Yale University Department of Computer Science
|
|
|
- Lawrence Gallagher
- 10 years ago
- Views:
Transcription
1 Yale University Department of Computer Science On Backtracking Resistance in Pseudorandom Bit Generation (preliminary version) Michael J. Fischer Michael S. Paterson Ewa Syta YALEU/DCS/TR-1466 October 24, 2012 (Revised December 4, 2012)
2 On Backtracking Resistance in Pseudorandom Bit Generation Michael J. Fischer Michael S. Paterson Ewa Syta Abstract An incremental pseudorandom bit generator (iprbg) is backtracking resistant if a state compromise does not allow the attacker a non-negligible advantage at distinguishing previouslygenerated bits from uniformly distributed random bits. Backtracking resistance can provide increased security in cryptographic protocols with long-term secrecy requirements. While a necessary condition for an iprbg to be backtracking resistant is that the next-state function be one-way, we show that this condition is not sufficient. To do this, we assume that an iprbg based on a one-way next-state permutation exists. We convert such an iprbg into a new iprbg that generates the same output sequence and is also based on a one-way next-state permutation, but the new generator is provably not backtracking resistant. We leave open the important question of whether cryptographically secure backtracking resistant iprbgs exist, even assuming that cryptographically strong PRBGs and one-way permutations exist. Keywords: backtracking resistance; pseudorandom generator; computational indistinguishability; one-way permutation; security 1 Introduction Random numbers are widely applicable in many fields such as statistical sampling, computer simulation and gambling. However, they play an especially important role in cryptography as almost all cryptographic protocols require some amount of randomness. Since random numbers are impossible to generate on deterministic computers, pseudorandom bit generators (PRBGs) are used in practice to provide bits that are computationally indistinguishable from random bits. This property is desired for cryptographic uses since cryptographic protocols often rely on the unpredictability of pseudorandom numbers to maintain their security properties. Pseudorandom numbers are used in the key generation of encryption algorithms, random challenges in authentication protocols, salts for passwords, cryptographic nonces, etc [6]. It has become customary to consider the security of a PRBG primarily in terms of the quality of the output it produces, more specifically, its indistinguishability from random output. Therefore, the notion of computational indistinguishability has become equated with cryptographic security of a generator and has become the gold standard of PRBG security. However, there are two other highly This material is based upon work supported by the Defense Advanced Research Agency (DARPA) and SPAWAR Systems Center Pacific, Contract No. N C Department of Computer Science, Yale University, CT, USA Department of Computer Science, University of Warwick, Coventry, UK 1
3 desirable and often overlooked properties: backtracking resistance and prediction resistance [1]. Both properties provide resistance to attacks under the more general security model in which an adversary is able to obtain the internal state of the generator, potentially in addition to some subset of the past output and an ability to observe some future output. Informally, a PRBG is backtracking resistant if any unseen past output remains indistinguishable from a random sequence even to an adversary who obtains the internal state of a generator. A complementary notion of prediction resistance ensures that the unseen future output remains indistinguishable as well. It has been conjectured that PRBGs based on a one-way function achieve backtracking resistance while prediction resistance is ensured by providing additional entropy [1]. In this paper we focus on the importance of backtracking resistance to the security of pseudorandom bit generators given the more general security model. We make the following contributions. First, we give a motivational example to bring attention to the importance of backtracking resistance. Then, we provide a formal treatment of this property. We prove that one-wayness of the next-state function is a necessary but not a sufficient condition to ensure backtracking resistance. At last, we formulate a number of important questions regarding backtracking resistance for future exploration. The rest of the paper is structured as follows. Section 2 discusses the importance of backtracking resistance to security of PRBGs. Section 3 gives the required definitions. Sections 4 and 5 provide proofs of our claims. Section 6 outlines future work and Section 7 concludes. 2 Backtracking Resistance In this section, we give a motivational story, informally discuss backtracking resistance, specify the security model, present the current approach to backtracking resistance, and review related work. 2.1 Motivational Story Alice and Bob exchange messages on a daily basis. Because of their sensitive nature, they decide to encrypt them and use a fresh encryption key every day. Initially, they thought to use a public key encryption scheme but quickly got tired of the need to exchange their public keys so frequently. Then, Alice suggested they each use a cryptographically secure pseudorandom bit generator initialized with the same secret seed to generate the same key for a symmetric encryption algorithm. After exchanging the secret seed, Alice and Bob each used the pseudorandom bit generator on their respective computers and decided to generate a fresh AES [3] key every day. This approach has been working very well. Unfortunately, one day Alice s device was stolen and ended up in Eve s hands. Eve has been secretly intercepting messages exchanged between Alice and Bob but did not have much luck opening them because AES resists Eve s cryptanalytic skills. Since she could not break the encryption scheme, she decided to try to recover the encryption keys from the pseudorandom bit generator. Because she was in possession of Alice s computer, she knew the generator used and its internal state after generating the last key. Her next step was to use this information to recover previously generated bits, thereby giving her full access to all messages previously encrypted. Alice and Bob knew that they had nothing to worry about only if their pseudorandom bit generator was backtracking resistant. If it was, then Eve would not be able to backtrack to previous 2
4 output bits ensuring the secrecy of past messages. However, if it was not, then Eve would be enjoying their private correspondence after decrypting their messages using keys recovered from the previous output of the generator. The goal of the above example is to illustrate the need to consider the security of pseudorandom generators under a more general security model in which to an adversary has the ability to compromise the generator itself and obtain its entire internal state. 2.2 New Approach to PRBG Security Pseudorandom generators are rarely, if ever, used on their own; they are mostly used as a part of more complex systems and directly affect the security properties offered by those systems. In practice, most people only consider the quality of the output a generator produces as an indicator of whether or not they can deem the generator secure. However, there is more to the security of pseudorandom generators than computational indistinguishability of its output. As illustrated in our story, the security of the system Alice came up with might be at risk because of the properties (or lack of thereof) of the generator they chose. She surely knew to use a cryptographically secure generator to ensure that Eve cannot learn about the encryption keys based on any transmissions she was able to intercept. However, it was not entirely obvious to consider how a compromise of the system a generator is running on may aide an adversary in breaking the (past) security of the entire system. We believe that considering security of pseudorandom generators with respect to more powerful adversaries is more important than ever. Nowadays, not only well-secured dedicated computers run sensitive application requiring strong security guarantees; portable devices such as laptops, tablets, or even mobile phones perform similar tasks as well. Such devices can be easily lost or stolen, creating a very plausible scenario for state compromise attacks. The approach to PRBG security must reflect that. 2.3 Importance of Backtracking Resistance The backtracking resistance property ensures that the output generated prior to a compromise of the generator remains secure. In other words, if a generator is backtracking resistant, then obtaining its internal state does not provide additional useful information about the past output and therefore is not an advantage in breaking past security of an application that employs such a generator. Backtracking resistance is critical to applications requiring long-term security of past outputs. Backtracking resistance offers protection similar to but more general than backward secrecy, which ensures that past keys remain secure even is case of a compromise of future keys. Key generation and key renewal schemes are two obvious examples of tasks in which backtracking resistance is extremely important if not required. 2.4 Security Model Traditionally, when considering security of a pseudorandom generator, an adversary is assumed to be outside of the system on which an instantiation of a pseudorandom generator is running. Such an adversary might observe (some) output of a generator, but never its internal state, while trying to either distinguish the generator s output from truly random output or predict future output based on previously seen output. 3
5 In this paper we emphasize the need to consider a more general security model which permits a more powerful adversary whose capabilities include compromising a device (or a system) on which a generator is running. In such a scenario, an adversary obtains full knowledge of the internal state of the generator at the time of the compromise. In addition, the adversary might have additional knowledge about the previous output generated prior to compromising the system. Therefore, in backtracking attacks, we shall always consider an adversary whose knowledge about the generator consists of its internal state at the time of compromise and possibly a subset of the output generated prior to an attack. The notion of the internal state of a generator is crucial to understanding backtracking attacks and devising backtracking resistant generators. 2.5 Internal State of a Generator The need to consider the internal state as an important and security-related element of a generator arises from the incremental way in which pseudorandom generators work in practice. Once a generator is instantiated, it produces output bits whenever requested based on its current internal state. It then updates its internal state. Informally speaking, an internal state of a generator consists of all information required for the generator to produce future output bits and internal states. An internal state may include a varying amount of information and be specific to a particular type of a generator or even a particular implementation. In the formal treatment of the backtracking property (Section 3), we assume that the internal state consists of secret information that the generator acts upon. In practice, additional secret and non-secret information may be stored along with the state. Retaining unnecessary information may cause a generator to succumb to state compromise attacks even though the underlying generator algorithm is backtracking resistant. Therefore, the information kept around as a part of an internal state should be carefully analyzed and be a part of the generator s security considerations Atomicity of Operations A generator goes through different stages while (incrementally) producing output bits. At any given stage i, a pseudorandom generator has an internal state s i. It produces a pseudorandom bit r i using the output function and goes from the current state s i to a new state s i+1 using the next-state function. During this transition, the current (s i ) and future (s i+1 ) states and the current (r i ) and future (r i+1 ) output bits are simultaneously available. We assume that the operation of computing the next-state and output functions is atomic; otherwise, breaking backtracking resistance is trivial because of the additional information available during the transition. To justify the reasonableness of this assumption, imagine that a system goes through active and idle periods. During an active period, the generator is in use and continuously produces new output bits and updates its state. During an idle period, the generator is not in use and only stores its current state. In our previous example, Alice only requests bits from the generator (putting it into an active state) when she is physically present at her computer and in need of a new key to encrypt a message. Therefore, when Eve accesses Alice s computer, the system is in an idle state, ensuring that the only information available is a single internal state. Voting machines are another example. While in use, they are physically guarded in a voting location but when stored, they are more vulnerable to physical attacks. Smart phones, tablets, and other personal devices would exhibit the same active-or-idle usage pattern. 4
6 2.6 Achieving Backtracking Resistance To achieve backtracking resistance, some restrictions must be placed on a generator, more specifically on the initial-state, next-state, and/or output functions. The goal is to limit the information carried in the internal state in a way that allows producing future output without revealing information about past output. It has been suggested in [1] that requiring the underlying generation algorithm to be one-way is a sufficient condition to ensure backtracking resistance. Backtracking resistance is often thought of as an inability of an adversary to differentiate previously unseen output of a generator produced prior to stage i from random output after compromising an internal state s i at some stage i. One approach to differentiate such outputs is to retrieve previous states of the generator from the current one. This way an adversary can himself generate the previous output which would clearly translate into his ability to differentiate the outputs. Therefore, requiring the underlying algorithm to be one-way is necessary to prevent inverting the current state and (trivially) breaking the backtracking resistance. However, it is not sufficient. The state may carry enough information to retrieve past outputs without the need to fully recover past states. 2.7 Related Work Backtracking resistance of pseudorandom generators has not been widely studied. The first mention and discussion of this property is due to Kelsey et. al. [5]. The notion of backtracking resistance has been incorporated into the NIST Special Publication Recommendation for Random Number Generation Using Deterministic Random Bit Generators [1]. 3 Definitions This section provides the necessary definitions needed for constructions given in Sections 4 and Incremental Pseudorandom Bit Generator A pseudorandom bit generator (PRBG) (sometimes called a deterministic random bit generator (DRBG) [1]), is a deterministic polynomial-time algorithm G that maps a seed z of length m to an output string r of length n > m. To be cryptographically secure, the ensemble of output strings G(U m ) should be computationally indistinguishable from U n, where U m and U n are the uniform distributions over strings of length m and n, respectively. 1 In practice, pseudorandom bits are generated on demand and the output string is built incrementally. Definition 1. An incremental PRBG (iprbg) G is defined by a tuple (m, N, S, ι, δ, ρ). m is the length of the seed, N is the length of the output sequence, S is a finite set of states of the generator, and ι, δ, and ρ are functions. The initial-state function ι maps a seed to an initial state s 0 S. The next-state function δ is a permutation on S. The output function ρ maps S to {0, 1}. 1 The notion of computational indistinguishability, introduced by Yao [7], means that any probabilistic polynomialtime algorithm behaves essentially the same whether supplied with inputs from the one distribution or the other. See Goldreich [4] for further details. 5
7 Starting with a seed z {0, 1} m, G computes a sequence of states s 0, s 1,..., s N and a sequence of bits r 0 r 1... r N 1, where s 0 = ι(z), s k = δ(s k 1 ) for 1 k N, and r k = ρ(s k ) for 0 k N 1. The output G(z) = r 0 r 1... r N 1. When the seed z is chosen according to the uniform distribution U m, G induces a distribution L G n on the state s n at stage n. Namely, L G n = δ n (ι(u m )). 3.2 Backtracking Resistance A backtracking attack applies to an iprbg G whose internal state has been compromised. We assume that an adversary compromises the internal state of G at stage n after r n 1 has been produced and the internal state has been replaced by s n. Informally, we say that G resists backtracking at stage n if the bit string r 0... r n 1 is computationally indistinguishable from a truly random string of the same length even given the state s n. G resists backtracking if it resists backtracking at any stage. This implies that a polynomially-bounded adversary has only a negligible advantage at guessing any of the bits produced by G before the attack. Definition 2. (Backtracking Resistance) Let G = (m, N, S, ι, δ, ρ) be an incremental PRBG, and let 0 n N. Consider a run G(z) on seed z. An adversary who corrupts G at stage n receives the pair (r, s) {0, 1} n S, where r = r 0 r 1... r n 1 and s = s n. When z is chosen randomly, this gives rise to a probability distribution G n(u m ), where U m is the uniform distribution over seeds. We say that G is backtracking resistant if G n(u m ) is computationally indistinguishable from the distribution U n L G n for all 0 n N. Intuitively, the only difference between cryptographic security and backtracking resistance is that in the latter case, the distinguishing judge is given either the output and state of G up to a given stage, or she is given a random output and random state, where the output is uniformly distributed and the state is correctly distributed for that same stage. Backtracking resistance implies that knowing the state of the generator gives the adversary no useful information about the previous output bits. 4 One-wayness is Necessary In this section we show that one-wayness of the next-state function is a necessary condition to achieve backtracking resistance. Theorem 1. Let G = (m, N, S, ι, δ, ρ) be a backtracking resistant iprbg. Then δ is a one-way function. Proof. Let G = (m, N, S, ι, δ, ρ) be a backtracking resistant iprbg. We show that δ is a one-way function. Assume to the contrary that δ is not a one-way function. Then there exists a probabilistic polynomial-time algorithm Inv for inverting δ with a non-negligible success probability. In greater detail, when given a uniformly distributed random state s S, is non-negligible. P rob[δ(inv(δ(s)) = δ(s)] 6
8 We construct a polynomial-time judge J. Given inputs r {0, 1} n and s S, the judge computes ŝ = Inv(s). If δ(ŝ) = s, then she compares ρ(ŝ) with r n 1 and outputs 1 if they are equal and 0 otherwise. If δ(ŝ) s, she outputs a random uniform bit b. Suppose (r, s) results from a random run of G. If ŝ is in the preimage of s under δ, then J outputs 1. Otherwise, J outputs 1 or 0 with equal probability. Since Inv succeeds with nonnegligible success probability ɛ, then J outputs 1 with probability 1/2 + ɛ/2. On the other hand, if r n 1 is a uniformly and independently chosen random bit, then J outputs 1 with probability exactly 1/2. Hence, J distinguishes the pseudorandom output from truly random with advantage ɛ/2. This implies that G is not backtracking resistant, contradicting the assumption that it is. Hence, δ must be a one-way function. 5 One-wayness is Not Sufficient In this section we show that one-wayness of the next-state function is not a sufficient condition to ensure backtracking resistance. Theorem 2. Given an iprbg G = (m, N, S, ι, δ, ρ) where δ is a one-way permutation, there is an iprbg H = (m, N, Ŝ, ˆι, ˆδ, ˆρ) such that ˆδ is a one-way permutation, H(z) = G(z) for all seeds z, and H is not backtracking resistant. This theorem implies that if G is also cryptographically secure, then so is H. This is because cryptographic security depends only on the generated output sequences and not on the internal structure of the generator itself, so the output sequences of H and G are the same. The proof is structured as follows. Starting from an iprbg G = (m, N, S, ι, δ, ρ) based on a one-way permutation δ, we construct an iprbg H = (m, N, Ŝ, ˆι, ˆδ, ˆρ) which is the same as G except that we augment the state with an extra bit of information that does not affect the output sequence. We show that ˆδ is a one-way permutation, but H is not backtracking resistant. Therefore, ˆδ s one-wayness is not sufficient to ensure backtracking resistance. 5.1 The Generator H Assume that an iprbg G = (m, N, S, ι, δ, ρ) exists with δ a one-way permutation. Define H = (m, N, Ŝ, ˆι, ˆδ, ˆρ), as follows: Ŝ = S {0, 1} ˆι(z) = (ι(z), 0) ˆδ(s, b) = (δ(s), b ρ(s)) ˆρ(s, b) = ρ(s) In the following, s k and r k refer to G, and ŝ k and ˆr k refer to H. Fact 1. Let 0 k N, let b 0 = 0, and let b k = r 0 r 1... r k 1 for 1 k N. Then 1. ŝ k = (s k, b k ); 2. ˆr k = r k ; 3. H(z) = G(z) for all seeds z. 7
9 Proof. Immediate by induction on k. To know that H is an iprbg, we must verify that ˆδ is a permutation on Ŝ. Lemma 1. ˆδ is a permutation on Ŝ. Proof. We show that ˆδ is one-to-one and onto. Suppose ˆδ(s, b ) = (s, b) = ˆδ(s, b ). Then s = s since δ is one-to-one and δ(s ) = s = δ(s ). Moreover, ρ(s ) b = b = ρ(s ) b. Since s = s, then ρ(s ) = ρ(s ) so also b = b. Hence, ˆδ is one-to-one. Now let (s, b) Ŝ. Since δ is a permutation, there exists s such that δ(s ) = s. Let b = ρ(s ) b. Then ˆδ(s, b ) = (s, b), so ˆδ is onto. Lemma 2. H is not backtracking resistant. Proof. We construct a polynomial-time judge J. On input (r, (s, b)), where r = r 0, r 1,..., r n 1, J outputs r 0... r n 1 b. Let 1 n N and suppose a random run of H results in output r = r 0, r 1,..., r n 1 and state (s n, b n ). Then J on input (r, (s n, b n )) outputs 0 since b n = r 0 r 1... r n 1. On the other hand, if (r, (s, b)) is chosen according to the distribution U n L H n, then J outputs 1 with probability exactly 1/2. Hence, J distinguishes the pseudorandom output from truly random with advantage 1/2. This implies that H is not backtracking resistant. Lemma 3. The next-state function ˆδ is one-way. Proof. Assume that ˆδ is not one-way. Then there exists a probabilistic polynomial-time algorithm Înv that inverts ˆδ with non-negligible success probability, We construct a probabilistic polynomialtime algorithm Inv that inverts δ with non-negligible success probability. Given a state s S, Inv computes Înv(s, 0) and Înv(s, 1) to see if either results in an inverse of ˆδ. If an inverse (s, b ) is found, then Inv outputs s (which is a δ-inverse of s). Algorithm 1 describes this strategy in greater detail. Algorithm 1 Algorithm Inv Input: s S Output: s s.t. δ(s ) = s 1. Compute: (s 0, b 0 ) = Înv(s, 0) and (s 1, b 1 ) = Înv(s, 1). 2. If δ(s 0 ) = s, then output s 0. Else if δ(s 1 ) = s, then output s 1. Else output fail. Inv s advantage in inverting δ is at least as great as the advantage of Înv. Since Înv is a polynomial-time algorithm that succeeds with non-negligible probability, then Inv is also polynomialtime and succeeds with non-negligible probability. This is impossible since δ is one-way. Therefore, Înv does not exist and ˆδ is one-way. 8
10 5.2 Proof of Theorem 2 Proof. Assuming an iprbg G based on a one-way next-state permutation exists, we constructed a new iprbg H in Section 5.1 such that H(z) = G(z) for all seeds z. From Lemma 2, H is not backtracking resistant, but nevertheless, Lemmas 1 and 3 shows that H is based on a one-way next-state permutation. 6 Future Work We do know how to implement iprbgs that have a very weak form of backtracking resistance. Namely, if the adversary compromises the generator and gets only the current state s n, then he cannot distinguish this case from a random pair (r, s) U n L G n with a non-negligible advantage. This is true of the Blum Blum Shub (BBS) [2] generator based on the assumed difficulty of the quadratic residuosity problem. Assuming the contrary, then an adversary for predicting r n 1 from s n would give a means for constructing a quadratic residue tester with non-negligible success probability. We omit the details here. We leave open the major problem of whether or not a cryptographically secure iprbg exists, even assuming that one-way functions and cryptographically secure PRNGs exist. The seed in an iprbg determines both the output sequence r and the final state s n. Backtracking resistance requires showing the computational independence of r and s n, something that the authors do not know how to do except in the very special case mentioned above. The fact that this problem may be more difficult than is at first apparent can be seen from the following contrived example. Suppose we start with a cryptographically secure iprbg G with 160- bit long states. We construct a new generator H that is identical to G except for, say, the first 160 bits of output. The way H generates those bits is to run G to the end to obtain s N, then continue running G to generate the next 160 bits r. Now, the first 160 bits of output from H are r s 0. We have no a priori reason to believe that H is cryptographically secure because of the strange way those first 160 bits are generated, yet it seems intuitive that they should still look perfectly random. Nevertheless, H is not backtracking resistant in a very strong sense if an adversary gets both the first 160 output bits and the final state s N of the generator, he can compute r, xor it with the first 160 output bits, and obtain s 0, completely breaking the generator. 7 Conclusions In this paper we have explored a new approach to security of pseudorandom bit generators which involves a more general security model in which an adversary can compromise the internal state of a generator. We have formally defined an incremental pseudorandom bit generator (iprbg) to better reflect the way pseudorandom bits are generated in practice, and we have defined the backtracking resistance property with respect to it. We have also provided proofs that one-wayness of the nextstate function is a necessary but not a sufficient condition to ensure backtracking resistance. We have only begun to explore the complex notion of backtracking resistance and different ways of achieving it. We leave to future work the important question of whether backtracking resistance is achievable, either in theory or in practice. 9
11 References [1] Elaine Barker and John Kelsey. Recommendation for random number generation using deterministic random bit generators. Technical report, National Institute of Standards and Technology, [2] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo random number generator. SIAM J. Comput., 15(2): , May [3] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer Verlag, Berlin, Heidelberg, New York, [4] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Number v. 1. Cambridge University Press, [5] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on pseudorandom number generators. In FAST SOFTWARE ENCRYPTION, FIFTH INTERNATIONAL PROCEEDINGS, pages Springer-Verlag, [6] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code in C. John Wiley & Sons, Inc., New York, NY, USA, [7] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 82, pages 80 91, Washington, DC, USA, IEEE Computer Society. 10
Ch.9 Cryptography. The Graduate Center, CUNY.! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis
Ch.9 Cryptography The Graduate Center, CUNY! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis Why is Modern Cryptography part of a Complexity course? Short answer:! Because Modern Cryptography
1 Construction of CCA-secure encryption
CSCI 5440: Cryptography Lecture 5 The Chinese University of Hong Kong 10 October 2012 1 Construction of -secure encryption We now show how the MAC can be applied to obtain a -secure encryption scheme.
Introduction. Digital Signature
Introduction Electronic transactions and activities taken place over Internet need to be protected against all kinds of interference, accidental or malicious. The general task of the information technology
Security Analysis of DRBG Using HMAC in NIST SP 800-90
Security Analysis of DRBG Using MAC in NIST SP 800-90 Shoichi irose Graduate School of Engineering, University of Fukui hrs [email protected] Abstract. MAC DRBG is a deterministic random bit generator
Victor Shoup Avi Rubin. fshoup,[email protected]. Abstract
Session Key Distribution Using Smart Cards Victor Shoup Avi Rubin Bellcore, 445 South St., Morristown, NJ 07960 fshoup,[email protected] Abstract In this paper, we investigate a method by which smart
Improved Online/Offline Signature Schemes
Improved Online/Offline Signature Schemes Adi Shamir and Yael Tauman Applied Math. Dept. The Weizmann Institute of Science Rehovot 76100, Israel {shamir,tauman}@wisdom.weizmann.ac.il Abstract. The notion
MACs Message authentication and integrity. Table of contents
MACs Message authentication and integrity Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction MACs Constructing Secure MACs Secure communication and
Lecture 15 - Digital Signatures
Lecture 15 - Digital Signatures Boaz Barak March 29, 2010 Reading KL Book Chapter 12. Review Trapdoor permutations - easy to compute, hard to invert, easy to invert with trapdoor. RSA and Rabin signatures.
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Lecture 3: One-Way Encryption, RSA Example
ICS 180: Introduction to Cryptography April 13, 2004 Lecturer: Stanislaw Jarecki Lecture 3: One-Way Encryption, RSA Example 1 LECTURE SUMMARY We look at a different security property one might require
Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
Concrete Security of the Blum-Blum-Shub Pseudorandom Generator
Appears in Cryptography and Coding: 10th IMA International Conference, Lecture Notes in Computer Science 3796 (2005) 355 375. Springer-Verlag. Concrete Security of the Blum-Blum-Shub Pseudorandom Generator
Lecture 11: The Goldreich-Levin Theorem
COM S 687 Introduction to Cryptography September 28, 2006 Lecture 11: The Goldreich-Levin Theorem Instructor: Rafael Pass Scribe: Krishnaprasad Vikram Hard-Core Bits Definition: A predicate b : {0, 1}
Security Aspects of. Database Outsourcing. Vahid Khodabakhshi Hadi Halvachi. Dec, 2012
Security Aspects of Database Outsourcing Dec, 2012 Vahid Khodabakhshi Hadi Halvachi Security Aspects of Database Outsourcing Security Aspects of Database Outsourcing 2 Outline Introduction to Database
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key
Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra
Computational Complexity: A Modern Approach
i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed
Network Security. Chapter 6 Random Number Generation. Prof. Dr.-Ing. Georg Carle
Network Security Chapter 6 Random Number Generation Prof. Dr.-Ing. Georg Carle Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2
Effective Secure Encryption Scheme [One Time Pad] Using Complement Approach Sharad Patil 1 Ajay Kumar 2 Research Student, Bharti Vidyapeeth, Pune, India [email protected] Modern College of Engineering,
1 Signatures vs. MACs
CS 120/ E-177: Introduction to Cryptography Salil Vadhan and Alon Rosen Nov. 22, 2006 Lecture Notes 17: Digital Signatures Recommended Reading. Katz-Lindell 10 1 Signatures vs. MACs Digital signatures
Lecture 9 - Message Authentication Codes
Lecture 9 - Message Authentication Codes Boaz Barak March 1, 2010 Reading: Boneh-Shoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,
1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.
1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks
Network Security. Chapter 6 Random Number Generation
Network Security Chapter 6 Random Number Generation 1 Tasks of Key Management (1)! Generation:! It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
1 Message Authentication
Theoretical Foundations of Cryptography Lecture Georgia Tech, Spring 200 Message Authentication Message Authentication Instructor: Chris Peikert Scribe: Daniel Dadush We start with some simple questions
Lecture 10: CPA Encryption, MACs, Hash Functions. 2 Recap of last lecture - PRGs for one time pads
CS 7880 Graduate Cryptography October 15, 2015 Lecture 10: CPA Encryption, MACs, Hash Functions Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Chosen plaintext attack model of security MACs
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Computational Soundness of Symbolic Security and Implicit Complexity
Computational Soundness of Symbolic Security and Implicit Complexity Bruce Kapron Computer Science Department University of Victoria Victoria, British Columbia NII Shonan Meeting, November 3-7, 2013 Overview
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
MESSAGE AUTHENTICATION IN AN IDENTITY-BASED ENCRYPTION SCHEME: 1-KEY-ENCRYPT-THEN-MAC
MESSAGE AUTHENTICATION IN AN IDENTITY-BASED ENCRYPTION SCHEME: 1-KEY-ENCRYPT-THEN-MAC by Brittanney Jaclyn Amento A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
MTAT.07.003 Cryptology II. Digital Signatures. Sven Laur University of Tartu
MTAT.07.003 Cryptology II Digital Signatures Sven Laur University of Tartu Formal Syntax Digital signature scheme pk (sk, pk) Gen (m, s) (m,s) m M 0 s Sign sk (m) Ver pk (m, s)? = 1 To establish electronic
Recommendation for Applications Using Approved Hash Algorithms
NIST Special Publication 800-107 Recommendation for Applications Using Approved Hash Algorithms Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February
CPSC 467b: Cryptography and Computer Security
CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 1 January 9, 2012 CPSC 467b, Lecture 1 1/22 Course Overview Symmetric Cryptography CPSC 467b, Lecture 1 2/22 Course Overview CPSC
Capture Resilient ElGamal Signature Protocols
Capture Resilient ElGamal Signature Protocols Hüseyin Acan 1, Kamer Kaya 2,, and Ali Aydın Selçuk 2 1 Bilkent University, Department of Mathematics [email protected] 2 Bilkent University, Department
YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE
YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Notes 1 (rev. 1) Professor M. J. Fischer September 3, 2008 1 Course Overview Lecture Notes 1 This course is
Lecture 5 - CPA security, Pseudorandom functions
Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.
APPLYING FORMAL METHODS TO CRYPTOGRAPHIC PROTOCOL ANALYSIS: EMERGING ISSUES AND TRENDS
PPLYING FORML METHODS TO CRYPTOGRPHIC PROTOCOL NLYSIS: EMERGING ISSUES ND TRENDS Catherine Meadows Code 5543 Center for High ssurance Computer Systems US Naval Research Laboratory Washington, DC 20375
An Overview of Common Adversary Models
An Overview of Common Adversary Karl Palmskog [email protected] 2012-03-29 Introduction Requirements of Software Systems 1 Functional Correctness: partial, termination, liveness, safety,... 2 Nonfunctional
Cryptography: Authentication, Blind Signatures, and Digital Cash
Cryptography: Authentication, Blind Signatures, and Digital Cash Rebecca Bellovin 1 Introduction One of the most exciting ideas in cryptography in the past few decades, with the widest array of applications,
Authentication Types. Password-based Authentication. Off-Line Password Guessing
Authentication Types Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4:
CIS433/533 - Computer and Network Security Cryptography
CIS433/533 - Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and
Randomized Hashing for Digital Signatures
NIST Special Publication 800-106 Randomized Hashing for Digital Signatures Quynh Dang Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y February 2009 U.S. Department
Two Factor Zero Knowledge Proof Authentication System
Two Factor Zero Knowledge Proof Authentication System Quan Nguyen Mikhail Rudoy Arjun Srinivasan 6.857 Spring 2014 Project Abstract It is often necessary to log onto a website or other system from an untrusted
Identity-Based Encryption from the Weil Pairing
Appears in SIAM J. of Computing, Vol. 32, No. 3, pp. 586-615, 2003. An extended abstract of this paper appears in the Proceedings of Crypto 2001, volume 2139 of Lecture Notes in Computer Science, pages
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR
A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR William Stallings Copyright 20010 H.1 THE ORIGINS OF AES...2 H.2 AES EVALUATION...3 Supplement to Cryptography and Network Security, Fifth Edition
2.4: Authentication Authentication types Authentication schemes: RSA, Lamport s Hash Mutual Authentication Session Keys Trusted Intermediaries
Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4: Security on the Application
SCADA System Security, Complexity, and Security Proof
SCADA System Security, Complexity, and Security Proof Reda Shbib, Shikun Zhou, Khalil Alkadhimi School of Engineering, University of Portsmouth, Portsmouth, UK {reda.shbib,shikun.zhou,khalil.alkadhimi}@port.ac.uk
Application-Specific Biometric Templates
Application-Specific Biometric s Michael Braithwaite, Ulf Cahn von Seelen, James Cambier, John Daugman, Randy Glass, Russ Moore, Ian Scott, Iridian Technologies Inc. Introduction Biometric technologies
CIS 5371 Cryptography. 8. Encryption --
CIS 5371 Cryptography p y 8. Encryption -- Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: All-or-nothing secrecy.
The Complexity of Online Memory Checking
The Complexity of Online Memory Checking Moni Naor Guy N. Rothblum Abstract We consider the problem of storing a large file on a remote and unreliable server. To verify that the file has not been corrupted,
Elliptic Curve Cryptography
Elliptic Curve Cryptography Elaine Brow, December 2010 Math 189A: Algebraic Geometry 1. Introduction to Public Key Cryptography To understand the motivation for elliptic curve cryptography, we must first
Signature Schemes. CSG 252 Fall 2006. Riccardo Pucella
Signature Schemes CSG 252 Fall 2006 Riccardo Pucella Signatures Signatures in real life have a number of properties They specify the person responsible for a document E.g. that it has been produced by
The Misuse of RC4 in Microsoft Word and Excel
The Misuse of RC4 in Microsoft Word and Excel Hongjun Wu Institute for Infocomm Research, Singapore [email protected] Abstract. In this report, we point out a serious security flaw in Microsoft
Counter Expertise Review on the TNO Security Analysis of the Dutch OV-Chipkaart. OV-Chipkaart Security Issues Tutorial for Non-Expert Readers
Counter Expertise Review on the TNO Security Analysis of the Dutch OV-Chipkaart OV-Chipkaart Security Issues Tutorial for Non-Expert Readers The current debate concerning the OV-Chipkaart security was
Introduction to Computer Security
Introduction to Computer Security Hash Functions and Digital Signatures Pavel Laskov Wilhelm Schickard Institute for Computer Science Integrity objective in a wide sense Reliability Transmission errors
The Order of Encryption and Authentication for Protecting Communications (Or: How Secure is SSL?)
The Order of Encryption and Authentication for Protecting Communications (Or: How Secure is SSL?) Hugo Krawczyk Abstract. We study the question of how to generically compose symmetric encryption and authentication
Guaranteed Slowdown, Generalized Encryption Scheme, and Function Sharing
Guaranteed Slowdown, Generalized Encryption Scheme, and Function Sharing Yury Lifshits July 10, 2005 Abstract The goal of the paper is to construct mathematical abstractions of different aspects of real
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Karagpur Lecture No. #06 Cryptanalysis of Classical Ciphers (Refer
A Probabilistic Quantum Key Transfer Protocol
A Probabilistic Quantum Key Transfer Protocol Abhishek Parakh Nebraska University Center for Information Assurance University of Nebraska at Omaha Omaha, NE 6818 Email: [email protected] August 9, 01
Non-Black-Box Techniques In Crytpography. Thesis for the Ph.D degree Boaz Barak
Non-Black-Box Techniques In Crytpography Introduction Thesis for the Ph.D degree Boaz Barak A computer program (or equivalently, an algorithm) is a list of symbols a finite string. When we interpret a
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
Post-Quantum Cryptography #4
Post-Quantum Cryptography #4 Prof. Claude Crépeau McGill University http://crypto.cs.mcgill.ca/~crepeau/waterloo 185 ( 186 Attack scenarios Ciphertext-only attack: This is the most basic type of attack
Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography
Kommunikationssysteme (KSy) - Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 2000-2001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
How To Encrypt Data With A Power Of N On A K Disk
Towards High Security and Fault Tolerant Dispersed Storage System with Optimized Information Dispersal Algorithm I Hrishikesh Lahkar, II Manjunath C R I,II Jain University, School of Engineering and Technology,
A PERFORMANCE EVALUATION OF COMMON ENCRYPTION TECHNIQUES WITH SECURE WATERMARK SYSTEM (SWS)
A PERFORMANCE EVALUATION OF COMMON ENCRYPTION TECHNIQUES WITH SECURE WATERMARK SYSTEM (SWS) Ashraf Odeh 1, Shadi R.Masadeh 2, Ahmad Azzazi 3 1 Computer Information Systems Department, Isra University,
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring
Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Eli Biham Dan Boneh Omer Reingold Abstract The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
The Feasibility and Application of using a Zero-knowledge Protocol Authentication Systems
The Feasibility and Application of using a Zero-knowledge Protocol Authentication Systems Becky Cutler [email protected] Mentor: Professor Chris Gregg Abstract Modern day authentication systems
Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm By Mihir Bellare and Chanathip Namprempre
Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm By Mihir Bellare and Chanathip Namprempre Some slides were also taken from Chanathip Namprempre's defense
A Study of New Trends in Blowfish Algorithm
A Study of New Trends in Blowfish Algorithm Gurjeevan Singh*, Ashwani Kumar**, K. S. Sandha*** *(Department of ECE, Shaheed Bhagat Singh College of Engg. & Tech. (Polywing), Ferozepur-152004) **(Department
Connected from everywhere. Cryptelo completely protects your data. Data transmitted to the server. Data sharing (both files and directory structure)
Cryptelo Drive Cryptelo Drive is a virtual drive, where your most sensitive data can be stored. Protect documents, contracts, business know-how, or photographs - in short, anything that must be kept safe.
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 02 Overview on Modern Cryptography
A Comparative Study Of Two Symmetric Encryption Algorithms Across Different Platforms.
A Comparative Study Of Two Symmetric Algorithms Across Different Platforms. Dr. S.A.M Rizvi 1,Dr. Syed Zeeshan Hussain 2 and Neeta Wadhwa 3 Deptt. of Computer Science, Jamia Millia Islamia, New Delhi,
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK
SAMPLE EXAM QUESTIONS MODULE EE5552 NETWORK SECURITY AND ENCRYPTION September 2010 (reviewed September 2014) ECE, SCHOOL OF ENGINEERING AND DESIGN BRUNEL UNIVERSITY UXBRIDGE MIDDLESEX, UK NETWORK SECURITY
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Simulation-Based Security with Inexhaustible Interactive Turing Machines
Simulation-Based Security with Inexhaustible Interactive Turing Machines Ralf Küsters Institut für Informatik Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany [email protected]
Chapter 3. Network Domain Security
Communication System Security, Chapter 3, Draft, L.D. Chen and G. Gong, 2008 1 Chapter 3. Network Domain Security A network can be considered as the physical resource for a communication system. This chapter
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
How To Understand And Understand The History Of Cryptography
CSE497b Introduction to Computer and Network Security - Spring 2007 - Professors Jaeger Lecture 5 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07/
Cryptography Lecture 8. Digital signatures, hash functions
Cryptography Lecture 8 Digital signatures, hash functions A Message Authentication Code is what you get from symmetric cryptography A MAC is used to prevent Eve from creating a new message and inserting
One-Way Encryption and Message Authentication
One-Way Encryption and Message Authentication Cryptographic Hash Functions Johannes Mittmann [email protected] Zentrum Mathematik Technische Universität München (TUM) 3 rd Joint Advanced Student School
Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona [email protected] Copyright c 2012 Christian
Cryptography and Network Security, PART IV: Reviews, Patches, and11.2012 Theory 1 / 53
Cryptography and Network Security, PART IV: Reviews, Patches, and Theory Timo Karvi 11.2012 Cryptography and Network Security, PART IV: Reviews, Patches, and11.2012 Theory 1 / 53 Key Lengths I The old
3-6 Toward Realizing Privacy-Preserving IP-Traceback
3-6 Toward Realizing Privacy-Preserving IP-Traceback The IP-traceback technology enables us to trace widely spread illegal users on Internet. However, to deploy this attractive technology, some problems
Developing and Investigation of a New Technique Combining Message Authentication and Encryption
Developing and Investigation of a New Technique Combining Message Authentication and Encryption Eyas El-Qawasmeh and Saleem Masadeh Computer Science Dept. Jordan University for Science and Technology P.O.
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
SYMMETRIC ENCRYPTION. Mihir Bellare UCSD 1
SYMMETRIC ENCRYPTION Mihir Bellare UCSD 1 Syntax A symmetric encryption scheme SE = (K,E,D) consists of three algorithms: K and E may be randomized, but D must be deterministic. Mihir Bellare UCSD 2 Correct
Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering
Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:
Protection Profile for Full Disk Encryption
Protection Profile for Full Disk Encryption Mitigating the Risk of a Lost or Stolen Hard Disk Information Assurance Directorate 01 December 2011 Version 1.0 Table of Contents 1 Introduction to the PP...
One Time Password Generation for Multifactor Authentication using Graphical Password
One Time Password Generation for Multifactor Authentication using Graphical Password Nilesh B. Khankari 1, Prof. G.V. Kale 2 1,2 Department of Computer Engineering, Pune Institute of Computer Technology,
Secure Large-Scale Bingo
Secure Large-Scale Bingo Antoni Martínez-Ballesté, Francesc Sebé and Josep Domingo-Ferrer Universitat Rovira i Virgili, Dept. of Computer Engineering and Maths, Av. Països Catalans 26, E-43007 Tarragona,
Recommendation for Cryptographic Key Generation
NIST Special Publication 800-133 Recommendation for Cryptographic Key Generation Elaine Barker Allen Roginsky http://dx.doi.org/10.6028/nist.sp.800-133 C O M P U T E R S E C U R I T Y NIST Special Publication
HASH CODE BASED SECURITY IN CLOUD COMPUTING
ABSTRACT HASH CODE BASED SECURITY IN CLOUD COMPUTING Kaleem Ur Rehman M.Tech student (CSE), College of Engineering, TMU Moradabad (India) The Hash functions describe as a phenomenon of information security
