 76100, Israel {shamir,tauman}@wisdom.weizmann.ac.il Abstract. The notion
Overview of CSS SSL. SSL Cryptography Overview CHAPTER
CHAPTER 1 Secure Sockets Layer (SSL) is an application-level protocol that provides encryption technology for the Internet, ensuring secure transactions such as the transmission of credit card numbers
Study of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First Indo-French Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
Message Authentication Code
Message Authentication Code Ali El Kaafarani Mathematical Institute Oxford University 1 of 44 Outline 1 CBC-MAC 2 Authenticated Encryption 3 Padding Oracle Attacks 4 Information Theoretic MACs 2 of 44
Cryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K.
Cryptosystems Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. C= E(M, K), Bob sends C Alice receives C, M=D(C,K) Use the same key to decrypt. Public
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
6.857 Computer and Network Security Fall Term, 1997 Lecture 4 : 16 September 1997 Lecturer: Ron Rivest Scribe: Michelle Goldberg 1 Conditionally Secure Cryptography Conditionally (or computationally) secure
Lecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
