Use of Nitrogen Purge in Flare and Vent Systems

Size: px
Start display at page:

Download "Use of Nitrogen Purge in Flare and Vent Systems"

Transcription

1 DANISH OPERATORS Offshore Oil and Gas Operators in Denmark Use of Nitrogen Purge in Flare and Vent Systems 7 September 2009 Esplanaden Copenhagen K Denmark Telephone: info@danishoperators.com

2 1. Title of Initiative Use of Nitrogen Purge in Flare and Vent Systems. 2. Description of Initiative The offshore installations flare and atmospheric vent headers are required to be purged in order to prevent oxygen ingress to the flare and atmospheric vent systems. This is required in order to avoid the formation of explosive mixtures in the headers, which could lead to explosions if ignited. Fuel gas or nitrogen can be used as purge gas. The purge gas is injected at different locations in the systems in order to maintain a positive pressure in the flare headers thus preventing air ingress. Cold vents (atmospheric vent headers) are used to vent hydrocarbon gas from low pressure sources where insufficient pressure is available to allow the gas to be flared. Under normal operating conditions the volume of gas vented via the cold vent is minimal. The use of fuel gas in flare and vent headers for purging purposes results in environmental emissions. These can be in the form of CO2 or NOx when the fuel gas used in the HP and LP flare headers is burnt or in the form of CH4 and other species present in the atmospheric vent header purge gas when this is cold vented. The green house effect associated with the CH4 is around 23 times worse than that for the CO2 emissions. The replacement of the use of fuel gas with nitrogen for purging the flare and atmospheric vent headers is one of the options currently being investigated in order to reduce environmental impact. The use of nitrogen will eliminate the environmental emissions described in the above paragraph. It should be noted that, when replacing purge fuel gas with nitrogen for Atmospheric Vent headers, the NOx emissions increase. This is due to the NOx emissions produced in the gas turbines when generating the necessary power for N2 generation. However, the environmental impact of cold venting in terms of CO2 emissions is seen as much higher than that of the increased NOx emissions for nitrogen generation. This initiative is applicable to the DUC Facilities only. Nitrogen is currently being used on the Dong Energy Siri facilities for purging the flare system. A flare recovery system is planned to be installed on Hess South Arne Facility which will eliminate the need to purge the flare headers with nitrogen. In the case that Flare Gas Recovery is installed on any of the DUC platforms, it will not be necessary to replace the use of fuel gas with nitrogen for purging purposes as the purge fuel gas would be recovered and sent back to the process. If the pay back time for changing from fuel gas to nitrogen purge is significantly less than an expected implementation time for a flare gas recovery system, nitrogen purge should be considered. Nitrogen will still be required in order to purge the flare stack, downstream of the Fast Opening Valves that are normally installed in the main headers as part of flare recovery projects. This is considered to be a project requirement and therefore considered to be outside the scope of this report. 1/7

3 3. Potential for Reduction of Environmental Emissions Table 1 below summarises the potential for environmental emissions reduction as well as an estimate of the total investment required to replace the use of fuel gas with nitrogen for the purpose of purging the DUC Facilities Flare Header. The total potential reduction in fuel gas usage is around 0,06MMSCFD. The figures below exclude the Gorm HP, LP and Vent headers given that the platform does not have sufficient nitrogen generation capacity to supply the required flow rate. It is not considered feasible at this stage to proceed with the installation of a new nitrogen generation unit for this purpose. Table 1 Net CO2 Emissions Reduction, tonnes/year (Notes 1, 2 and 3) Notes: NOx Emissions Reduction, kg/year (Note 4) Estimated Total Investment (Note 8) DKK/(ton/year of CO2 reduction) (Note 5) MM DKK Figure takes into account CO2 emissions generated when combusting FG in the Gas Turbines for generating the power necessary to produce purge nitrogen. 2. Figure represents approx 0,2% of the total DUC CO2 emissions for Value includes both the burnt and unburnt fractions of fuel gas used for purging the HP/LP flare and atmospheric vent headers. 4. When replacing purge fuel gas with nitrogen for Atmospheric Vent headers, the NOx emissions increase. This is due to the NOx emissions produced in the gas turbines when generating the necessary power for N2 generation. However, these will be small as compared to those generated in the flare tips when burning the purge FG and as a result a net reduction is achieved for all the categories. 5. Required investment to reduce CO2 emission by 1 tonne per year. Figure represents the average for all DUC Facilities. The individual values for each particular flare/vent header ranges from 243 DKK for the Dan FG vent header (most attractive option) to DKK for the Tyra East LP flare header (less attractive option). The values for all headers are shown in Table 2 below and are to be used when prioritising any future works. 6. Given that the nitrogen purity currently generated offshore is not completely pure (purity> 93%) some oxygen will be introduced into the flare headers. However, the Upper Flammability Limit (UFL) of natural gas in oxygen is around 61% in volume (assuming pure methane). The volume fraction of gas during normal operation in all flare headers will be above 99.9%, which is well above the UFL. The normal flaring rates will have to be reduced to 0,0009 MMSCFD or lower in order to create flammable mixture. Rates as low as those are never experienced during operation. Therefore a flammable mixture is not predicted under any circumstance. 2/7

4 7. The flammability of all mixtures expected in the flare tips, resulting from the replacement of fuel gas with nitrogen have been checked and found not to be a problem. This is due to the high hydrocarbon/nitrogen ratio seen in the flare headers. 8. Includes engineering, equipment and installation costs. Table 2 below shows the above values and other relevant information for each individual header. 3/7

5 Table 2 Header Flare/Vent Stack ID Total FG required Current Estimated Equivalent CO2 emissions Required N2 Net CO2 Emissions reduction Opex Increase (cost of N2 Generation) Net economic benefit Cost Estimate for modifications Cost/(tonnes/year of CO2 reduction) Comments inch Nm3/h kg/h Nm3/h tonnes/year DKK/year DKK/year DKK DKK/(tonne/year) DAN FG-Vent 12,39/6,36 1, ,5 1, , N2 generation is sufficient to meet requirements. N2 purging facilities exist. N2 flowmeter to be installed. TYW-A Vent 13,62 1, ,4 1, , N2 generation is sufficient to meet requirements. New N2 purging facilities are required (pipework + flow meter) TYE Vent 13,62 1, ,4 1, , N2 generation is sufficient to meet requirements. New N2 purging facilities are required (pipework + flow meter) DAN FG- HP 23,50 12, ,2 10, , N2 purge facilities are installed. N2 generation system capacity is 150N/m3. Normal consumption is 0 according to Design Manual. Halfdan Vent 6,36 0,1190 6,2 0, , N2 generation is sufficient to meet requirements. New N2 purging facilities are required (pipework + flow meter) HWA Vent 10,42 0, ,2 0, , N2 generation is sufficient to meet requirements. New N2 purging facilities are required (pipework + flow meter) HALFDAN HP 23,50 11, ,6 9, , N2 purge facilities are installed. N2 is supplied by N2 Generation package HDAC-A-0801 with a design capacity of 320 Nm3/h. Consumption is 100Nm3/h giving a spare capacity of 220 Nm3/h. PCV designed for 44 Nm3/h. Flow to glycol regen package discontinuous. Nitrogen line to HDC has been disconnected. PCV OK for required purge flow. HALFDAN LP 13,62 1,6614 3,8 1, , As per Halfdan HP header above. Dan F Vent 10,42 0, ,2 0, , N2 generation is sufficient to meet requirements. N2 purging facilities exist. N2 flowmeter to be installed. DAN FG LP 12,39 1,2330 2,8 1, , As per Dan FG HP header above. HWA HP 2 headers 13,62 / 17,62 10, ,7 4, , N2 Generation System produces 30Nm3/h. LP/IP Comp consumption is 20Nm3/h. There is sufficient spare capacity to meet the requirements. Piping mods required. TYW HP 23,50 10, ,8 9, , Platform A: N2 Generation package supplies 60Nm3/h. LP comp consumes 2,4 Nm3/h. Capacity available will be sufficient to meet requirements. Platform E: N2 is supplied by N2 Gen Unit WEA- A Generation capacity is 80Nm3/h and consumption 44 Nm3/h. Spare capacity of 36Nm3/h will be sufficient. Only piping mods are required. N2 generation system capacity is 40N/m3, consumption is 11Nm3/h, therefore there is sufficient capacity to meet the requirements. Two of the purging points are located on Platforms E and F. TYE HP 23,50 12, ,3 9, , Nitrogen for these platforms is supplied by nitrogen bottles. It is not recommended to run nitrogen pipes across the bridges in order to replace FG purge with N2. Replacement is only to be applied to Platform A. N2 is available. Two N2 generation packages are available on Dan FC platform (A-0802 and A-0807) with a total combined capacity of 105Nm3/h. N2 from Dan FF is also available (A-0801) with DAN FD - HP 17,62 8, ,2 6, , a capacity of 138Nm3/h. Consumption is not known but given the small flow rate required and the high generation capacity as compared with other platforms it will be assumed that there is sufficient capacity available to meet the requirements. TYE LP 13,62 1,6614 3,8 1, , Capacity available will be sufficient to meet requirements. See TW HP Flare above. Only piping mods are required. HWA LP 8,33 0,3847 0,9 0,3168 6, As per Harald HP header above. TYW LP 10,42 0,7682 1,7 0, , Capacity available will be sufficient to meet requirements. See TW HP Flare above. Only piping mods are required. GORM LP 10,42 1,4897 3,4 1, , Gorm F: N2 Generation System produces 10Nm3/h and supplies LP Compressor C LP comp consumption is 7 Nm3/h., which makes the N2 Generator insufficient to supply the required N2 purge flow rates. Given the small gain to be obtained, is not considered feasible to install extra N2 generation capacity. GORM HP 23,50 15, ,1 13, , Gorm F: N2 Generation System produces 10Nm3/h and supplies LP Compressor C LP comp consumption is 7 Nm3/h., which makes the N2 Generator insufficient to supply the required N2 purge flow rates. Given the small gain to be obtained, is not considered feasible to install extra N2 generation capacity. GORM Vent 10,42 0, ,2 0, , Gorm F: N2 Generation System produces 10Nm3/h and supplies LP Compressor C LP comp consumption is 7 Nm3/h., which makes the N2 Generator insufficient to supply the required N2 purge flow rates. Given the small gain to be obtained, is not considered feasible to install extra N2 generation capacity. See next page for calculation methodology. 4/7

6 Calculation Methodology Purge gas rates calculation (applicable to both fuel gas and nitrogen): Calculated based on API 521 (5 th Edition, 2007) equation. Q = 0, * D^3,46 * K Where, Q is the purge gas rate, expressed in normal cubic metres per hour (standard cubic feet per hour); D is the flare stack diameter, expressed in metres (inches); K is a constant which depends on the purge gas composition. Different values are used for fuel gas and nitrogen. Equivalent CO2 emissions Equivalent CO2 emissions are calculated as follows: For burnt Fuel Gas CO2 emissions (kg/h) = Fuel Gas normal volume flow rate (Nm3/h) x 2.26 kg CO2 / Nm3* *Figure based on an Emission Factor of 57 kgco2/gj and a Heating Value of 39,6GJ/1000Nm3. For cold vented Fuel Gas Equivalent CO2 emissions (kg/h) = Normal volume flow rate (Nm3/h) x 2,26 kg CO2 / Nm3 x 23** **Figure takes into account more harmful environmental effect of unburnt CH4 (advised by Production Department) Net CO2 Emissions reduction Net CO2 Emissions reduction = Equivalent CO2 emissions - CO2 Emissions resulting from N2 generation Net economic benefit Net economic benefit =Additional Revenue (sales gas) + CO2 emissions reduction- Cost of fuel gas for N2 Generation CO2 emissions reduction: according to Forudsætninger for samfundsøkonomiske analyser på energiområdet, May 2009, the CO2 saving should be included in the economic assessment. A rate of 84,925 DKK/tonne is used for the calculations. NOx Emissions reduction / increase For fuel gas burnt if flare tips: NOx emissions (mass units) = 0,0015 * flare gas mass flow rate For fuel gas burnt in gas turbines = Fuel Gas normal volume flow rate (Nm3/h) x 0,0049 kg NOx / Nm3*** ***Figure based on an Emission Factor of 124g NOX /GJ and a Heating Value of 39,6GJ/1000Nm3. CAPEX: Includes engineering, equipment and installations costs. 5/7

7 4. Investments by Major Components and Years As stated in Table 1 above the total required investment is DKK 50.3MM. The cost estimates for the modifications required for each individual header are presented in Table 2 above. The implementation of the modifications is to be prioritised according to the cost / (ton/year of CO2 reduction). Some of the modifications for a particular platform (e.g HP/LP/Vent headers) could be combined in a single CFI package if it is decided to proceed with them. The timeline for implementation is subject to the decision to proceed with the project. 5. Operating Costs and Revenues 5.1 Total Net Economic Benefit The total net economic benefit that would be obtained if all the proposed projects were implemented is given in Table 3 below. Table 3: Additional Revenue from increased gas sales (purge FG sold). Additional Revenue from CO2 emissions reduction (CO2 quotas sold) Cost of FG for N2 Generation Net Economic Benefit 0.88 MMDKK/year 0.34 MMDKK/year MMDKK/year 1.12 MMDKK/year *Gas price 32.6 DKK/GJ, Heating Value = 39.6 GJ/1000Nm3. See Section 6 below for payback period calculation. 6. Operating Economic Assessment A brief economic assessment based on payback period is present below for both the most attractive option and for the implementation of all the options. Included in the assessment is the value of CO2 emission reduction. According to Forudsætninger for samfundsøkonomiske analyser på energiområdet, Februry 2009, the CO2 saving should be included in the economic assessment. A rate of 84,925 DKK/tonne of CO2 is used for the assessment assessment. Most attractive option: The most attractive option in terms of Cost/(tonnes/year of CO2 reduction), is the installation of a nitrogen flow meter on the existing nitrogen line to the Dan FG atmospheric vent header. The following economic assessment is made for this option: Required investment = DKK (includes cost of flowmeter, engineering and installation) 6/7

8 Additional Revenue (FG Export) = DKK /year CO2 Emission Reduction = DKK /year Cost of FG for N2 Generation = DKK /year Net Economic Benefit = DKK /year Payback period = / = 2,4 years Assuming that all the proposed projects are implemented: Required investment = MMDKK 50.3 Net Economic Benefit (Table 3) = 1.12 MMDKK /year Payback period = 50.3 / 1.12 = 45 years For the most attractive option the payback period of 2,4 years makes this worth pursuing and as such should be progressed to better define the costs. For all other individual options, and the implementation of all the options combined, the payback period exceeds 4 years such that the main drive for this initiative is seen as not an economic one. 7. Possible Socio-Economic Calculation Refer to Section 3 above. 8. Possible Socio-Economic Assessment Refer to Section 3 above. 9. Recommendations 1. Decision to proceed with this initiative and scope of implementation to be confirmed. 2. The installation of flare gas recovery systems on the DUC platforms is currently being studied. It is recommended to wait for the results of such studies before taking the decision to proceed with the implementation of this initiative. 3. To check the fuel gas flow rates currently being used offshore in order to ensure that the correct flows are in place. 7/7

Offshore Forum. How can we optimise off/onshore cost and operation? 28 May 2014

Offshore Forum. How can we optimise off/onshore cost and operation? 28 May 2014 Offshore Forum How can we optimise off/onshore cost and operation? 28 May 2014 Doc. No. 14/06209-11 28 May 2014 Offshore Forum 1 Introduction Søren Juel Hansen sjh@energinet.dk Tel: (+45) 23 33 87 44 28

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation

More information

OIL AND GAS PRODUCTION IN DENMARK. and Subsoil Use

OIL AND GAS PRODUCTION IN DENMARK. and Subsoil Use OIL AND GAS PRODUCTION IN DENMARK and Subsoil Use 2013 Preface While the EU countries dependency on imported natural gas, mainly from Norway, Russia and Northern Africa, is approaching 70 per cent, Denmark

More information

SNAP CODE: 090206. SOURCE ACTIVITY TITLE: Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14

SNAP CODE: 090206. SOURCE ACTIVITY TITLE: Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14 SNAP CODE: 090206 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14 NFR CODE: 1 B 2 c 1 ACTIVITIES INCLUDED Flaring is gas combusted without utilisation of

More information

Determination of Flared Gas Volumes Offshore Norway. By Stig Arvid Knutsson Principal Engineer Fiscal Metering Norwegian Petroleum Directorate

Determination of Flared Gas Volumes Offshore Norway. By Stig Arvid Knutsson Principal Engineer Fiscal Metering Norwegian Petroleum Directorate Determination of Flared Gas Volumes Offshore Norway By Stig Arvid Knutsson Principal Engineer Fiscal Metering Norwegian Petroleum Directorate Presentation Outline Regulatory requirements Flaring of Associated

More information

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district PLANT TORINO NORD Iren Energia is the company in the Iren Group whose core businesses are the production and distribution of electricity, the production and distribution of thermal energy for district

More information

Nitrogen Blanketing for Methanol Storage and Transportation

Nitrogen Blanketing for Methanol Storage and Transportation Nitrogen Blanketing for Methanol Storage and Transportation Overview Air is the enemy of many materials. Not only can oxygen cause safety concerns and product degradation, but moisture, dirt, hydrocarbons

More information

CANADIAN WESTERN NATURAL GAS COMPANY LIMITED EXECUTIVE SUMMARY

CANADIAN WESTERN NATURAL GAS COMPANY LIMITED EXECUTIVE SUMMARY CANADIAN WESTERN NATURAL GAS COMPANY LIMITED ACCEPTING THE CHALLENGE EXECUTIVE SUMMARY In May of 1995, Canadian Western Natural Gas joined Canadian industry leaders in support of Canada's Voluntary Challenge

More information

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION

More information

The Basics of Natural Gas

The Basics of Natural Gas 264 Natural Gas: What You Should Know Don MacBride Click to insert presenters Thursday, March 29, 1:15 to 2:15 p.m. Click to insert session day, date and time The Basics of Natural Gas Presented by: Don

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

How To Make A High Co 2 Gas Blend

How To Make A High Co 2 Gas Blend ECONOMICAL OPTION FOR CO 2 / METHANE SEPARATION IN PRODUCED GAS CONTAINING A HIGH CO 2 FRACTION F. Patrick Ross, P.E. TPR Consulting 9907 Sagecourt Drive Houston, Texas 77089 (713) 870-9208 pat.ross@att.net

More information

Thermal Mass Flow Meters

Thermal Mass Flow Meters Thermal Mass Flow Meters for Greenhouse Gas Emissions Monitoring Natural Gas Measurement for Emissions Calculations Flare Gas Monitoring Vent Gas Monitoring Biogas and Digester Gas Monitoring Landfill

More information

Global Gas Flaring Reduction Partnership & Measurement of Flare/Vent Volumes. World Bank Francisco J. Sucre

Global Gas Flaring Reduction Partnership & Measurement of Flare/Vent Volumes. World Bank Francisco J. Sucre Global Gas Flaring Reduction Partnership & Measurement of Flare/Vent Volumes World Bank Francisco J. Sucre Content Global Gas Flaring Reduction (GGFR) Gas Flaring in Mexico Global Voluntary Flaring Reduction

More information

STOICHIOMETRY OF COMBUSTION

STOICHIOMETRY OF COMBUSTION STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12

More information

Natural gas liquids recovery from gas turbine fuel

Natural gas liquids recovery from gas turbine fuel Natural gas liquids recovery from gas turbine fuel By Simone Amidei, Francesca Monti, Riccardo Valorosi / GE Oil & Gas GE imagination at work Natural gas liquids recovery from gas turbine fuel By Simone

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

INDEX 9-7-100 GENERAL

INDEX 9-7-100 GENERAL REGULATION 9 INORGANIC GASEOUS POLLUTANTS RULE 7 NITROGEN OXIDES AND CARBON MONOXIDE FROM INDUSTRIAL, INSTITUTIONAL AND COMMERCIAL BOILERS, STEAM GENERATORS AND PROCESS HEATERS INDEX 9-7-100 GENERAL 9-7-101

More information

Pressure Vessels (Air Compressors) and LPG Tanks

Pressure Vessels (Air Compressors) and LPG Tanks Pressure Vessels (Air Compressors) and LPG Tanks 1. Identification of Workplace Hazard Any container, tank or vessel that contains pressurized material is a potential hazard to employees due to the force

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR)

Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR) Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR) Wide band lambda probe measures the numerical value of the ratio Air Fuel Ratio AFR or parameter of λ (Lambda) by measuring the oxygen

More information

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C). INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method

More information

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS Dr Petri Kouvo Helsinki Region Environmental Services Authority THIRD INTERNATIONAL SYMPOSIUM ON ENERGY FROM BIOMASS AND WASTE Venice, Italy 8-11

More information

HOW TO SELECT A LOW VOLUME (L.V ) BOILER

HOW TO SELECT A LOW VOLUME (L.V ) BOILER HOW TO SELECT A LOW VOLUME (L.V ) BOILER FREQUENTLY ASKED QUESTIONS OR COMMENTS ON BOILERS Dear Potential Customer: Low Volume Operator Exempt boilers have been marketed in Ontario to eliminate the requirement

More information

GAS HEATING IN COMMERCIAL PREMISES

GAS HEATING IN COMMERCIAL PREMISES ENERGY EFFICIENCY OFFICES GAS HEATING IN COMMERCIAL PREMISES www.energia.ie www.energia.ie Typically, energy reductions of 10% or more can be made easily through maintenance and low cost improvements.

More information

METHANE EMISSIONS MITIGATION OPTIONS IN THE GLOBAL OIL AND NATURAL GAS INDUSTRIES

METHANE EMISSIONS MITIGATION OPTIONS IN THE GLOBAL OIL AND NATURAL GAS INDUSTRIES METHANE EMISSIONS MITIGATION OPTIONS IN THE GLOBAL OIL AND TURAL GAS INDUSTRIES Robinson, D.R., ICF Consulting, Inc. Fernandez, R., U.S. Environmental Protection Agency Kantamaneni, R. K., ICF Consulting,

More information

Boiler and Steam Efficiency What does it mean?

Boiler and Steam Efficiency What does it mean? PACIA Carbon Solutions Forum 3-29 September 20 Boiler and Steam Efficiency What does it mean? Andrew Hook - Area Manager, Nalco 1 Purpose, Process, Payoff Purpose: To explain boiler and steam efficiencies

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

Facts about gas physical properties

Facts about gas physical properties Facts about gas physical properties Gas as fuel for propulsion of ships status and perspectives Ingeniørhuset, 3. March 2008 By Asger Myken, DONG Energy DONG Energy 2 Agenda Basic information on gas types

More information

Sixth Annual Conference on Carbon Capture & Sequestration

Sixth Annual Conference on Carbon Capture & Sequestration Sixth Annual Conference on Carbon Capture & Sequestration Expediting Deployment of Industrial Scale Systems Geologic Storage - EOR An Opportunity for Enhanced Oil Recovery in Texas Using CO 2 from IGCC

More information

ATMOSPHERIC EMISSIONS FROM GAS FIRED HOME HEATING APPLIANCES

ATMOSPHERIC EMISSIONS FROM GAS FIRED HOME HEATING APPLIANCES ATMOSPHERIC EMISSIONS FROM GAS FIRED HOME HEATING APPLIANCES Stefano Cernuschi, Stefano Consonni, Giovanni Lonati, Michele Giugliano, Senem Ozgen DIIAR Environmental Sect., Politecnico di Milano, P.za

More information

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR Abstract Dr. Michael Nakhamkin Eric Swensen Hubert Paprotna Energy Storage and Power Consultants 200 Central Avenue Mountainside, New Jersey

More information

Revision to the approved baseline methodology AM0011

Revision to the approved baseline methodology AM0011 CDM Executive Board AM00011 / Version 02 Source Revision to the approved baseline methodology AM0011 Landfill gas recovery with electricity generation and no capture or destruction of methane in the baseline

More information

Perspectives for the Danish Sector of the North Sea. Challenges and opportunities ahead!

Perspectives for the Danish Sector of the North Sea. Challenges and opportunities ahead! Perspectives for the Danish Sector of the North Sea Challenges and opportunities ahead! Presentation Energinet.dk Offshore Forum 28 May 2014 July 30, 2015 page 1 Presentation agenda 1 2 3 Oil Gas Denmark,

More information

CSB Public Meeting February 7, 2010, Natural Gas Explosion Kleen Energy Middletown, Connecticut

CSB Public Meeting February 7, 2010, Natural Gas Explosion Kleen Energy Middletown, Connecticut CSB Public Meeting February 7, 2010, Natural Gas Explosion Kleen Energy Middletown, Connecticut June 28, 2010 www.csb.gov 1 Tonight s Speakers Lauren Wilson Chemical Incident Investigator Dan Tillema Chemical

More information

Higher Pressure with CNG

Higher Pressure with CNG Higher Pressure with CNG The fuel systems for LPG and CNG differ in one respect - the pressure in the tank. The CNG is in gas form - it is compressed to high pressure (around 200 bar). This is done to

More information

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC

More information

HARMATTAN GAS PLANT COMPRESSOR CONVERSION 09-IAGT 306

HARMATTAN GAS PLANT COMPRESSOR CONVERSION 09-IAGT 306 2009-OCTOBER-21 HARMATTAN GAS PLANT COMPRESSOR CONVERSION 09-IAGT 306 KEN TEMPLE, P. ENG. (ken.temple@altagas.ca) Altagas Ltd. 1700, 355 4 th Ave S.W. Calgary, Alberta T2P 0J1 Harmattan Gas Plant Compressor

More information

Perspectives on Upstream, Midstream and Greenstream Integration

Perspectives on Upstream, Midstream and Greenstream Integration Perspectives on Upstream, Midstream and Greenstream Integration Maximising Recovery, Utilisation and Green Values in the Transport Systems Søren Juel Hansen sjh@energinet.dk +45 23 33 87 44 1 Maximising

More information

City of Bath Maine. A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects. December 11, 2008

City of Bath Maine. A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects. December 11, 2008 City of Bath Maine A Small Landfill s Preliminary Evaluation of Carbon Credits and Renewable Energy Projects December 11, 2008 Presented by Michael Booth P.E. Presentation Background Bath s Approach to

More information

Reducing CO2 emissions for Offshore oil and gas Operations under ETS. Margaret Christie, Environmental Advisor, UK Business Unit, Premier Oil UK Ltd

Reducing CO2 emissions for Offshore oil and gas Operations under ETS. Margaret Christie, Environmental Advisor, UK Business Unit, Premier Oil UK Ltd Reducing CO2 emissions for Offshore oil and gas Operations under ETS Margaret Christie, Environmental Advisor, UK Business Unit, Premier Oil UK Ltd Reducing CO2 emissions for Offshore operations under

More information

Greenhouse gas emissions from direct combustion of various fuels (e.g. grain dryer)

Greenhouse gas emissions from direct combustion of various fuels (e.g. grain dryer) Greenhouse gas emissions from direct combustion of various fuels (e.g. grain dryer) The most significant greenhouse gas from direct combustion is carbon dioxide (CO 2 ) Large number of other compounds

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

Making heating systems efficient and cost-effective: boilers, heating controls & more

Making heating systems efficient and cost-effective: boilers, heating controls & more Making heating systems efficient and cost-effective: boilers, heating controls & more WHAT WE USE ENERGY FOR IN OUR HOMES DECC Energy Consumption in the UK, 2010: Table 3.3 Heating building & hot water

More information

Source: EIA Natural Gas Issues and Trends 1998

Source: EIA Natural Gas Issues and Trends 1998 7.0 System Redesign Analysis 7.1 Emissions Natural gas is a clean burning fossil fuel. It consists of a mixture of hydrocarbon gases, primarily Methane (CH 4 ). In analyzing the combustion process, it

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Steam Generation Efficiency Module Blowdown Losses Section

Steam Generation Efficiency Module Blowdown Losses Section Steam End User Training Steam Generation Efficiency Module Blowdown Losses Section Slide 1 Blowdown Losses Module This section will discuss blowdown loss and its affect on boiler efficiency. [Slide Visual

More information

Efficiency Options for Thermal & Catalytic Oxidizers

Efficiency Options for Thermal & Catalytic Oxidizers Efficiency Options for Thermal & Catalytic Oxidizers Kyle Momenee / Application Engineer Anguil Environmental Systems Inc. www.anguil.com EPA Roundtable March 25 th, 2009 1 Background-Anguil Environmental

More information

Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters

Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters Effect of Different Parameters on Depressuring Calculation Results Introduction Saeid Rahimi 01-Nov-2010 Emergency depressuring facilities are utilized to accomplish at least one of the following objectives:

More information

NSPS Subpart OOOO: Applicability and Compliance Basics

NSPS Subpart OOOO: Applicability and Compliance Basics NSPS Subpart OOOO: Applicability and Compliance Basics Kentucky Oil & Gas Association 2013 Western Kentucky Meeting September 12, 2013 Roy Rakiewicz All4 Inc. Rob Flynn Environmental Standards, Inc. www.all4inc.com

More information

Energy Efficiency in Steam Systems

Energy Efficiency in Steam Systems Energy Efficiency in Steam Systems Fundamentals of Energy Efficiency: An Introductory Workshop April 2008 John S. Raschko, Ph.D. Mass. Office of Technical Assistance www.mass.gov/envir/ota (617) 626-1093

More information

Company Name: City, State, Zip Code: Annual Report Summary

Company Name: City, State, Zip Code: Annual Report Summary Company Information 2014 Company Name: Contact: Title: Address: City, State, Zip Code: Telephone: Fax: E-mail: Transmission Sector Summary BMP 1: Directed inspection and maintenance at compressor stations

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

Colorado s Recent Efforts to Address Hydrocarbons from Oil and Gas Operations

Colorado s Recent Efforts to Address Hydrocarbons from Oil and Gas Operations Colorado s Recent Efforts to Address Hydrocarbons from Oil and Gas Operations Presentation to the Joint Meeting of the Southern Ute Indian Tribe/State of Colorado Environmental Commission and the Colorado

More information

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved.

Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved. Monitoring Air Emissions on Ships siemens.com/answers Why emission monitoring in the marine industry? Main drivers: Meeting regulations: NOx and SOx reduction Energy optimization; CO 2 reduction Resolution

More information

Denmark Country Report

Denmark Country Report IEA Bioenergy Task 37 Energy from Biogas Denmark Country Report Berlin (Germany), October 2015 Teodorita AL SEADI BIOSANTECH Lerhøjs Allé 14 DK 6715 Esbjerg N Denmark teodorita.alseadi@biosantech.com +45

More information

No. Name Description Main input Data Main Output Data. cooling duty, process in/out temperature, inlet air temperature

No. Name Description Main input Data Main Output Data. cooling duty, process in/out temperature, inlet air temperature 1 AIRCOOLER Air cooler preliminary sizing cooling duty, process in/out temperature, inlet air temperature No of fans, Air cooler Dimension, bare area, no of rows, Fan Diameter, fan power 2 BLOW DOWN FACILITATOR

More information

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Bengt Ridell Carl Bro Energikonsult AB, Sweden, 2005-04-15 bengt.ridell@carlbro.se 1. Background The largest private utility company

More information

Source Sampling Manual Volume II

Source Sampling Manual Volume II Source Sampling Manual Volume II December, 1980 Revisions: May, 1981 January, 1992 April, 2015 Operations Division 811 SW 6 th Avenue Portland, OR 97204 Phone: 503-229-5696 800-452-4011 Fax: 503-229-5850

More information

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System FINE TUNING EXPERIENCE OF A CFBC BOILER By K.K.Parthiban / Boiler specialist / Venus Energy Audit System Introduction The Industrial boilers have been seeing a growth in capacity in the recent years. Current

More information

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Mark Schiffhauer, ATSI Engineering Services Cameron Veitch, Combustion and Energy Systems Scott Larsen, New York State Energy

More information

R-32. The next generation refrigerant for air conditioners and heat pumps

R-32. The next generation refrigerant for air conditioners and heat pumps R-32 The next generation refrigerant for air conditioners and heat pumps Daikin is the first company in the world to launch heat pumps and air conditioners charged with R-32. This refrigerant has several

More information

TransCanada Case Study: Emissions Management System

TransCanada Case Study: Emissions Management System Case Study: Emissions Management System Jim Cormack Senior Advisor, Climate Change October 31, 2007 Agenda How does track and manage its emissions? Development of an Emissions Management Strategy Creation

More information

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT RECEIVING TERMINALS Presented at the 86 th Annual Convention of the Gas Processors Association March 13, 2007 San Antonio, Texas Kyle T. Cuellar Ortloff Engineers,

More information

LNG as Ship Fuel. Effects on Ship Design, Operations and Supporting Infrastructure

LNG as Ship Fuel. Effects on Ship Design, Operations and Supporting Infrastructure LNG as Ship Fuel Effects on Ship Design, Operations and Supporting Infrastructure New Technologies for the Marine Highway TRB Marine Highways Committee (AW010(1)) January 14, 2013 LNG as a Ship s Fuel

More information

Backup Fuel Oil System Decommissioning & Restoration Plan

Backup Fuel Oil System Decommissioning & Restoration Plan Backup Fuel Oil System Page 1 of 19 Overview of Physical Fuel Oil System and Decommissioning Steps The fuel oil system at Milford Power consists of a number of subsystems. These include the following:

More information

Instrument Gas to Instrument Air Conversion Protocol October 2009 SPECIFIED GAS EMITTERS REGULATION OCTOBER 2009. Version 1.0.

Instrument Gas to Instrument Air Conversion Protocol October 2009 SPECIFIED GAS EMITTERS REGULATION OCTOBER 2009. Version 1.0. SPECIFIED GAS EMITTERS REGULATION QUANTIFICATION PROTOCOL FOR INSTRUMENT GAS TO INSTRUMENT AIR CONVERSION IN PROCESS CONTROL SYSTEMS Version 1.0 OCTOBER 2009 Page 1 Disclaimer: The information provided

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

Industrial Gas Turbines utilization with Associated Gases

Industrial Gas Turbines utilization with Associated Gases Industrial Gas Turbines utilization with Associated Gases Géraldine ROY Lead Market Analyst - Business Development Siemens Industrial Turbomachinery Ltd Siemens PG I satisfies customer needs from a single

More information

Characterization of Greenhouse Gas Emissions Involved in Oil and Gas Exploration and Production Operations

Characterization of Greenhouse Gas Emissions Involved in Oil and Gas Exploration and Production Operations Characterization of Greenhouse Gas Emissions Involved in Oil and Gas Exploration and Production Operations Review for the California Air Resources Board by Angela Zahniser What greenhouse gas (GHG) emissions

More information

Boiler NOx Emissions and Energy Efficiency

Boiler NOx Emissions and Energy Efficiency Boiler NOx Emissions and Energy Efficiency Prepared For: Boiler Operators and Facility Managers Prepared By: 100 Montgomery Street, Suite 600 San Francisco, CA 94104 AGENDA Introduction Boiler NOx Formation

More information

Air emissions reduction strategy

Air emissions reduction strategy Pemex Exploración y Producción (PEP) Air emissions reduction strategy Natural Gas STAR Implementation Workshop Global Methane Initiative Denver, Colorado. April, 2012 Agenda Introduction Business Plan

More information

The oil fields in the NCS are located in the North Sea, Norwegian Sea, and Barents Sea.

The oil fields in the NCS are located in the North Sea, Norwegian Sea, and Barents Sea. A.2 Norway Volumes of Associated Gas Flared on Norwegian Continental Shelf Norway is a major oil producer, and its oil fields are located offshore in the Norwegian Continental Shelf (NCS). 81 In 2002,

More information

Addition of general construction conditions applicable to the portable emergency turbine because they were omitted from the original Part 70 Permit.

Addition of general construction conditions applicable to the portable emergency turbine because they were omitted from the original Part 70 Permit. Ms. Heather N. Frosch Midwestern Gas Transmission P.O. Box 2511 Houston, Texas 77252-2511 Re: 153-11686 First Significant Permit Modification to Part 70 No.: T153-5975-00006 Dear Ms. Frosch: Midwestern

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

Bio-CNG plant. Spectrum Renewable Energy Limited, Kodoli, Kolhapur

Bio-CNG plant. Spectrum Renewable Energy Limited, Kodoli, Kolhapur Bio-CNG plant Spectrum Renewable Energy Limited, Kodoli, Kolhapur Spectrum Renewable Energy Private Limited (SREL) developed a large scale biogas generation and bottling project at Kodoli near Kolhapur

More information

Technical Specification. Generating Set with Waukesha engine burning natural gas

Technical Specification. Generating Set with Waukesha engine burning natural gas Technical Specification Generating Set with Waukesha engine burning natural gas The following presents the Gas Engine Generating Set (GEGS) APG1000 type, based on Waukesha gas engine 16V150LTD. Using the

More information

Dry-out Design Considerations and Practices for Cryogenic Gas Plants

Dry-out Design Considerations and Practices for Cryogenic Gas Plants Dry-out Design Considerations and Practices for Cryogenic Gas Plants Presented at the 93 rd Annual Convention of the Gas Processors Association April 14, 2014 Dallas, Texas Joe T. Lynch, P.E., David A.

More information

F ox W hi t e Paper. Reduce Energy Costs and Enhance Emissions Monitoring Systems

F ox W hi t e Paper. Reduce Energy Costs and Enhance Emissions Monitoring Systems F ox W hi t e Paper Reduce Energy Costs and Enhance Emissions Monitoring Systems A Technical White Paper from Fox Thermal Instruments Rich Cada, VP Sales & Marketing, Fox Thermal Instruments, Inc. 399

More information

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 Gas Standards and Safety Guidance Note January 2015 (GN106) Version 1.0 GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 A guide to assist in the design of biogas

More information

Conventional Oil and Gas Technologies

Conventional Oil and Gas Technologies Conventional Oil and Gas Technologies HIGHLIGHTS PROCESS AND TECHNOLOGY STATUS Oil and gas technologies include the exploration and development of oil and gas fields, and production processes. Over the

More information

Simulation of a base case for future IGCC concepts with CO 2 capture

Simulation of a base case for future IGCC concepts with CO 2 capture Simulation of a base case for future IGCC concepts with CO 2 capture Christian Kunze, Hartmut Spliethoff Institute for Energy Systems TU München for 4 th Clean Coal Technology Conference 2009 18 20 May,

More information

The Deepwater Horizon Oil Spill Part I. Unit Conversion

The Deepwater Horizon Oil Spill Part I. Unit Conversion The Deepwater Horizon Oil Spill Part I. Unit Conversion Why? The Deepwater Horizon oil spill (also known as the BP oil spill) began on 4/20/2010 and ended when the well was capped on 7/15/2010. The spill

More information

Texas Commission on Environmental Quality Page 1 Chapter 117 - Control of Air Pollution from Nitrogen Compounds

Texas Commission on Environmental Quality Page 1 Chapter 117 - Control of Air Pollution from Nitrogen Compounds Texas Commission on Environmental Quality Page 1 SUBCHAPTER G: GENERAL MONITORING AND TESTING REQUIREMENTS DIVISION 1: COMPLIANCE STACK TESTING AND REPORT REQUIREMENTS 117.8000, 117.8010 Effective June

More information

Natural Gas Dehydrator Optimization

Natural Gas Dehydrator Optimization Natural Gas Dehydrator Optimization IAPG & US EPA Technology Transfer Workshop November 5, 2008 Buenos Aires, Argentina Natural Gas Dehydration: Agenda Methane Losses Methane Recovery Is Recovery Profitable?

More information

Why Electric Compression or otherwise why still Gas Engine driven Compression

Why Electric Compression or otherwise why still Gas Engine driven Compression Why Electric Compression or otherwise why still Gas Engine driven Compression Gas/Electric Partnership Special Workshop Electric Compression Economics, August 27 2009, Houston MAN Turbo AG Schweiz mg,

More information

Ultrasonic Gas Leak Detection

Ultrasonic Gas Leak Detection Ultrasonic Gas Leak Detection What is it and How Does it Work? Because every life has a purpose... Ultrasonic Gas Leak Detection Introduction Ultrasonic gas leak detection (UGLD) is a comparatively recent

More information

Ethanol Vehicle and Infrastructure Codes and Standards Citations

Ethanol Vehicle and Infrastructure Codes and Standards Citations Ethanol Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects. To determine which codes and

More information

Clean Energy Systems, Inc.

Clean Energy Systems, Inc. Clean Energy Systems, Inc. Clean Energy Systems (CES) technology is a zero emission, oxy-fuel combustion power plant. CES approach has been to apply gas generators and high-temperature, high-pressure,

More information

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat. Dr. István ZÁDOR PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.hu Rita MARKOVITS-SOMOGYI: MSc in Transport Engineering, Budapest University of Technology and Economics Department

More information

Fiscal Measurement Natural Gas

Fiscal Measurement Natural Gas White Paper FSG-WP-0012 February 2014 Fiscal Measurement Natural Gas Fiscal Measurement How much? Fiscal Measurement must not be confused with Custody Transfer; in fact, fiscal measurement is a more general

More information

DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES

DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES DANISH ENERGY AGENCY S GUIDELINES ON SAFETY- AND HEALTH RELATED CONDITIONS ON OFFSHORE INSTALLATIIONS, ETC. HEALTH & SAFETY CASES REV. 0 December 2012 TABLE OF CONTENT TABLE OF CONTENT... 2 DOCUMENT CONTROL...

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Garry Kaufman Colorado Air Pollution Control Division May 14, 2014

Garry Kaufman Colorado Air Pollution Control Division May 14, 2014 Garry Kaufman Colorado Air Pollution Control Division May 14, 2014 Colorado emissions data by sector Greenhouse gas emissions (GHG) Nitrogen oxides (NO x ) Volatile organic compounds (VOC) Past efforts

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Beware of Exaggerated Claims and Uncertified Manufacturers Ratings Regarding Commercial Boiler Efficiency

Beware of Exaggerated Claims and Uncertified Manufacturers Ratings Regarding Commercial Boiler Efficiency Beware of Exaggerated Claims and Uncertified Manufacturers Ratings Regarding Commercial Boiler Efficiency For many years competent professional HVAC engineers have been aware of exaggerated or deceptive

More information

Bio-natural-gas for cleaner urban transport

Bio-natural-gas for cleaner urban transport Bio-natural-gas for cleaner urban transport Green Cars y Oportunidades de Liderazgo Valencia. 15 de abril de 2010 Manuel Lage, Dr. Ing. General Manager Valencia. Abril 2010 1 Advantages of bio natural

More information

Addition of general construction conditions applicable to the portable emergency turbine because they were omitted from the original Part 70 Permit.

Addition of general construction conditions applicable to the portable emergency turbine because they were omitted from the original Part 70 Permit. Ms. Heather N. Frosch Midwestern Gas Transmission P.O. Box 2511 Houston, Texas 77252-2511 Re: 125-11685 First Significant Permit Modification to Part 70 No.: T 125-5976-00004 Dear Ms. Frosch: Midwestern

More information