Hydrostatic Force on a Submerged Surface
|
|
|
- Maude Logan
- 9 years ago
- Views:
Transcription
1 Experiment 3 Hydrostatic Force on a Submerged Surface Purpose The purpose of this experiment is to experimentally locate the center of pressure of a vertical, submerged, plane surface. The experimental measurement is compared with a theoretical prediction. Apparatus Figure 3.1 is a sketch of the device used to measure the center of pressure on a submerged vertical surface. It consists of an annular sector of solid material attached to a balance beam. When the device is properly balanced the face of the sector that is not attached to the beam is directly below (coplanar) with the pivot axis. The solid sector and the balance beam is supported above a tank of water. L P Q H h B r 2 S r 1 T F CG A W Figure 3.1: Apparatus for measuring the location of the center of pressure. 9
2 10 EXPERIMENT 3. HYDRSTATIC FRCE N A SUBMERGED SURFACE y x y R h Figure 3.2: Detailed nomenclature for locating the center of pressure. Theory Figure 3.2 shows the submerged surface viewed from the left side of the tank in Figure 3.1. The depth of the centroid below the surface of the water is h. The x-y coordinate system has its origin at the centroid. The y-direction position of the center of pressure, y R, is (Munson et al., 2.8) y R = y c + I xc y c A (3.1) where I xc is the moment of inertia of the surface about the x-axis, and A is the surface area. The location of the center of pressure can be measured using the apparatus sketched in Figure 3.1. The counterweight is adjusted so that the beam is horizontal when there is no water in the tank and no weight in the pan. When the tank is filled with water the unbalanced hydrostatic force causes the beam to tilt. Adding weight W to the pan at a distance L from the pivot exerts a moment W L that counterbalances the resultant moment due to the hydrostatic forces on the quarter-annulus-shaped body ABP Q. When the water level is as shown in the figure, there are hydrostatic forces on surfaces AB, BS and AT. Since BS and AT are concentric cylindrical surfaces with the common axis passing through, the hydrostatic forces on BS and AT do not exert any moment about. As a result W L is equal to the moment due to the hydrostatic force F acting on the vertical plane surface AB. In this experiment the force F is not measured. Instead the theoretical value F = ρgha is assumed, where h is the depth of the centroid of the surface. The moment due to F is measured and the theoretical value of F is used to compute the location of the center of pressure. Balancing the moments about gives Substituting F = ρgha and solving for y R yields W L = F (H + y R ) y R = W L ρgha H (3.2)
3 11 Laboratory Procedure 1. Adjust the counterweight so that the balance the beam is horizontal with no water in the tank. 2. Add water up to some level. During the lab you will use at least four water levels. Make sure some water levels leave part of the vertical face exposed. 3. Add weights to the pan to restore the beam to a horizontal position. Record the weight. Measure H. 4. Measure and record h. 5. Calculate y R,th and compare to y R,m. If the values are not reasonably close, check your measurement procedure. 6. Return to step 2 and repeat the measurements using at least three other water levels. Analysis 1. Calculate y R from equation (3.1). Call this the theoretical value y R,th. 2. For each water depth, calculate y R from equation (3.2). Call this value the measured value y R,m. 3. Plot y R,th versus h and y R,m versus h on the same axes. 4. Plot y R,th y R,m versus h. 5. Plot y R,th y c versus h. The plots created in step 3 and step 4 allow a comparison of the theoretical and measured values of y R. The plot from step 4 shows the difference between the measured and theoretical values. A difference plot (like that required in step 4) is a good way to compare two quantities that have nearly the same value. For example, Figure 2.2 and Figure 2.3 in the lab manual for Experiment 2 are two plots of the calibration data for a pressure gage. The data in Figure 2.2 suggest that the calibration is quite good, but there is no indication of the magnitude of the errors. Figure 2.3 clearly shows the magnitude of the discrepancy between the indicated reading of the pressure gage and the dead weight tester. Furthermore, by plotting the calibration data as in Figure 2.3 one sees that the indicated pressure tends to be lower than the calibration standard (more points fall below the line p indicated p dwt = 0). Report 1. How does the design of the apparatus enable the resultant force on the vertical surface to be measured? Are any significant forces being neglected? Does the section of the vertical surface that is above the water surface contribute any error to the measurement? 2. Compare the experimental and theoretical values of y R and explain any discrepancy. Pick one point in the middle of the range of measurements. For that data point, how much of a change in the measured y R would be caused by an error of 10 grams in the weight measurement? 3. What is the primary trend in y R y c versus water depth? Is this consistent with the theory presented in lecture and in the textbook?
4 12 EXPERIMENT 3. HYDRSTATIC FRCE N A SUBMERGED SURFACE Reference B.R. Munson, D.F. Young, and T.H. kiishi, Fundamentals of Fluid Mechanics, 4th ed., 2002, Wiley and Sons, New York. Appendix: What About Buoyancy? Is the buoyancy force being neglected in the analysis of the experimental data? The answer is no. To understand why, we will consider two ways to analyze the experiment. The first analysis involves a moment balance that causes the buoyancy force to appear. The second analysis is the same as that presented in the preceding sections, and no buoyancy force appears. How can the buoyancy force be made to disappear? Remember that the buoyancy force is defined as the net pressure force acting on a submerged body. If we consider the pressure force components acting in the horizontal and vertical directions, then the buoyancy force contributes to the moment about the device pivot. If instead we consider the pressure forces acting normal to the surface of the acrylic arc, then the buoyancy force does not appear because the normal forces on the curved surface do not contribute a moment about the pivot of the device. This result is due to the design of the experiment. In other words, the person who designed this device chose the circular arc shape because it allows us to measure the hydrostatic pressure forces without accounting for the buoyancy effect. Initial Balance First consider the force balance on device when the apparatus is dry (the tank is empty), and the balance weight has been properly adjusted. This situation is depicted in Figure 3.3. The balance weight W c is moved left or right until the moment W c L c is equal and opposite to the moment W a L a. When the tank is filled with water, pressure forces on the surface of the curved acrylic cause an additional moment. The moment due to the pressure forces is balanced by adding weights to the pan shown on the right side of Figure 3.3. Adding water does not affect the moment balance W c L c = W a L a because the water does not change the weight of the device. L c L a W c W a Figure 3.3: Moments acting while balance weight is being adjusted and the tank is empty.
5 13 L L c L b L a F b W c W W a Figure 3.4: Horizontal and vertical forces that create moments. Moments due to Horizontal and Vertical Forces Figure 3.4 shows the horizontal and vertical force components acting the acrylic after water is added to the tank. The horizontal forces are depicted as acting on vertical planes that are the projection of the curved surface. The contributions to the horizontal pressure forces on the left and right sides cancel exactly. Thus, by considering the horizontal pressure forces separately from the vertical pressure forces, we see that the net horizontal force must be zero. The horizontal force on the flat face of the acrylic does not appear separately because it is already included the balance of horizontal pressure forces. The vertical forces acting on the top and bottom of the curved surface create a buoyancy force F b, which acts through the center of buoyancy. The center of buoyancy is the centroid of that portion of the acrylic that is submerged. The weight of the acrylic W a acts through the center of gravity of the solid material. When the system is analyzed with the forces identified in Figure 3.4, the weight W creates a moment W L that balances the buoyancy force F b L b. The moment W a L a caused by the weight of the acrylic is still cancelled exactly by the moment from the balance weight W c L c. Moments due to Normal Forces Now consider the moment balance depicted in Figure 3.5. In this view only the force components normal to the surface are identified. No forces are neglected because the pressure force acts normal to the surface. In this particular apparatus it is easier to analyze the normal forces directly than to separate the forces into horizontal and vertical components. The local pressure force on the curved surface of the acrylic is not zero. However, the pressure forces on the curved surface do not contribute to moments about because these forces have lines of action that pass directly through. In other words, the device is cleverly designed to eliminate the contributions of all surface forces except the force acting on the vertical surface. A moment balance about point shows that the moment F (H + h) is balanced by W L. The buoyancy force is not neglected.
6 14 EXPERIMENT 3. HYDRSTATIC FRCE N A SUBMERGED SURFACE L H + h F W Figure 3.5: Forces normal to curved surface. Summary of Buoyancy Affect The analysis of Figure 3.4 gives and the analysis of Figure 3.5 gives W L = F b L b (3.3) W L = F (H + h). (3.4) Thus, the weight can be used to measure either the magnitude of the buoyancy force or the magnitude of the net pressure force on the vertical face of the acrylic. To use Equation (3.3) we need to compute L b, which requires locating the center of buoyancy. This is not trivial because the centroid of the submerged region of the acrylic is not a regular geometric shape.
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
FLUID FORCES ON CURVED SURFACES; BUOYANCY
FLUID FORCES ON CURVED SURFCES; BUOYNCY The principles applicable to analysis of pressure-induced forces on planar surfaces are directly applicable to curved surfaces. s before, the total force on the
Chapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: [email protected] r J Noakes:[email protected] January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Chapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the
Experiment #9, Magnetic Forces Using the Current Balance
Physics 182 - Fall 2014 - Experiment #9 1 Experiment #9, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams
Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads
Prelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet
Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Laboratory Report Scoring and Cover Sheet
Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
m i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
Shear Center in Thin-Walled Beams Lab
Shear Center in Thin-Walled Beams Lab Shear flow is developed in beams with thin-walled cross sections shear flow (q sx ): shear force per unit length along cross section q sx =τ sx t behaves much like
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY
CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY Dr. Amilcar Rincon-Charris, MSME Mechanical Engineering Department MECN 3005 - STATICS Objective : Students will: a) Understand the concepts of
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Section 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
Archimedes Principle. Biological Systems
Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:
IDEAL AND NON-IDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions
Scientific Graphing in Excel 2010
Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are
ACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
Activity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Chapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
General Physics Lab: Atwood s Machine
General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.
PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
EdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Experiment #8: Magnetic Forces
Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable
Lab: Graphing Activities TOTTEN
Name: Class: Date Completed: Lab Minutes: Lab: Graphing Activities TOTTEN SCIENCE Introduction Graphing is used by scientists to display the data that is collected during a controlled experiment. A line
Pressure in Fluids. Introduction
Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure
Experiment 7: Forces and Torques on Magnetic Dipoles
MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying
PENDULUM PERIODS. First Last. Partners: student1, student2, and student3
PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
POWDER PROPERTIES LABORATORY
Ground Rules POWDER PROPERTIES LABORATORY You will work as a team of no more than 6 students. At the end of this laboratory session each team will turn in a single report. The report will be reviewed,
ENGINEERING MECHANICS STATIC
EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Free-body diagram of the pin at B X = 0 500- BC sin
Part 1: Background - Graphing
Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and
PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,
1 of 5 11/18/2004 6:24 PM PARAMETRIC MODELING David Rosen December 1997 The term parametric modeling denotes the use of parameters to control the dimensions and shape of CAD models. Think of a rubber CAD
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Chapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
6. Vectors. 1 2009-2016 Scott Surgent ([email protected])
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
Section 16: Neutral Axis and Parallel Axis Theorem 16-1
Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
Physics 3 Summer 1989 Lab 7 - Elasticity
Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE
MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE Introduction In this experiment, the finite life fatigue behavior of a smooth cylindrical specimen as shown in Figure 1 will be studied in
Experimental Analysis
Experimental Analysis Instructors: If your institution does not have the Fish Farm computer simulation, contact the project directors for information on obtaining it free of charge. The ESA21 project team
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
Work and Energy. W =!KE = KE f
Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Analysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Elasticity. I. What is Elasticity?
Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Freehand Sketching. Sections
3 Freehand Sketching Sections 3.1 Why Freehand Sketches? 3.2 Freehand Sketching Fundamentals 3.3 Basic Freehand Sketching 3.4 Advanced Freehand Sketching Key Terms Objectives Explain why freehand sketching
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E.
ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. Woodrow M. Poplin, P.E. is a consulting engineer specializing in the evaluation of vehicle and transportation accidents. Over the past 23 years he has
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
Rotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
Volumes of Revolution
Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Awareness of lifetime physical and mental wellness Physical Education Included in a degree or certificate program: Yes No Noncredit Category:
CourseID: ENGR 8 Discipline: Engineering TOP: 901.00 - Engineering, General CB21: Y = Not Applicable CC Approval: 11/02/2015 Effective Date: 01/11/2016 BOT Approval: 12/08/2015 Degree/Transfer Status:
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
