Solving Equations and Inequalities Graphically

Size: px
Start display at page:

Download "Solving Equations and Inequalities Graphically"

Transcription

1 4.4 Solvin Equations and Inequalities Graphicall 4.4 OBJECTIVES 1. Solve linear equations raphicall 2. Solve linear inequalities raphicall In Chapter 2, we solved linear equations and inequalities. In this section, we will raphicall demonstrate solutions or similar statements. In usin this section, note that each raphical demonstration is accompanied b the alebraic solution, which appears in the marin. The techniques o this section are not desined as an alternative to the alebra. The are rather an introduction to the idea o viewin a solution. This is a skill that will be ver useul as ou continue to stud mathematics. In our irst eample, we will solve a simple linear equation. The raphical method ma seem cumbersome, but once ou master it, ou will ind it quite helpul, particularl i ou are a visual learner. Eample 1 A Graphical Approach to Solvin a Linear Equation Graphicall solve the ollowin equation. NOTE Alebraicall Step 1 Let each side o the equation represent a unction o. () 2 6 () 0 Step 2 Graph the two unctions on the same set o aes. NOTE We ask the question, when is the raph o equal to the raph o? Speciicall, or what values o does this occur? Step 3 Find the intersection o the two raphs. To do this, eamine the two raphs closel to see where the intersect. Identi the coordinates o that point. This intersection determines the solution to the oriinal equation. 245

2 246 CHAPTER 4 GRAPHS OF LINEAR EQUATIONS AND FUNCTIONS (3, 0) The two lines intersect on the ais at the point (3, 0). We are lookin or the value at the point o intersection, which is 3. CHECK YOURSELF 1 Graphicall solve the ollowin equation The raph o the equation is oten used to check the alebraic solution. This concept is illustrated in Eample 2. Eample 2 Solvin Linear Equations Alebraicall and Graphicall Solve the linear equation alebraicall, then raphicall displa the solution. NOTE Alebraicall The solution set is 2. 2( 3) 3 4 To raphicall displa the solution, let () 2( 3) () 3 4 Graphin both lines, we et

3 SOLVING EQUATIONS AND INEQUALITIES GRAPHICALLY SECTION The point o intersection appears to be ( 2, 2), which conirms that 2 is a reasonable solution to the equation 2( 3) 3 4 CHECK YOURSELF 2 First solve the linear equation alebraicall, then raphicall displa the solution The ollowin alorithm summarizes our work in raphicall solvin an equation. Step b Step: Graphicall Solvin an Equation Step 1 Let each side o the equation represent a unction o. Step 2 Graph the two unctions on the same set o aes. Step 3 Find the intersection o the two raphs. The value at this intersection represents the solution to the oriinal equation. We will now use the raphs o linear unctions to determine the solutions o a linear inequalit. Linear inequalities in one variable,, are obtained rom linear equations b replacin the smbol or equalit ( ) with one o the inequalit smbols (,,, ). The eneral orm or a linear inequalit in one variable is a in which the smbol can be replaced with,, or. Eamples o linear inequalities in one variable include Recall that the solution set or an equation is the set o all values or the variable (or ordered pair) that make the equation a true statement. Similarl, the solution set or an inequalit is the set o all values that make the inequalit a true statement. Eample 3 looks at the raphical approach to solvin an inequalit. NOTE Alebraic solution: Eample 3 Solvin an Inequalit Graphicall Solve the inequalit raphicall First, rewrite the inequalit as a comparison o two unctions. Here, () (), in which () 2 5 and () 7.

4 248 CHAPTER 4 GRAPHS OF LINEAR EQUATIONS AND FUNCTIONS Now raph the two unctions on a sinle set o aes. Here we ask the question, For what values o is the raph o above the raph o? Net, draw a vertical dotted line throuh the point o intersection o the two unctions. In this case, there will be a vertical line throuh the point (1, 7). The solution set is ever value that results in () bein reater than (), which is ever value to the riht o the dotted line. NOTE The solution set will be all the values that make the oriinal statement, 2 5 7, true. Finall, we epress the solution set in set notation 1 CHECK YOURSELF 3 Solve the inequalit raphicall.

5 SOLVING EQUATIONS AND INEQUALITIES GRAPHICALLY SECTION In Eample 3, the unction () 7 resulted in a horizontal line. In Eample 4, we see that the same method works when comparin an two unctions. Eample 4 Solvin an Inequalit Graphicall NOTE Alebraic solution (note what happens when we divide b a neative number) 1 Solve the inequalit raphicall First, rewrite the inequalit as a comparison o two unctions. Here, () (), and () 2 3 and () 5. Now raph the two unctions on a sinle set o aes. ( 1, 5) As in Eample 3, draw a vertical line throuh the point o intersection o the two unctions. The vertical line will o throuh the point ( 1, 5). In this case, the line is included (reater than or equal to), so the line is solid, not dotted. Aain, we need to mark ever value that makes the statement true. In this case, that is ever or which the line representin () is above or intersects the line representin (). That is the reion in which () is reater than or equal to (). We mark the values to the let o the line, but we also want to include the value on the line, so we make it a bracket rather than a parenthesis. ( 1, 5) Finall, we epress the solutions in set notation. We see that the solution set is ever value less than or equal to 1, so we write 1

6 250 CHAPTER 4 GRAPHS OF LINEAR EQUATIONS AND FUNCTIONS CHECK YOURSELF 4 Solve the inequalit raphicall The ollowin alorithm summarizes our work in this section. Step b Step: Solvin an Inequalit in One Variable Graphicall Step 1 Rewrite the inequalit as a comparison o two unctions. () () () () () () () () Step 2 Step 3 Step 4 Step 5 Graph the two unctions on a sinle set o aes. Draw a vertical line throuh the point o intersection o the two raphs. Use a dotted line i equalit is not included ( or ). Use a solid line i equalit is included ( or ). Mark the values that make the inequalit a true statement. Write the solutions in set notation. The eamples we have shown ielded intersections at values that are inteers. I the value o the intersection is not an inteer, it can be ver diicult to read rom a hand-drawn raph. I a raphin calculator is used, the trace eature can be used to et a ver ood approimation o the intersection point. CHECK YOURSELF ANSWERS 1. () () 3 4 () 0 () 2 1 (2, 0) (1, 1) Solution set 2 Solution set { 2} { 2}

7 Name 4.4 Eercises Section Date Graphicall solve the ollowin equations ANSWERS

8 ANSWERS Solve the linear equations alebraicall, then raphicall displa the solutions ( 1) ( 1) (2 1)

9 ANSWERS In eercises 17 to 32, solve each inequalit raphicall

10 ANSWERS ( 1) 26. 2(3 1) 4( 1) (1 ) 2(3 5) 28. 2( 5) (5 12) (4 ) 7 254

11 ANSWERS In eercises 33 to 38, solve the ollowin applications. 33. Business. The cost to produce units o wire is C() , and the revenue enerated is R() 60. Find all values o or which the product will at least break even Business. Find the values o or which a product will at least break even i the cost is C() and the revenue is iven b R() Car Rental. Tom and Jean went to Salem, Massachusetts, or 1 week. The needed to rent a car, so the checked out two rental irms. Wheels, Inc. wanted $28 per da with no mileae ee. Downtown Edsel wanted $98 per week and 14 per mile. Set up equations to epress the rates o the two irms, and then decide when each deal should be taken. 36. Mileae. A uel compan has a leet o trucks. The annual operatin cost per truck is C() , in which is the number o miles traveled b a truck per ear. What number o miles will ield an operatin cost that is less than $25,000? 255

12 ANSWERS Weddin. Eileen and Tom are havin their weddin reception at the Warrinton Fire Hall. The can spend at the most $3000 or the reception. I the hall chares a $250 cleanup ee plus $25 per person, ind the larest number o people the can invite Tuition. A nearb collee chares annual tuition o $6440. Me makes no more than $1610 per ear in her summer job. What is the smallest number o summers that she must work to make enouh or 1 ear s tuition? 39. Graphin. Eplain to a relative how a raph is helpul in solvin each inequalit below. Be sure to include the siniicance o the point at which the lines meet (or what happens i the lines do not meet). (a) (b) (c) 4( 1) Collee. Look at the data here about enrollment in collee. Assume that the chanes occurred at a constant rate over the ears. Make one linear raph or men and one or women, but on the same set o aes. What conclusions could ou draw rom readin the raph? No., in Millions, o Men in No., in Millions, o Women in Year the U.S. Enrolled in Collee the U.S. Enrolled in Collee

13 Answers 1. () {4} () 7 7 {1} () 0 () 0 5. () () 2 3 {2} () 7 () 2 {5} 9. () () () 5 3 (3, 7) {3} (5, 4) {5} () () 3( 1) 15. {2} (2, 3) () () 7( ) 5 7 {5} (5, 6) () 1 257

14 17. () (4, 8) () 8 () 3 2 () 1 { 4} { 5} 21. () { 1} () 6 () 7 7 { 1} () () () 6(1 ) { 2} { R} () 3( 1) () 2(3 5) 29. () () 4 6 (2.5, 4) { 2.5} { 1} 4 5 () 3 () I miles are under 700, Downtown Edsel; i over 700, Wheels, Inc.; W $28 7 $196; DE ( is number o miles) people

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

The Slope-Intercept Form

The Slope-Intercept Form 7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

Exponential Functions

Exponential Functions Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means

More information

1.3 Introduction to Functions

1.3 Introduction to Functions . Introduction to Functions. Introduction to Functions One of the core concepts in Collee Alebra is the function. There are man was to describe a function and we bein b definin a function as a special

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m 0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

More information

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

Hewlett-Packard 12C Tutorial

Hewlett-Packard 12C Tutorial To bein, look at the ace o the calculator. Every key (except the arithmetic unction keys in the ar riht column and the ive keys on the bottom let row) has two or three unctions: each key s primary unction

More information

Some Tools for Teaching Mathematical Literacy

Some Tools for Teaching Mathematical Literacy Some Tools for Teaching Mathematical Literac Julie Learned, Universit of Michigan Januar 200. Reading Mathematical Word Problems 2. Fraer Model of Concept Development 3. Building Mathematical Vocabular

More information

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

Find the Relationship: An Exercise in Graphing Analysis

Find the Relationship: An Exercise in Graphing Analysis Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

More information

5.1 Understanding Linear Functions

5.1 Understanding Linear Functions Name Class Date 5.1 Understanding Linear Functions Essential Question: What is a linear function? Resource Locker Eplore 1 Recognizing Linear Functions A race car can travel up to 210 mph. If the car could

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

Shake, Rattle and Roll

Shake, Rattle and Roll 00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar

More information

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is - NAME DATE PERID Functions Determine whether each relation is a function. Eplain.. {(, ), (0, 9), (, 0), (7, 0)} Yes; each value is paired with onl one value.. {(, ), (, ), (, ), (, ), (, )}. No; in the

More information

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true.

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true. Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture. Correlation. Scatter Plots. Data The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

Math 152, Intermediate Algebra Practice Problems #1

Math 152, Intermediate Algebra Practice Problems #1 Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

4.2 Applications of Exponential Functions

4.2 Applications of Exponential Functions . Applications of Eponential Functions In this section ou will learn to: find eponential equations usin raphs solve eponential rowth and deca problems use loistic rowth models Eample : The raph of is the

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative

Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative 202 Chapter 3 The Derivative Section 3-7 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

SECTION 1.6 Other Types of Equations

SECTION 1.6 Other Types of Equations BLITMC1B.111599_11-174 12//2 1:58 AM Page 11 Section 1.6 Other Types of Equations 11 12. A person throws a rock upward from the edge of an 8-foot cliff. The height, h, in feet, of the rock above the water

More information

Functions and Their Graphs

Functions and Their Graphs 3 Functions and Their Graphs On a sales rack of clothes at a department store, ou see a shirt ou like. The original price of the shirt was $00, but it has been discounted 30%. As a preferred shopper, ou

More information

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion.

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion. THE SIMPLE PENDULUM Objective: To investiate the relationship between the lenth of a simple pendulum and the period of its motion. Apparatus: Strin, pendulum bob, meter stick, computer with ULI interface,

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

1 Introduction. 2 Electric Circuits and Kirchoff s Laws. J.L. Kirtley Jr. 2.1 Conservation of Charge and KCL

1 Introduction. 2 Electric Circuits and Kirchoff s Laws. J.L. Kirtley Jr. 2.1 Conservation of Charge and KCL Massachusetts Institute of Technoloy Department of Electrical Enineerin and Computer Science 6.061 Introduction to Power Systems Class Notes Chapter 6 Manetic Circuit Analo to Electric Circuits J.L. Kirtley

More information

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information

Section 1-4 Functions: Graphs and Properties

Section 1-4 Functions: Graphs and Properties 44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH 6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply Introduction and Basics Tet Regions By Clicking on the Worksheet you are in an active Math Region In order to insert a tet region either go to INSERT -TEXT REGION or simply start typing --the first time

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

More information

5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope 5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10 Chapter 3 & 8.1-8.3 These are meant for practice. The actual test is different. Determine whether the pair of equations represents parallel lines. 1) 9 + 3 = 12 27 + 9 = 39 1) Determine whether the pair

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

Solving Systems Using Tables and Graphs. Use the chart below to review vocabulary. These vocabulary words will help you complete this page.

Solving Systems Using Tables and Graphs. Use the chart below to review vocabulary. These vocabulary words will help you complete this page. - ELL Support Solving Sstems Using Tables and Graphs Use the chart below to review vocabular. These vocabular words will help ou complete this page. Word Classif (verb) KLAS uh fah Classified (verb) KLAS

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

2 3 Histograms, Frequency Polygons, and Ogives

2 3 Histograms, Frequency Polygons, and Ogives 48 Chapter 2 Frequenc Distributions and Graphs 4. In Data Analsis, select Histogram and click the [OK] button. 5. In the Histogram dialog bo, tpe A1:A5 as the Input Range. 6. Select New Worksheet Pl, and

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

Section 0.3 Power and exponential functions

Section 0.3 Power and exponential functions Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7?

3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7? Precalculus Worksheet P.1 1. Complete the following questions from your tetbook: p11: #5 10. Why would you never write 5 < > 7? 3. Why would you never write 3 > > 8? 4. Describe the graphs below using

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model 1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Tanks a Lot Introduction to Linear Functions Vocabular Define each term in our own words.. function A function is a relation that maps each value of

More information

Name Class Date. Additional Vocabulary Support

Name Class Date. Additional Vocabulary Support - Additional Vocabular Support Rate of Change and Slope Concept List negative slope positive slope rate of change rise run slope slope formula slope of horizontal line slope of vertical line Choose the

More information