A River about to Die: Yamuna
|
|
|
- Lora Price
- 9 years ago
- Views:
Transcription
1 J. Water Resource and Protection, 2010, 2, doi: /jwarp Published Online May 2010 ( A River about to Die: Yamuna Abstract Anil Kumar Misra Department of Civil Engineering, Institute of Technology and Management, Gurgaon, India [email protected] Received January 15, 2010; revised March 25, 2010; accepted April 2, 2010 River Yamuna is one of the most polluted rivers of the India. It originates from Yamunotri glaciers in the lower Himalayas at an elevation of approximately 6387 meters. The barrages formed on the river are playing a major role in escalating the river pollution. River can be divided into five segments on the bases of hydrological and ecological conditions. Water quality of only one segment (Himalayan segment) meets the river water quality standards. Normally no water is allowed to flow downstream of the Himalayan segment (Tejewala barrage) especially in the summer and winter seasons to fulfill the demand of water of the surrounding area. Whatever water flows in the downstream of the Tajewala barrage is the untreated or partially treated domestic and Industrial wastewater contributed through various drains. The discharge of untreated domestic and industrial effluents have severely affected the quality of Yamuna River and now it falls under the category E, which makes it fit only for recreation and industrial cooling, completely ruling out the possibility for underwater life and domestic supply. Almost every year mass death of fishes is reported. Pollution levels in the Yamuna River have risen. Biochemical oxygen demand (BOD) load has increased by 2.5 times between 1980 and 2005: From 117 tonnes per day (TDP) in 1980 to 276 TDP in The Yamuna has been reduced to a small stream, draining industrial effluents, sewage, dirt and other toxic substances. There is an urgent need to take stringent measures to alleviate these pollution loads and save an ailing river. Keywords: Yamuna River, Himalayan Segment, Delhi Segment, Dissolved Oxygen, BOD, COD, Organic Matter, River Water Quality, India 1. Introduction River Yamuna is the largest tributary of the Ganga River in North India. Its total length is around 1370 kilometers. Yamuna originates from the Yamunotri Glacier of Uttar Kashi in Uttar Pradesh. River Tons and Giri are the important tributaries of Yamuna and principle source of water in mountainous ranges. Yamuna flows through the states of Delhi, Haryana and Uttar Pradesh, before merging with the Ganges at Allahabad. World famous cities like Delhi, Mathura and Agra lie on its banks. On the basis of hydrological and ecological conditions Yamuna has been classified into five segments that are Himalayan Segment, Upper Segment, Delhi Segment, Eutriphicated Segment and Diluted Segment [1]. Table 1 and Figure 1 show the area covered under these segments, while Table 2 shows the state wise land use pattern of the catchment area of river Yamuna. After origin Yamuna river flows through several valleys for about 200 km in lower Himalayas and emerges into Indo-Gangetic Plains. In the Himalayan Segment (from Yamunotri Glacier to Tajewala Barrage) the river water quality is good and it meets all the standards also. Within this segment in Hathnikund/Tajewala in Yamuna Nagar district of Haryana state, river water is diverted into Eastern Ya-muna Canal (EYC) and Western Yamuna Canal (WYC). Generally no water is allowed to flow in the down-stream of the Taje-wala Barrage especially during summers and winters to fulfill the water demand of Table 1. Different segments of the river Yamuna [1]. River Segments Segment Area Approx. Segment Length Himalayan Segment From origin to Tajewala Barrage 172 km Upper Segment Tajewala Barrage to Wazirabad Barrage 224 km Delhi Segment Wazirabad Barrage to Okhla Barrage 22 km Okhla Barrage to Chambal Eutriphicated Segment Confluence 490 km Diluted Segment Chambal Confluence to Ganga Confluence 468 km
2 490 A. K. MISRA Figure 1. Shows the different segments of river Yamuna. the surrounding districts. Due to this the river remains dry in many areas between Tajewala and Delhi. Whatever water flows between Tajewala Barrage and Delhi of the river is the untreated or partially treated domestic and industrial effluents discharge by several drains. After crossing a route of 224 km of upper segment Yamuna enters Delhi. The Yamuna water is again trapped by Wazirabad barrage for the domestic supply of water to Delhi. Usually no water or extremely little water is allowed to flow downstream of this barrage during lean seasons. There is another barrage Okhla barrage 22 km downstream of Wazirabad barrage this segment is called Delhi segment and it receives water from seventeen sewage drains of Delhi, Najafgarh drain. It is considered as the most polluted segment of Yamuna River. From this segment Yamuna water is diverted into Agra canal for irrigation. River water is not allowed to flow downstream during summers; beyond the Okhla barrage whatever water flow in Yamuna River is the domestic and industrial wastewater generated from east Delhi, Noida and Sahibabad and joins the river through Shahdara drain. At the upstream of Mathura Gokul barrage is also decreasing the flow and thereby polluting the river. Yamuna river after receiving water through other important tributaries joins the river Ganga and the underground Saraswati at Prayag (Allahabad) after traversing about 950 km [1]. Yamuna River passing through 22 km in Delhi was once described as the lifeline of the city, but today it has become one of the dirtiest rivers in the country. According to the Central Pollution Control Board (CPCB) the water quality of Yamuna River falls under the category E which makes it fit only for recreation and industrial cooling, completely ruling out the possibility for underwater life [2]. The pollution of the Yamuna River from domestic discharges from Delhi, Ghaziabad, Noida, Faridabad, Mathura and Agra has rendered the river unfit for any use. Yamuna s water quality in the Himalayan segment and in the segment after confluence with the Chambal river is relatively good [3-5]. In Delhi around 3296 MLD (million litres per day) of sewage by virtue of drains out falling in Yamuna and approximately 3.5 lakh people live in the Jhuggis that have come up on the Yamuna river bed and its embankment [6]. Because of the Table 2. State wise land use pattern of river Yamuna catchment area (source: comprehensive plan of flood control for ganga sub-basin and tributary river system, ganga flood control committee, ministry of water resources, government of India). State Area (% of total catchment) Non-arable land % Land use pattern Forest Land % Cultivable Land % Land actually cultivated % Land under habitational use % Himachal Pradesh Haryana NCT-Delhi Uttaranchal Uttar Pradesh Rajasthan Madhya Pradesh Total
3 A. K. MISRA 491 low flow (due to different barrages) and huge quantity of waste it receives the Yamuna river within the limits of the city have been given the dubious distinction of being one of the worst polluted rivers of the country by the Central Pollution Control Board (CPCB). According to the latest status of water quality in India (2007) released by CPCB the Yamuna water quality at Okhla and Nizamudin bridges has been described as the worst affected. As per data on water quality of water bodies and groundwater locations; it was placed seventh on the list of rivers with highest Biochemical Oxygen Demand (BOD), one of the most important indicators of pollution. The total biochemical oxygen demand content in the Yamuna was 93 mg/l, while the permissible level is 3 mg/l. The CPCB report says that the level of Dissolved Oxygen throughout the year in Yamuna was less than 4 mg/l and it was 0.0 mg/l at few locations down-stream of urban settlements due to discharge of untreated and partially treated wastewater. The water quality of Yamuna has deteriorated at Paonta Sahib, Kalanaur, Sonepat, Palla, Nizammudin, Okhla, Mazawali, Mathura, Agra, Bateshwar, Etawah, Juhika and Allahabad the western Yamuna canal downstream of Yamuna Nagar at Damla is grossly polluted due to municipal and industrial waste water disposal. The Yamuna is widely worshipped by devotees in India. A few centuries ago it prompted the Mughals to build one of their most magnificent monuments; the Taj Mahal on its bank; but today it has been reduced to a pale and stinking drain. About 57 million people depend on Yamuna River water. With an annual flow of about 10,000 cubic metres (cum) and usage of 4,400 cum (of which irrigation constitutes 96 percent), the river accounts for more than 70 percent of Delhi s water supplies. Available water treatment facilities are not capable of removing the pesticide traces. Waterworks laboratories cannot even detect them. Worse, Yamuna leaves Delhi as a sewer, laden with the city s biological and chemical wastes. Downstream, at Mathura and Agra, this becomes the main municipal drinking water source. Here, too, existing treatment facilities are not capable of detecting pollutants contained by river water. Thus, consumers in Mathura and Agra ingest unknown amounts of toxic pesticide residues each time they drink water. In Agra and Matura districts, the domestic and industrial users produce large quantities of waste products and the waterways provide a cheap and effective way of disposing them. Apart from that, water is discharged in Yamuna from Gokul barrage and Keetham Lake, 28 km upstream from Agra. Mathura refinery lifts raw water directly from Mathura canal, which acts as a feeder source for Keetham Lake. The water, which is released from the refinery, also seems to pollute Yamuna. During dry weather, the flow of Yamuna River consists almost en- tirely of effluents. The degree of pollution of Yamuna can be assed from an incident recounted below. On 13 th June 2002, thousands of dead and dying fishes were found strewn over the Sikendra Taj Mahal area along the water body. Reports of more fish deaths poured in from Bateshwar, about 78 km from Poiya Ghat in Agra (Figure 2). Such incidents are common; almost every year mass death of fishes is reported in Yamuna River [7]. Approximately 75 percent of precipitation in Yamuna basin occurs during the four monsoon months of June, July, August and September. This affects the river flow as well as the river water quality up to some extent. The demand of fresh water has been continuously increasing with growing population and increase in agricultural and industrial activities. Majority of the demand of water of Delhi, Haryana, Uttar Pradesh and Madhya Pradesh states is met by Yamuna, which has already become a sewerage drain. This paper aims to discuss the most prominent reasons of Yamuna river pollution and easily feasible and economically feasible measures to prevent further pollution and improve the river water quality. Figure 2. Shows the sites of maximum pollution and mass death of fishes reported in Agra and Mathura districts [7].
4 492 A. K. MISRA 2. Yamuna Water Quality Status 2.1. Yamuna Water Quality Status at Different Locations River water quality can be assessed by the analysis of nutrients, chemistry, and biology. The criteria for a healthy river are that it should contain at least 5 mg/l of Dissolved Oxygen (vital for the survival of marine life) and about 3 mg/l of Biochemical Oxygen Demand. Further the Pathogens (disease causing bacteria s) represented by the Faecal Coliforms counts should not exceed 500 per 100 ml of water. India River water qualities have been categories in five classes ( edugreen.teri.res.in/explore/maps/water.htm) that are Class A: The River water is fit for drinking after proper disinfection with the addition of chlorine or bleaching powder. Class B: Under this category the river water is fit only for bathing. Class C: The River water is fit for drinking only after proper treatment (screening to remove physical matters or particulate such as paper, plastic, etc. Class D: Under this class the river water is fit only for fish and wildlife and Class E: River water is suitable only for industrial cooling, irrigation, etc. Yamuna River belongs to class E [2]. Since 1975, there had been rapid urbanization, Industrialization and agricultural development in Yamuna basin, which have directly or indirectly affected the Yamuna water quality. Yamuna water quality is also affected by the six barrages in the river. Table 3 shows the diversion of Yamuna Water at various places all along its length. These barrages blocked the flow of the river and formed the lotic (flowing) environment. Generally most of the sludge get deposited at upstream of the barrages. This settled polluted materials moves to downstream along with sudden release of water from the barrages and increases the river pollution. Water quality monitoring and analysis of Yamuna River is regularly carried out by Central Pollution Control Board (CPCB) since As per the report of CPCB, 2006 different water quality parameters of Yamuna river are as follows Biological Oxygen Demand (BOD) It measures the rate of oxygen used by biological organisms in the water body to decompose the organic matter polluted by sewerage or industrial effluents. High demand of BOD indicates that the level of dissolved oxygen is falling, and river s marine life and biodiversity is in danger. It is caused by the presence of high level of organic pollutants and nitrate in water body. The BOD level in Yamuna from Yamunotri (origin) to Palla (Place between Sonipat and Nizamuddin Bridge) in Delhi is usually ranges from 1 to 3 mg/l. Up to Palla Yamuna is full of marine life, but beyond that wastewater drains outfall in Yamuna started. From Nizamuddin Bridge to Agra downstream the BOD level ranges from 3 to 51 mg/l. The BOD level was also found above the permissible limits in Mathura, Agra, Etawah and Juhika. Figure 3 shows the average BOD levels in Yamuna River at different locations Chemical Oxygen Demand (COD) COD beyond the permissible limit is the indicator of the organic and inorganic pollutants in the water body. The COD level in Yamuna ranges from 1 to 50 mg/l from its origin to Palla. Beyond Palla Yamuna River starts receiving large amount of wastewaters from different drain within Delhi and many downstream locations. The COD level start increasing from Nizamuddin Bridge and found above the permissible limits (ranges from 3 to 155 mg/l) up to Juhika Dissolved Oxygen (DO) DO level in Yamuna from its origin to Palla is found normal, but beyond that it started decreasing. After Wazirabad the DO level starts decreasing drastically and Table 3. Diversion of Yamuna River water ([8] EYC (eastern Yamuna canal) WYC (western Yamuna canal). Site Structure State Purpose State of River Dak Patthar Barrage Uttranchal Power Generation Water diverted into canal Asan Barrage Uttranchal Power Generation Water diverted into canal Hathnikund Barrage Uttar Pradesh/Haryana Irrigation and drinking water Water diverted into WYC and EYC (No water flow downstream in dry season) Wazirabad Barrage Delhi Drinking water Generally no water flow downstream in dry season ITO bridge Barrage Delhi Water supply to power plant Water available mainly from drains Okhla Barrage Delhi/Uttar Pradesh Water supply into Agra canal Generally no water flow downstream in dry season
5 A. K. MISRA 493 Figure 3. Average dissolved oxygen in Yamuna River [9]. majority of times the DO level was found nil at Delhi downstream locations; it may be attributed to Shahdara drain and Hindon River which discharge wastewater at these locations. Further the DO levels at locations in Mathura, Agra, Etawah and Juhika were found beyond the permissible limits. Figure 4 shows the average DO levels in Yamuna River at different locations. The ammonia values in the entire Yamuna stretch were found varying from nil to 44 mg/l in 1999 to Study of heavy metals at Palla and some of the impact locations such as Nizamuddin Bridge, Agra Canal, Mathura downstream and Agra downstream shows the presence of Cadmium, Nickel, Iron, Zinc and Chromium in Yamuna River. The maximum concentration of chromium 7.91 mg/l was found in January 2001, at Agra downstream, while the maximum concentration of Iron and Zinc was found 78.3 mg/l (Nizamuddin Bridge) and 1.37 mg/l (Palla) in July 2001 and June 2003 respectively. Apart from the heavy metals the presence of pesticides in Yamuna is also common. The pesticides like BHC (benzene hexa chloride), Dieldrin, Aldrin, Endosulfan and DDT were found in Yamuna river water at various locations. The maximum concentration of BHC ( µg/l) was observed at Agra downstream in September Whereas the maximum concentration of Aldrin ( µg/l, December 2001), Dieldrin (50.85 µg/l, March 2005) and Endosulfan ( µg/l, June 2002) was observed at Nizamuddin bridge and Mathura downstream respectively [9]. The sources of pesticides in the Yamuna seem to be agriculture activities common in the river catchment area as well as also along the bank of the river. Almost every year mass death of fishes is reported from these locations and right now the situation is that rarely the existence of fishes is reported in Yamuna River between Delhi to Agra. The water quality status of some of the important parameters is shown in Tables 4 and Different Sources of Pollution in the Yamuna River Approximately 75 percent of urban waste in India ends up in the country s rivers, and unchecked urban growth across the country combined with poor government oversight means the problem is only getting worse. This situation has arisen despite the huge investments made by subsequent governments in cleaning them up. As a result, our survival and that of rivers is at stake. According to the Centre for Science and Environment, approximately 75 to 80 percent of the river s pollution is the result of raw sewage, industrial runoff and the garbage thrown into the river and it totals over 3 billion liters of waste per day. About 20 billion rupees, or almost US $500 million, has been spent on various cleanup efforts.
6 494 A. K. MISRA Figure 4. Average biochemical oxygen in Yamuna River [9]. Table 4. Water quality ranges of some of the parameters in Yamuna River [9]. S. No. Parameters Value (mg/l) Minimum Location Year Value (mg/l) Maximum Location 1 TDS 83 Hathnikund Etawah Chloride 2 Hathnikund, Sonepat, Kalanaur Year Agra d/s (1/2) Sulphate 7 Etawah Nizamuddin bridge Sodium 6 Hathnikund, Sonepat 2001, 2003, Agra d/s (1/4) Calcium 7 Kalanapur Agra d/s (1/2) Magnesium 0.4 Sonepat Agra canal (1/2) Total hardness 46 Hathnikund Agra u/s Alkalinity 40 Hathnikund Mazawali 9 Phosphate 0.02 Palla Mathura u/s Potassium 1.0 Hathnikund Agra D/s , 2005 The pollution in the Yamuna River is continuously escalating and the river water is unfit for any use. There are serious water quality problems in the, cities, towns and villages using Yamuna rivers as a source of their water and the Yamuna is under serious threat from unprecedented escalation in urbanization and industrialization. The major sources of pollution in Yamuna river are: Industrial Effluents Yamuna River is also called mailee (dirty) river and river of sorrow to Delhi, Mathura and Agra. The River water
7 A. K. MISRA 495 Table 5. Scenario of water quality status of Yamuna River [10]. Sewage Generated Total Sewage Sewage Treated Remarks Daily Sewage Generated in Delhi 2871 million litres 1478 litres Remaining sewage goes into the Yamuna through the 17 drain TDS Quantity Permissible Limits Remarks Content of Suspended Solids in Yamuna ,000 mg/l 100 mg/l BOD Quantity Permissible Limits Remarks Biochemical Oxygen Demand (BOD) mg/l 3 mg/l Coliform Level Quantity Permissible Limits Remarks Coliform Level in Yamuna 11.8 Crore per 100 ml of water 5000 per 100 ml of water Coliforms causes many serious disesses relating to the digestive system Dissolved Oxygen Quantity Normal Oxygen Level Remarks Dissolved Oxygen Level 0 mg/l 4 mg/l Requirement of Drinking Water Total Requirement Available Drinking Water Delhi s Drinking Water Requirement 1480 cusecs 1221 cusecs The dissolved oxygen level is critically important for water plants and fish Remarks Forest Cover Existing Forest Cover Required Forest Cover Remark Delhi s Forest Cover 10.2% of total area 33% of the total area Air Pollution RSPM levels 3 times higher than normal, CO levels are twice the permissible standards is extremely black, it appears like an industrial drain in Delhi, as majority of the industries are on its bank and used to dump the untreated effluents into the river. The water in the Yamuna remains stagnant for approximately nine months in a year. There are unlimited numbers of industrial units, draining immense amount of untreated water in Yamuna existing in Delhi, Faridabad, Mathura and Agra. Central Pollution Control Board (CPCB) had estimated that there were approximately 359 industrial units, which directly or indirectly discharge their effluents in Yamuna. A report of CPCB [8] indicates that there were about 42 industrial units in Delhi directly polluting the Yamuna Domestic Waste Water Yamuna is considered one of the most polluted rivers of the world especially around the Delhi, because of the large amount of the wastewater discharge. According to a Central Pollution Control Board (CPCB) survey, Delhi contributes 23 percent of the total wastewater generated by Class I cities (cities with more than 100,000 people). More shockingly, this is 47 per cent of the waste generated by 101 Class I cities and 122 Class II cities (Population: 50,000-99,999) in the Ganga basin. The untreated domestic wastewater is dumped in the Yamuna, which has ammonia in it, increases its concentration. The water becomes untreatable when the ammonia concentration reaches to 0.4 mg/l or more. In Delhi often ammonia in Yamuna River has been found more than 0.4 mg/l especially during summer. The river has turned grossly polluted due to continuous discharge of domestic wastewater from Palla to Etawah Pollution from Agriculture The agriculture is also one of the main sources of contamination in the Yamuna River, which directly or indirectly affects river water quality through, ground and surface water runoff of agricultural land through monsoon and non-monsoon precipitation and seepage of irrigation water, which is composed of artificial fertilizer residues, insecticides, herbicides, pesticides and farmyard waste. Agriculture is very common in the catchment areas as well as all along the bank of the Yamuna River. Usually in the non-monsoon time majority of the river streams shrinks and their catchment areas are used for farming and thus directly contributing pesticides residue in the river Solid Wastes Solid wastes are the unwanted and discarded products in the solid states, their proper management are necessary.
8 496 A. K. MISRA Dumping of solid waste and garbage is one of the major problems in Yamuna River. As per the report of Yamuna Action Plan the content of suspended solids in Yamuna is ,000 mg/l and the permissible content of suspended solids is 100 mg/l. The main reason behind this is the high density of the population living in the city and the dumping of untreated water and solid waste into the river. Solid waste are generally composed of human fecal matter, cow dung, generated from various authorized and unauthorized dairy colonies located in Sonepat, Panipat, Delhi, Noida, Mathura, Agra and Etawah are being discharged untreated into river Yamuna and are considered as one of the major non-point source of pollution Other Sources There are many other reasons of pollution of Yamuna river water, such as on holy and religious occasions every year, thousands of peoples take a dip in the Yamuna and leave behind worship materials, polythene bags, clay idols, human excreta, account books and floral offerings in the river water, which increases the suspended materials in the water. The superstitious mindset of the peoples has contributed and still contributing and escalating the Yamuna River Pollution. Further large number of cities and small towns are located all along the Yamuna River. Majority of these small cities and towns do not have the sanitation facilities. Thus the most of the peoples uses river catchment areas for defecation, which causes pathogenic and organic contamination in the river. Peoples have the habit of dumping unburnt bodies of human beings and animals into the river. According to superstition, bodies of those who die from certain diseases (asthma, tuberculosis, leprosy, snake bite, poisoning etc.) and those of newborn babies, unmarried persons and holy men are consigned to the river. But poor people were also dumping bodies into the rivers to save on costly wood cremation. 4. Policies and Strategies to Improve Yamuna Water Quality Majority of rivers of India are facing acute water pollution problems and river Yamuna is one of them. Due to excessive industrialization and urbanization of river Yamuna especially in Delhi, Mathura and Agra have now become a drain. The water pollution of the river has gained large heights. Now it is become imperative to, yield a plan identifying viable remedial options and strategies for the Yamuna River clean up. Efforts will be made to resort to a bottom-up approach rather than a top-down one to help this highly polluted river, which is the major life-supporting artery of Delhi, Mathura, Agra and Etawah and many other cities in India. To apply the strategies effectively, we need to develop awareness among masses, education, and improved watershed management that will improve the water quality of this holy river. Some of the important measures that can be very effective in improving Yamuna water quality status are as follows Proper Management and Treatment of Wastewater Waste water discharges in rivers destroy marine lives; degrade the environment, and causes water shortage and waterborne diseases. Their proper management and treatment is necessary because it reduces or removes the organic matter, solids, nutrients, disease-causing organisms and other pollutants from the wastewater before it is discharged to river water. Delhi alone contributes around 3,296 MLD of sewage water in Yamuna River. Therefore it is imperative to take necessary action and promotes the following strategies Conserve Water and Use It Effectively Now day s both urban and rural areas, are facing the problems of water shortage and majority of the urban areas are depend upon the river water for the domestic supplies. Due to severe pollution river water requires high grade treatment prior to use for domestic purposes, which is expensive and not easily feasible. Therefore the conservation of water is necessary. Usually the construc tion of houses, footpaths and roads has left little exposed earth for water infiltration and recharge of groundwater aquifers. In the rural and urban areas the floodwater quickly flows to the nallas (drain) and rivers, which then dry up soon after the rains stop. If this water can be held back, it can seep into the ground and recharge the groundwater bodies Promote Wastewater Treatment & Technologies Works on the development of effective and easily feasible and economically feasible wastewater treatment techniques should be supported by the government. Encourage people in social gathering to reduce wastewater generation and use low cost and low maintenance wastewater treatment techniques at the common collection points Drainage Water Management and Treatment The drainage water management relies on the natural rainfall. It can be done by forming water control structure in the main, sub main or lateral drain such as different kinds of check dams. These structures control the surface runoff and ensure the maximum infiltration of drainage water and recharge the water table. Apart from that within the drainage canal or drain route artificial filters based on grain size sedimentation can be formed they are very effective in water treatment.
9 A. K. MISRA Recycling and Reuse of Wastewater Now day s wastewater can be recycled through effective technologies and it can be reused for different purposes such as agricultural and landscape irrigation, industrial processes, toilet flushing, and recharge a ground water basin. Wastewater can be recycled and reused onsite; for example, an industrial can recycles water it used for cooling processes. Likewise the municipal wastewater and sewage water can also be recycled and can be used for industrial purposes Financing Wastewater Management Schemes There are number of Government, semi-government, NGO s, private companies and environmental agencies are available which are working in the field of wastewater management. These organizations should be encouraged to work on the waste management techniques and can be financed through projects, schemes Improving the Sewerage System The status of sewerage systems especially in the cities, towns and blocks all along the Yamuna River course is extremely bed, due to this large quantity of untreated or partially treated sewage water mixed with river water. Further many cities, small towns and blocks do not have the sewer system facilities. The existing sewer system improvement and formation are needed to reduce the risk of seepage of sewerage water and material into the groundwater and river, especially during rainy seasons Upgrading of Sewage Treatment Plant The old, inadequate sewer systems are one of the major causes of water pollution in Yamuna. Now it s become imperative to upgrade all the existing sewerage treatment plants and increase their capacity. The areas without sewer system need immediate action as most of the wastewater and waste is directly dumped in river water or ground Proper Disposal of Sewage Disposal of sewage effluents are big problems almost in every big city. It cannot be simply disposed off due to their microbiological and chemical characteristics. Only after full treatment they can be discharged into river. But alone in Delhi approximately 1393 million liters of untreated sewage is disposed in Yamuna. Even the partially treated sewage effluents are not fully suitable for the discharge in river. More sewerage treatment plants should be formed immediately to prevent the water pollution in Yamuna River and discharge of untreated sewage should be banned Agricultural Practices Improvement Farmers are using large quantities of chemical fertilizer, insecticides, pesticides, to increase short term crop yields or keeping the soil productive, without knowing the exact quantities are required. It is estimated that about one half of every metric ton of fertilizer or pesticides applied to fields never even makes it into plant tissue, but instead ends up evaporating or being washed into local waterways. The excess amount of fertilizer use entered the soil, ground and surface water bodies and pollutes them and during rainy season by runoff it pollutes the lakes, ponds and rivers and causes eutrophication, which decreases the dissolved oxygen level and threatens animal and plant health. To prevent such situation emphasis should be given on the use of bio-fertilizers having least chemical constituents and accelerate the efforts to prevent the soil erosion through vegetation cover especially along the either side areas of river Environmental Management River environmental management depend on interactions between river, environment and human infrastructure, including the interactions between ecology, hydrology, water quality, climate, flooding, public sanitary facilities, waste water inputs and waste water treatment facilities. Thus a river directly as well as indirectly reflects the environmental management system facilities of any town, city, state and country. To protect Yamuna River from the pollutants some of the important steps should be taken immediately such as Solid Waste Management Almost all the cities situated on the either sides of Yamuna River have been experiencing very high population growth and urbanization. This has increased the urban environmental problems, such as solid waste management. Most of the cities do not have adequate solid waste management system and it causes heavy pollution to Yamuna River. Further the quantity of solid waste generated has increased significantly and its characteristics have changed as a result of the change in peoples lifestyles due to swift urbanization. Every day the river is polluted by solid waste disposal, animal bathing, disposal of dead bodies, slums along the river and cattle wallowing. Solid waste disposal of normal solid or semisolid materials, resulting from human and animal activities, that are useless, unwanted, or hazardous can be recycled and reused in daily lives. Once cleaned and separated, the recyclables solid wastes can be converted into products from total or partial recycled materials. Common household items, such as newspapers, paper towels, aluminum, plastic, and glass soft drink containers; steel cans; and plastic laundry detergent bottles can be formed from totally or partially recycled solid wastes. Further recycled materials can also be used in innovative
10 498 A. K. MISRA applications such as recovered glass in roadway asphalt (glassphalt) or recovered plastic in carpeting, park benches, and pedestrian bridges. The cities like Sonepat, Panipat, Delhi, Noida Mathura, Agra and Etawah pro-duce large amount of solid waste and plays a major role in polluting the Yamuna. If more and more recycled plants are formed in these cities then problem related with solid waste disposal can be effectively controlled Formation of Public Toilets Approximately 30 to 40% of urban population in major cities like Delhi, Agra, Mathura and Etawah stays in slums without sanitation facilities. People in these areas generally have the practice of open defecation and discharge of sewage in the Yamuna river catchment area due to this the water quality of the river is continuously deteriorating. Water contaminated with faecal matter causes diarrhoea (with proper sanitation, the risk level can drop by 40 percent); malnutrition, anaemia or retarded growth, blindness, schistosomiasis, and cholera and are very common disease of the slum areas in Delhi, Mathura and Agra. The formation of public sanitation facilities especially in the slum areas situated near either sides of the river is the best solution to prevent further deterioration Formation of Electric Crematorium and Create Awareness Cremation in Yamuna River and on its banks is also one of the reasons of river water pollution. Every day approximately 100 to 150 cremations are performed, most on wood pyres that do not completely consume the body. Along with the remains of these traditional funerals there are thousand more who cannot afford cremation and whose bodies are simply thrown into the Yamuna. Further the carcasses of thousands of dead cattle, which are scared to Hindus go into the river each year. The absence of adequate cremation facilities are contributing to large number of partially unbrunt corpses floating down the Yamuna. Formation of electric cremation is the only solution of these problems. Muslims and Christians according to their rituals buried the body in the graveyard, whereas, Hindus and Sikhs burn up the cadaver and in the case of children s death body is surged into river. Both central and state government should accelerate it affords to guide, aware and convince people to use electric cremation for the antim sanskara (last rites) instead of wood. It s not only environment friendly but also least expensive Formation of Holy Bathing Ponds In India people (Hindus) bathe in rivers due to religious convictions and beliefs and dump holy materials and related materials along with domestic solid waste in rivers. River Yamuna is among one of the holiest rivers in India and people frequently take mass bath in the river. Water quality is severely affected by mass bathing. Deterioration of river water quality may injure health of the people taking the dip and also the population downstream which use the river as a source of water for drinking and bathing purposes. This problem can be solved by the formation of holy bathing ponds, near the ghats filled with river water along with artificial ground water recharge techniques. This will not only prevent river pollution but also recharge the groundwater resources. 5. Afforestation Afforestation plays an important role in reducing the soil erosion and agricultural runoff. Afforestation along the either sides of Yamuna river banks would help in controlling the agricultural runoff, which is composed of fertilizers and pesticides. Further afforestation along the Yamuna River can also reduce the rise in river water temperature by preventing the direct exposure of river water with sunlight. This will also oxygenate the river water. 6. Canal Formation Majority of the rural and some urban areas do not have the sewer systems in Delhi, Agra, Mathura and Etawah districts. Therefore the sewerage wastes and other domestic wastes flow directly to the Yamuna River through the open drains. Such wastes not only pollute the river but also pollute the surface and groundwater resources. This should be ban at any cost and a barrier between the river and cities/towns should be formed. Canals should be formed parallel to the river for carrying all the towns domestic and sewerage waste to 7 to 10 km downstream of the town or city and dumped to the river after treatment. This will not only prevent the Yamuna pollution but also help in solving the drinking water problems in Delhi, Mathura and Agra. 7. Legislation and Fines Now it s become necessary to form strict rules and regulations and ensure their 100 percent implementation to control the escalating pollution in Yamuna River. Monitoring at the major pollution sites of the river should be started immediately. Dumping of domestic wastes and other polluting materials in river should be banned and fine and imprisonment of 6 months to 1 year should be imposed based on the self purifying abilities and waste assimilation capacities of a river, the effluent standards
11 A. K. MISRA 499 should be worked out separately for each of the various polluters [11]. 8. Awareness among the People Prevention of Yamuna river pollution cannot be achieved without people s participation. Therefore it s important to create awareness among the people regarding the way river pollution is occurring and its related consequences. People should be taught various means to be adopted to reduce the increasing pollution levels in the river. In Delhi, state government has formed 10 feet high wire barricades along all Yamuna bridge under the Yamuna Action Plan I with signboard messages to prevent people from tossing things into the Yamuna. Despite that almost everyday people throw flowers and religious materials in the river, which creates pollution. Help of different volunteer organizations and NGO s should be taken to launch campaign and create awareness. Print media and electronic media can play a major role in creating awareness and urging people not to throw garbage and other pollutants in rivers. 9. Discussion and Conclusions Yamuna which acts as the life line for the majority of the cities like Yamuna Nagar (Haryana), Panipat, Sonipat, Delhi, Noida, Faridabad, Mathura and Agra plays a major role in polluting the river. Yamuna river flow is restricted through several barrages such as Tajewala barrage, Wazirabad Barrage, Okhla Barrage, Gokul barrage etc. These barrages are directly or indirectly affecting the river water quality and aquatic ecosystem. Sludges which contain inorganic, organic and other toxic matters usually get deposited at the upstream of the barrages and their sudden release in the downstream of the river water increases pollution level so high that led to the mass death of fishes especially Delhi and Eutriphicated segment frequently. Yamuna river enters Delhi near the Palla village 15 km upstream of Wazirabad barrage, which acts as a reservoir for Delhi. Delhi generates approximately 2871 MLD of sewage, against an installed sewage treatment capacity of 1,478 MLD. Thus, about 1,393 MLD of untreated and a significant amount of partially treated sewage enter the river every day [12]. The Delhi sewage system can be blamed for it and steps should be taken from not putting the industrial waste into the river as most of the industries are on the banks of Yamuna. In Delhi river water is black and it hardly flows. Now it s become imperative to maximize the use of the existing treatment facilities and ensure the reuse of treated effluents. All waste, legal and illegal, sewered and unsewered must be trapped and treated and not mixed with untreated sewage. Centralized sewage treatment plants cannot be considered as good because the cost of transporting waste to the treatment facility and transporting treated effluent back to the point of reuse makes them too expensive to run. Therefore, treatment facilities need to be constructed close to the source of sewage generation. Catchment area delineation is also an important component of water quality management. In order to reduce pollutant loadings at an outfall, it is necessary to examine and improve water use practices in the areas where pollutants originate. Further the raw sewage must be treated before it is discharged into the river stream. Large agricultural fields, of Uttaranchal, Haryana, Uttar Pradesh, and Madhya Pradesh significantly contribute to river pollution. If river catchment area is protected from the chemical contamination the river pollution related with irrigation can be minimized. This can only be done by switching to organic or biological farming methods and curtailing the use of pesticides and fertilizers. Several water treatment technologies prevailing in West are very expensive and country like India cannot afford it. Besides, that the conventional water treatment processes, based on chemical coagulation and filtration or biological slow sand filtration, have little capacity to remove water-soluble pesticides. Therefore emphasis should be given to the easily feasible and economically feasible techniques capable of removing or minimizing the pesticides content from the water. The quality restoration of any river, especially of the Yamuna at different locations, is a very complex and interdisciplinary endeavor. Yamuna River pollution cannot be minimized merely by diverting the routes of different drains carrying wastewaters and/or establishing sewage treatment plants. The required strategy for pollution control should not only be a multi-line approach but also be fool proof. The various sources of pollution in the Yamuna river and possible strategies to restore this ailing river to its pristine status must be thoroughly examined and effective and enduring solutions established and implemented. 10. Acknowledgements I thank all the faculty members of the Civil Engineering Department, of Institute of Technology and Management (ITM) for providing working facilities and also for continuous encouragement. 11. References [1] Central Water Commission, Yamuna Basin Organization, [2] Hindu, Delhi reduces Yamuna to a sewage drain, New Delhi, /06/25/stories/ htm
12 500 A. K. MISRA [3] D. S. Bhargava, Most rapid BOD Assimilation in Ganga and Yamuna Rivers, Journal of Environmental Engineering, American Society of Civil Engineers, Vol. 109, No. 1, 1983, pp [4] D. S. Bhargava, Water Quality Variations and Control Technology of Yamuna River, Environmental Pollution, Series A, Ecological and Biological, Vol. 37, No. 4, 1985, pp [5] D. S. Bhargava, Revival of Mathura s Ailing Yamuna River, The Environmentalist, Vol. 26, No. 2, June 2006, pp [6] Yamuna Action Plan, asp [7] P. Verma, The Mystery of Large-Scale Fish Fatalities in the Yamuna near Agra and the Conflicting Official Theories, Down to Earth, Vol. 12, 15 July [8] Central Pollution Control Board, Water Quality status of Yamuna River, New Delhi, April cpcb.nic.in [9] B. Sengupta, Water Quality Status of Yamuna River ( ), Assessment and Development of River Basin Series: ADSORBS/41/ , Central Pollution Control Board, Delhi, November nic.in. [10] Yamuna Action Plan, in/pdf/yam.pdf [11] D. S. Bhargava, Technology for Rationally Setting Effluent Standards for Water Pollution Administration, Journal of Environmental Engineering Division, Institution of Engineers, Vol. 66, No. 1, 1985, pp [12] Delhi the biggest Culprite, Down to Earth, Vol. 5, No , 1997.
Chapter 2 Brief Overview of the Yamuna River Basin and Issues
Chapter 2 Brief Overview of the Yamuna River Basin and Issues Abstract This chapter presents the current status of the Yamuna river basin as well as brief description of its catchments. This chapter also
NAJAFGARH DRAIN-SAMPLING AND ANALYSIS
Dr. Anamika Paul* Preeti Jain* Kartikey Handa* NAJAFGARH DRAIN-SAMPLING AND ANALYSIS Abstract: Over the past years, due to rapid industrialization and advanced agricultural activities environmental deterioration
[Dubey*, 5(2): February, 2016] ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ASSESSMENT OF WATER QUALITY STATUS OF YAMUNA RIVER AND ITS TREATMENT BY ELECTRODE BASED TECHNIQUES R. S. Dubey* Department of
Current condition of the Yamuna River - an overview of flow, pollution load and human use
Current condition of the Yamuna River - an overview of flow, pollution load and human use Deepshikha Sharma and Arun Kansal, TERI University Introduction Yamuna is the sub-basin of the Ganga river system.
State of pollution in the Yamuna
State of pollution in the Yamuna Introduction: While the Delhi government had been debating on what needs to be done to clean the river, the pollution levels have only worsened. In its book Sewage Canal:
Freshwater Resources and Water Pollution
Visualizing Environmental Science Freshwater Resources and Water Pollution Chapter 10 Copyright The Importance of Water Life on Earth would be impossible without water All living organisms contain water
WATER QUALITY STATUS OF RIVER YAMUNA IN DELHI WITH REFERENCE TO PRESENCE OF HEAVY METALS: A REVIEW
Int. J. Pharm. Med. & Bio. Sc. 2012 Divya Christopher and Simarpreet Kaur, 2012 Research Paper ISSN 2278 5221 www.ijpmbs.com Vol. 1, No. 2, October 2012 2012 IJPMBS. All Rights Reserved WATER QUALITY STATUS
Water quality of River Yamuna Delhi stretch
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 5, 2013 Copyright 2010 All rights reserved Integrated Publishing Association Research article ISSN 0976 4402 Water quality of River Yamuna Delhi
Collection and disposal of wastewater
10 Collection and disposal of wastewater 10.1 Characteristics and hazards of wastewater from health-care establishments Wastewater from health-care establishments is of a similar quality to urban wastewater,
WASTEWATER TREATMENT OBJECTIVES
WASTEWATER TREATMENT OBJECTIVES The student will do the following: 1. Define wastewater and list components of wastewater. 2. Describe the function of a wastewater treatment plant. 3. Create a wastewater
Institutional intervention in River Water Management: the Study of Yamuna river sub-basin in India 1
Institutional intervention in River Water Management: the Study of Yamuna river sub-basin in India 1 Centre for Good Governance Hyderabad Abstract Water is a primary resource for several human activities,
Water Recycles poster
Water Recycles poster The "Water ReCycles" poster is designed for students of all ages. It shows the natural water cycle and humans influence on water resources. Raincloud illustration The raincloud in
PRSENTATION ON DRAINAGE SYSTEM DELHI 25.07.2014 EAST DELHI MUNICIPAL CORPORATION
PRSENTATION ON DRAINAGE SYSTEM OF DELHI EAST DELHI MUNICIPAL CORPORATION 25.07.2014 MAP OF DELHI SHOWING MCD s, NDMC & DCB ABOUT DELHI DELHI MANIFESTS UNCONTROLLED URBANISATION POPULATION INDUSTRIALISATION
Lesson Plan: How Do We Clean Polluted Water?
Lesson Plan: How Do We Clean Polluted Water? Oil Spill Cleanup / Phosphate Cleanup / Groundwater Contamination / Water Treatment Simulation Estimated Time: 2-4 days State Standards taught and addressed
Bacteriological water quality status of River Yamuna in Delhi
Journal of Environmental Biology January 2006, 27(1) 97-101 (2006) Triveni Enterprises, Lucknow (India) For personal use only Free paper downloaded from: www.jeb.co.in Commercial distribution of this copy
COMPREHENSIVE PLAN SECTION B, ELEMENT 4 WATER RESOURCES. April 20, 2010 EXHIBIT 1
COMPREHENSIVE PLAN SECTION B, ELEMENT 4 WATER RESOURCES April 20, 2010 EXHIBIT 1 ELEMENT 4 WATER RESOURCES TABLE OF CONTENTS 4.1 INTRODUCTION 4.2 GOALS AND POLICIES 4.2.A General Goals and Policies 1 4.2.B
Parts per million (ppm) or Milligrams per liter (mg/l): one part by weight of analyte to 1 million parts by weight of the water sample.
2015 Annual Drinking Water Quality Report St. Johns County Utility CR 214 Mainland We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the
Source Water Protection Practices Bulletin Managing Sanitary Sewer Overflows and Combined Sewer Overflows to Prevent Contamination of Drinking Water
United States Office of Water EPA 916-F-01-032 Environmental Protection (4606) July 2001 Agency Source Water Protection Practices Bulletin Managing Sanitary Sewer Overflows and Combined Sewer Overflows
Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question.
Chapter 14 Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT true regarding the Chesapeake Bay? a. it is one of many small
Water resources. The main problems of pollution that need to be addressed in the country are the following:
Translated from Spanish Water resources 1. The issue of water resources At the present time, sustainable standards for the development and use of water resources are not maintained in many parts of the
Environmental Engineering, University of Seoul, Jennong-dong, Dongdaemun-gu, Seoul, Korea.
WATER QUALITY MANAGEMENT FOR ECOLOGICAL RESTORATION IN ANYANG STREAM Yu, M.J., Cho, Y.M. 2, Lee, S.K. 3 Environmental Engineering, University of Seoul, Jennong-dong, Dongdaemun-gu, Seoul, Korea. 2 Department
Don t spit in the well - you may need to drink from it! -- Unknown, Russia.
Don t spit in the well - you may need to drink from it! -- Unknown, Russia. WATER POLLUTION Water is a unique substance, because it can naturally renew and cleanse itself, by allowing pollutants to settle
WASTEWATER TREATMENT
Freshwater WASTEWATER TREATMENT Water Quality 1. INDICATOR (a) Name: Wastewater treatment. (b) Brief Definition: Proportion of wastewater that is treated, in order to reduce pollutants before being discharged
6 Chemicals from human settlements
6 Chemicals from human settlements 6.1 Introduction The world is becoming increasingly urban, particularly in developing countries. The transition of people from rural areas to cities represents a major,
Water Treatment Filtration Lab. discharged into an aquatic ecosystem? We had to build a water filtration system with
Water Treatment Filtration Lab Brandon Lyons P.5 APES Abstract: How could polluted water be remediated so that it could support life when it is discharged into an aquatic ecosystem? We had to build a water
Living & Working Managing Natural Resources and Waste
Living & Working Managing Natural Resources and Waste 5.13 Managing Natural Resources and Waste Background 5.13.1 This chapter focuses on how we manage resources within the AONB. It includes renewable
Environmental Science 101 Waste. Fall 2012. Lecture Outline: Terms You Should Know: Learning Objectives: Reading Assignment: Chlorinated.
Environmental Science 101 Waste Fall 2012 1 Lecture Outline: 17. SEWAGE DISPOSAL A. Sewage Handling B. Raw Sewage C. Wastewater Treatment Steps D. Individual Septic Systems E. Taking Stock Learning Objectives:
1.3 Wastewater and Ambient Water Quality
1.3 Wastewater and Ambient Water Quality Applicability and Approach...25 General Liquid Effluent Quality...26 Discharge to Surface Water...26 Discharge to Sanitary Sewer Systems...26 Land Application of
Phosphorus. Phosphorus Lake Whatcom Cooperative Management. www.ecy.wa.gov/programs/wq/nonpoint/phosphorus/phosphorusban.html
Phosphorus Phosphorus Brochure Lake Whatcom Cooperative Management Reducing Phosphorus Website Washington State Department of Ecology www.ecy.wa.gov/programs/wq/nonpoint/phosphorus/phosphorusban.html Nutrients
Assessment of Surface Water Quality Using Qual2k Software: A Case Study of River Yamuna, India
Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(7): 16-23 Research Article ISSN: 2394-658X Assessment of Surface Water Quality Using Qual2k Software:
WATER. Environmental Issue. Water pollution. Outline Water pollution enforcement (before test) Sources. Effects
WATER Outline Water pollution enforcement (before test) Sources Categories of pollution (before test) Effects Result of pollution in water (after test) Environmental Issue Problems that affect some part
Hydro Chemical Analysis of Surface and Ground Water Quality of Yamuna River at Agra, India
J. Mater. Environ. Sci. 2 (4) (211) 373-378 Maheshwari et al. ISSN : 228-258 Hydro Chemical Analysis of Surface and Ground Water Quality of Yamuna River at Agra, India Arti Maheshwari 1,*, Manisha Sharma
Welcome to the Understanding Dissolved Oxygen learning module. This section provides information on the following topics:
Introduction Welcome to the learning module. This section provides information on the following topics: How dissolved oxygen is defined and measured in numbers Why dissolved oxygen is important Natural
Water Resource. 1 Initiating and Sustaining Water Sector Reforms : A Synthesis World Bank in collaboration with the Government of India, Ministry of
WATER RESOURCES OF INDIA by Kalipada Chatterjee Climate Change Centre Development Alternatives Introduction Water is essential for human civilisation, living organisms, and natural habitat. It is used
septic systems What is a Septic System? How does a Septic System Work?
septic systems What is a Septic System? A septic system is a private sewage treatment system. They are common in rural areas where there are no municipal sewage pipes for homes, farms, businesses or other
Review of the interceptor plan for the Yamuna Analysis by
Review of the interceptor plan for the Yamuna Analysis by River Pollution Unit Centre for Science and Environment, New Delhi Web: www.cseindia.org Email: [email protected] May 2009 Contents I. Introduction...
Water and Wastewater. Sample Collection and Analysis
Water and Wastewater Sample Collection and Analysis December 2011 Introduction Accurate testing of drinking water is crucial to maintaining the health and safety of Islanders who rely on this resource.
Clean Water Services. Ecosystems Services Case Study: Tualatin River, Washington
Viewed broadly, the concept of ecosystem services describes the many resources and services provided by nature. Typically, traditional planning and development practices do not adequately represent the
SAMPLE CHAPTERS UNESCO EOLSS SURFACE WATER MONITORING. Masanori Ando Musashino University, Japan
SURFACE WATER MONITORING Masanori Ando Musashino University, Japan Keywords: surface water, monitoring, sampling, monitoring program, monitoring location, sampling programs, flow measurement, sampling
GLOBAL CIRCULATION OF WATER
Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally
National Water Quality Monitoring Programme
National Water Quality Monitoring Programme Objectives of Water Quality Monitoring The preamble of Water (prevention and control of pollution) Act, 1974 stated that pollution control board both at States
Global water resources under increasing pressure from rapidly growing demands and climate change, according to new UN World Water Development Report
WWDR4 Background Information Brief Global water resources under increasing pressure from rapidly growing demands and climate change, according to new UN World Water Development Report As demand for water
National Environment Awareness Campaign(NEAC) 2014-2015. Theme
National Environment Awareness Campaign(NEAC) 2014-2015. Theme COMBATING DESERTIFICATION, LAND DEGRADATION AND DROUGHT Background Note Desertification is about land degradation: the loss of the land s
Maine Department of Environmental Protection Program Guidance On Combined Sewer Overflow Facility Plans
Maine Department of Environmental Protection Program Guidance On Combined Sewer Overflow Facility Plans OVERVIEW The objective of a Combined Sewer Overflow (CSO) Facility Plan is to abate CSO discharges
WATER QUALITY MONITORING AND APPLICATION OF HYDROLOGICAL MODELING TOOLS AT A WASTEWATER IRRIGATION SITE IN NAM DINH, VIETNAM
WATER QUALITY MONITORING AND APPLICATION OF HYDROLOGICAL MODELING TOOLS AT A WASTEWATER IRRIGATION SITE IN NAM DINH, VIETNAM LeifBasherg (1) OlujZejlllJul Jessen (1) INTRODUCTION The current paper is the
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES Question 1 Read the Fremont Examiner article below and answer the questions that follow. (a) Identify ONE component of the sewage that is targeted for removal
City of Green Bay Department of Public Works Engineering Department
City of Green Bay Department of Public Works Engineering Department The Difference Between Sanitary & Storm Sewers Contact Information: Department of Public Works City Hall 100 North Jefferson Street,
Lesson Plan: How Do We Know What is Healthy Water?
Lesson Plan: How Do We Know What is Healthy Water? Estimated Time: 1-3 days ph /Chlorine / Hardness State Standards taught and addressed Grade 8: Standards Taught (and evaluated at end of lesson) Science
Ground Water Contamination by Leachate
Ground Water Contamination by Leachate Manoj P. Wagh, Piyush K. Bhandari, Swapnil Kurhade Assistant Professor, Department of Civil Engineering, P. D. V. V. P. College of Engineering, Ahmednagar, India.
Town of New Castle Utility Department Introduction
Town of New Castle Utility Department Introduction Town of New Castle Utility Department Mission Statement Our commitment is to ensure that our customers receive high quality water and wastewater treatment
INFORMATION SHEET ORDER NO. R5-2011-XXXX TRIANGLE ROCK PRODUCTS, INC. FLORIN ROAD AGGREGATE PLANT SACRAMENTO COUNTY
ORDER NO. R5-2011-XXXX INFORMATION SHEET Background Triangle Rock, Inc. (Discharger) submitted a Report of Waste Discharge (RWD) on 23 August 2010. The Discharger is expanding the mining operations at
MAINTENANCE OF SMALL WATER SUPPLY, SANITATION AND IRRIGATION SCHEMES
MAINTENANCE OF SMALL WATER SUPPLY, SANITATION AND IRRIGATION SCHEMES John van Rijn INDEVELOPMENT MAINTENANCE OF SMALL WATER SUPPLY, SANITATION AND IRRIGATION SCHEMES Any part of this publication may be
Total Suspended Solids Total Dissolved Solids Hardness
Total Suspended Solids (TSS) are solids in water that can be trapped by a filter. TSS can include a wide variety of material, such as silt, decaying plant and animal matter, industrial wastes, and sewage.
INDEX. Introduction 3. The Septic System 3. What Does The Septic Tank Do? 4. Where It All Goes 5. Problems 7. Some Dontʼs 8
1 INDEX Introduction 3 The Septic System 3 What Does The Septic Tank Do? 4 Where It All Goes 5 Problems 7 Some Dontʼs 8 Management of Your On-Site System 9 Tank Maintenance 9 Disposal Field Area 10 Appendix
Environmental Benefits of Pervious Concrete
Environmental Benefits of Pervious Concrete Concrete Can Be Recycled When the time comes to demolish a concrete structure or pavement, the material need not be wasted. It can be crushed and used as aggregate,
Who is responsible for making sure that wastewater is treated properly?
WASTEWATER TREATMENT What is wastewater? Wastewater is water that has been used and must be treated before it is released into another body of water, so that it does not cause further pollution of water
Nature's Cleaning Process
Nature's Cleaning Process Students learn how a septic system cleans wastewater by performing an experiment. Level(s): 6-8 Subject(s): Physical Science, Chemistry, Life Science Virginia SOLs: 6.5 f, g;
This Questionnaire is divided into 8 sections referring to different capacity areas on the safe use of wastewater in agriculture:
Annex - II Questionnaire to support the Capacity Development Needs Assessment In the framework of the Capacity Development Project on Safe Use of Wastewater 1 in Agriculture Phase I The Food and Agriculture
Planning, Health and Environment Division
18 Planning, Health and Environment Division A Planning Guide to Sustainable Drainage Systems Introduction Working in co-operation with the Environment Agency, Severn Trent Water Ltd., the Highway Authority
ENVIRONMENTAL CODE OF PRACTICE FOR CONCRETE BATCH PLANT & ROCK WASHING OPERATIONS
ENVIRONMENTAL CODE OF PRACTICE FOR CONCRETE BATCH PLANT & ROCK WASHING OPERATIONS PREPARED BY: DEPARTMENT OF ENVIRONMENT AND LANDS INDUSTRIAL ENVIRONMENTAL ENGINEERING DIVISION APRIL 16, 1992 - TABLE OF
WHY TREAT WASTEWATER?
CARIBBEAN ENVIRONMENTAL HEALTH INSTITUTE WHY TREAT WASTEWATER? ENVIRONMENTAL, HEALTH AND LEGAL CONSIDERATIONS The Importance of Effective Wastewater Treatment & Disposal Benefits to Hotels FORWARD In September
Regulating Water Pollution in Ontario s Municipalities Windsor s Sewer Use By-law Prepared by Derek Coronado
Regulating Water Pollution in Ontario s Municipalities Windsor s Sewer Use By-law Prepared by Derek Coronado Under Ontario s Municipal Act, municipalities have the power to pass sewer use by-laws. The
Characterizing Beauty Salon Wastewater for the Purpose of Regulating Onsite Disposal Systems
Characterizing Beauty Salon Wastewater for the Purpose of Regulating Onsite Disposal Systems Fred Bowers 1,2, Ph.D. New Jersey Department of Environmental Protection Division of Water Quality August 14,
How do you treat water based on water quality from different water sources?
How do you treat water based on water quality from different water sources? Why? Authors: Wendy Lane and Kim Sciarrone Seattle Public Schools; Seattle, WA Water from different sources will contain different
Planning, Designing, Monitoring and Inspection of Wastewater Treatment Systems of Industries
International Journal of Chemistry and Chemical Engineering. ISSN 2248-9924 Volume 3, Number 3 (2013), pp. 225-230 Research India Publications http://www.ripublication.com Planning, Designing, Monitoring
Hydrological and Material Cycle Simulation in Lake Biwa Basin Coupling Models about Land, Lake Flow, and Lake Ecosystem
Sengupta, M. and Dalwani, R. (Editors). 2008. Proceedings of Taal2007: The 12 th World Lake Conference: 819-823 Hydrological and Material Cycle Simulation in Lake Biwa Basin Coupling Models about Land,
Sewerage Management System for Reduction of River Pollution
Sewerage Management System for Reduction of River Pollution Peter Hartwig Germany Content page: 1 Introduction 1 2 Total emissions 3 3 Discharge from the wastewater treatment plants 4 4 Discharge from
CENTRAL ARIZONA SALINITY STUDY ---- Phase I. Technical Appendix O. Municipal TDS Research
CENTRAL ARIZONA SALINITY STUDY ---- Phase I Technical Appendix O Municipal TDS Research Introduction Water availability and quality are among the world s most important environmental issues. Demand for
Pamela Birak, Jordan Lake State Park, Chatham County, NC
Pamela Birak, Jordan Lake State Park, Chatham County, NC 3 Lakes, Reservoirs, and Ponds Forty-six states, Puerto Rico, and the District of Columbia (collectively referred to as states in the rest of this
Water Quality Monitoring in India: A Review
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 8 (2013), pp. 851-856 International Research Publications House http://www. irphouse.com /ijict.htm Water
A Traditional Island Industry
A Traditional Island Industry The PEI wild public fishery has remained a productive Island industry for 150 years Wild public oyster fishers still fish in the traditional methods of their ancestors, using
FOUR RIVERS RESTORATION PROJECT
MLTM Republic of Korea Making Every Drop Count International Workshop on Integrated Urban Water Management WATER & GREEN GROWTH FOUR RIVERS RESTORATION PROJECT Office of National River Restoration, Korea
Proposed Terms of Reference for EIA studies
1 Proposed Terms of Reference for EIA studies Base line data collection will be collected for the Post-Monsoon season 2016 (September to November 2016) in study area and 10 kms radius from project site.
Global Water Resources
Global Water Resources Highlights from assessment activities over the past two decades, which are used to establish present and future water trends, reveal that: 1. Freshwater resources are unevenly distributed,
STORMWATER MONITORING: POLLUTANTS, SOURCES, AND SOLUTIONS
RICHLAND COUNTY STORMWATER MANAGEMENT DIVISION STORMWATER MONITORING: POLLUTANTS, SOURCES, AND SOLUTIONS As part of the federal government s National Pollutant Discharge Elimination System Permit (NPDES)
Lesson 5: Water Conductivity and Total Dissolved Solids Water Quality Sampling
Lesson 5: Water Conductivity and Total Dissolved Solids Water Quality Sampling Time Frame: Two 45-50 minute class periods Grade Level: 8 th 12 th Grade Overview: There are a wide variety of inorganic substances
A Developer s Guide: Watershed-Wise Development
A Developer s Guide: Watershed-Wise Development Environmental Protection What is a watershed? It does not matter how far away you build from a creek, lake, or the ocean, you are in a watershed. Another
ALL YOU NEED TO KNOW...
ALL YOU NEED TO KNOW... What do you know about your septic tank system? For the purposes of this booklet, a septic tank system refers to any kind of on-site sewage management system including traditional
Mamta Rani, Pratima Akolkar, H.S. Bhamrah
2013; 1 (6): 1-6 ISSN 2320-7078 JEZS 2013; 1 (6): 1-6 2013 AkiNik Publications Received 10-10-2013 Accepted: 21-10-2013 Mamta Rani Ph.d research scholar Department of Zoology, MMH College Ghaziabad Uttar
Wastewater Production, Treatment, and Use in Malaysia
Wastewater Production, Treatment, and Use in Malaysia Engku Azman Tuan Mat 1, Jamil Shaari 2, and Voon Kok How 3 Wastewater production and treatment Malaysia has a population of 28.3 million based on the
YOUR SEPTIC SYSTEM UNCOVERED
YOUR SEPTIC SYSTEM UNCOVERED By Raymond King District Director of Environmental Health It s underground where you can t see it. You don t really understand how it works. When it doesn t work your toilets
DESIGN OF STORM WATER DETENTION POND
Yunnan Chuxiong Urban Environment Improvement Project (RRP PRC 45507) DESIGN OF STORM WATER DETENTION POND A. Background 1. Chuxiong Yi Autonomous Prefecture (Chuxiong prefecture) is located at about 160
TURKEY ANATOLIA WATERSHED REHABILITATION PROJECT Sedat Kadioglu Ministry of Environment Abdulmecit Yesil Ministry of Agriculture and Rural Affairs
TURKEY ANATOLIA WATERSHED REHABILITATION PROJECT Sedat Kadioglu Ministry of Environment Abdulmecit Yesil Ministry of Agriculture and Rural Affairs PROJECT TITLE : Anatolia Watershed Rehabilitation Project
International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013
DO-BOD Modeling of River Yamuna for Delhi Segment Comparing the Actual Case of Low Water Discharge with that of the Flow Required to be Maintained to Meet Out Environmental Flow Concern of Various Stretches
It s hard to avoid the word green these days.
Going green : Environmental jobs for scientists and engineers Alice Ramey Alice Ramey is an economist in the Office of Occupational Statistics and Employment Projections, BLS. She is available at (202)
Hebron Regional Wastewater Treatment Facilities
Hebron Regional Wastewater Treatment Facilities Environmental Assessment Supplemental June 2005 PWA This publication was produced for review by the United States Agency for International Development. It
Public Water System. Consumer Confidence Report Template
Public Water System Consumer Confidence Report Template Ohio Environmental Protection Agency Division of Drinking and Ground Waters www.epa.ohio.gov/ddagw Updated March 2015 Section 1: Title {Water System
Sustainable Drainage Systems (SUDS) A guide for developers
Sustainable Drainage Systems (SUDS) A guide for developers We are the Environment Agency. It s our job to look after your environment and make it a better place for you, and for future generations. Your
4 Water supply description
4 Water supply description A description of the drinking-water system is equally applicable to large utilities with piped distribution systems, piped and non-piped community supplies, including handpumps
THE FOUR RIVERS RESTORATION PROJECT AND ITS IMPLICATIONS TO THE CHAO PHRAYA RIVER
KOREA S EXEMPLARY CASE OF FLOOD PREVENTION THE FOUR RIVERS RESTORATION PROJECT AND ITS IMPLICATIONS TO THE CHAO PHRAYA RIVER Office of National River Restoration, Korea MLTM Republic of Korea CONTENTS
Sewage Discharge in Estuaries: The case for Trapping.
Sewage Discharge in Estuaries: The case for Trapping. Group N- Sarah Wrigley, Bryony Wood, Laura Wicks, Helen Whiting, Daniel Wood, David Willock, Nicholas Wilson, Joanna Williams, Luke Warwick and Alex
Water Resources Development and Management in India - An Overview
Water Resources Development and Management in India - An Overview A presentation by U. N. Panjiar Secretary to the Government of India This presentation Water resources scenario in India Water governance
Septic Tank Maintenance Information
Septic Tank Maintenance Information This section has been adapted from materials developed by the Rouge RAP Advisory Council On-site Septic Subcommittee, which included representatives from Oakland, Wayne
INDONESIA - LAW ON WATER RESOURCES,
Environment and Development Journal Law LEAD INDONESIA - LAW ON WATER RESOURCES, 2004 VOLUME 2/1 LEAD Journal (Law, Environment and Development Journal) is a peer-reviewed academic publication based in
Stormwater Ponds. c ıty of a bı le ne st or m wat e r utı lıty dıv ısı on
CLEAN WATER FACT SHEET Stormwater Ponds c ıty of a bı le ne st or m wat e r utı lıty dıv ısı on Rapid growth in the City of Abil ene and consequent development, as well as construction of culverts, drains,
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:
Total Suspended Solids: The Hows & Whys of Controlling Runoff Pollution
New State Storm Water Rules: WHAT MUNICIPALITIES NEED TO KNOW Total Suspended Solids: The Hows & Whys of Controlling Runoff Pollution Stormwater management by Wisconsin municipalities is under scrutiny.
