By K.K.Parthiban / Boiler specialist / Venus Energy Audit System
|
|
|
- Norah Hood
- 9 years ago
- Views:
Transcription
1 FINE TUNING EXPERIENCE OF A CFBC BOILER By K.K.Parthiban / Boiler specialist / Venus Energy Audit System Introduction The Industrial boilers have been seeing a growth in capacity in the recent years. Current trend is to install CFBC boilers to realize better combustion efficiency. Boiler operators are now required to learn the tricks & tips of CFBC boiler operation. I share my experience on tuning a CFBC boiler during its post commissioning phase. The readers may find this case interesting with respect to the minimum instrumentation requirement for CFBC. Readers will appreciate that instrumentation has helped to tune the CFBC unit operation. About the boiler The CFBC boiler supplied by Chinese company has been in operation for about 3 months prior to my visit to this plant. The boiler is designed for 100% coal, 50% coal & 50% petcoke. The boiler parameters are 70 TPH, 88 kg/cm2, 510 deg C and feed water temperature is 124 deg C. The design boiler efficiency is 87% with a D grade Indian coal of % ash. The arrangement is as shown in figure 4. The boiler is provided with twin refractory cyclones. A platen SH (secondary) is placed inside the combustor. The final SH & economizers are arranged in the second pass. CFBC working principle The circulating fluidized bed combustion technology, CFBC, uses greater combustor superficial gas velocities than the bubbling bed combustor. See figure 1 & 2. CFBC operates under a special fluid dynamic condition, in which the fine solids particles are transported and mixed through the furnace at a gas velocity exceeding the average terminal velocity of the particles. The major fraction of solids leaving the furnace is captured by a solids separator and is recirculated back to the base of the furnace. The high recycle rate intensifies solids mixing and evens out combustion temperatures in the furnace. CFBC systems operate in a fluid dynamic region between that of BFB and pulverized fuel firing. This fluidization regime is characterized by high turbulence, solid mixing and the absence of a defined bed level. Instead of a well-defined solids bed depth, the solids are distributed throughout the furnace with a steadily decreasing density from the bottom to the top of the furnace. CFBC is characterized by: High fluidizing velocity of m/s Dense bed region in lower furnace without a distinct bed level Water-cooled membrane walls. Optional in-furnace heat transfer surfaces located above the dense lower bed. This can be evaporator panel / SH panel in platen form. Solids separator to separate entrained particles from the flue gas stream and recycle them to the lower furnace. The solid separator can be water cooled / steam cooled / refractory lined. Design of solid separator can be different from manufacturer to manufacturer. Aerated sealing device, loop seal, which permits return of collected solids back to the furnace.
2 For the CFBC, gravity feed of fuel directly into the combustor has proven satisfactory for meeting the desired level of efficient mixing. A solids separator located at the outlet of the combustion chamber separates entrained particles from the flue gas stream. The separator is designed for high solid collection efficiency with nearly 100 per cent efficiency for particles greater than 90 microns in diameter. Fuel can also be fed in the recirculation solids stream at the seal pot. The collected solids are returned to the combustion chamber via the loop seal, which provides a pressure seal between the positive pressure in the lower furnace and the negative draft in the solids separator. This prevents the furnace flue gas from short circuiting up the separator dip leg and collapsing the separator collection efficiency. The recirculation system has no moving parts and its operation has proven to be simple and reliable. By injecting small amounts of high pressure fluidizing air into the loop seal, the solids movement back to the lower furnace is maintained. The following are the problems experienced by the operating team 1. Efficiency of the boiler is low. The unburnt coal in fly ash is around 1.79%. 2. Boiler does not generate the rated steam at rated furnace temperature. 3. Even with a furnace temperature of 950 deg C & flue gas O2 at 8%, the steam generation is 62 TPH. The operating engineers shared their experience during the commissioning phase. There has been heavy air ingress in II pass roof & where economiser tubes penetrate the casing. There was shortage of ID fan capacity with all these leakages. The client had installed penthouse for the second pass & seal boxes for economiser headers. Further the seal welding of entire second pass casing to structure was done. Only after this the boiler draft problem got removed. Review of efficiency of the boiler At the time of visit the boiler was operating at 60 TPH with O 2 % of 8%. The as-fired moisture of coal is around 14%. The GCV on air dried basis more or less matched the design GCV. Assuming effect of air infiltration is nil, the excess air for design coal worked out to be 61.2%. With an LOI of 1.79% in fly ash the efficiency was predicted to be 86.89%. A comparison of losses is given below. Comparative efficiency performance Design coal Standard coal Moisture % by wt Carbon % by wt Hydrogen % by wt Oxygen % by wt Sulphur % by wt Nitrogen % by wt Ash % by wt total GCV- as fired Kcal /kg ADB moisture % by wt GCV - ADB Kcal /kg HLS1, Unburnt carbon loss % HLS2, Total Heat loss through the ash % HLS3, Heat lost through moisture in air %
3 HLS4, Heat lost thro moisture & H2 in fuel % HLS5, Heat lost through dry flue gas % HLS6, Radiation loss % Total losses % Therefore, Boiler efficiency, % My client used direct method for evaluation of boiler performance. The reasons for not achieving even these values were due to the following. In fact the same problem is faced among many boiler users. I pointed out the following facts to client. 1. There is a difference in total moisture between as received coal & as fired coal. In the input coal to coal handling plant the moisture can be at least 2-3% higher. Coal can dry up in the crushing & screening process. The boiler consumes less fuel but the weight booked is with additional moisture. Hence there is a need to establish the variation in Total moisture in raw coal & fired coal. 2. In direct method, the GCV & weight of coal should be both on the as fired basis. Taking GCV on crushed coal & weight on raw coal is not correct. Moisture & GCV estimation of raw coal can be very erroneous due to sampling error. The moisture & GCV on crushed coal is reliable since the coal is homogenized in crushing & screening process. 3. Total moisture estimation has to be done immediately after sampling. The GCV should be done on bone dry basis. If lab humidity conditions are constant in all season / in all hours air dry basis will not add error. Boiler users need to know that GCV is reported on air dried basis by lab. We need to calculate the GCV on as fired basis. 4. The coal feeding is normally varied depending on the load. This variable can affect the efficiency practically. The oxygen reduces when coal is fed. This leads to unburnt CO / hydrocarbon leaving the furnace. Relying on O 2 for air adjustment was not correct. LOI of ash is also to be watched for O 2 trimming. Shortage of steam generation capacity & steam temperature CFBC boilers do not have bed coils as in AFBC. The steam is generated across the entire furnace. The heat transfer coefficient is dependent on the amount of fines present in the recirculating ash. The following are the possible causes for loss of steam generation. Less fines in the feed itself. Poor performance of cyclone separator / separators Loop seal reversal. In case the ash content itself is very less the boiler should be provided with fly ash recirculation arrangement. Incidentally the boiler bank ash, Economiser ash, APH ash and even ESP ash of an AFBC boiler can be a feed for CFBC boiler in order to adjust the fines content in furnace. It also helps in re-burning of ash. The presence of fines is read by the pressure transmitters placed along the height of the boiler. Here I should make a mention that there are some manufacturers do not provide this. There was hardly any head read by the pressure transmitter. See picture 1. So I went for sampling & sieve analysis of coal, bed ash & fly ash. The table 1 showed there were hardly any fines in the feed or in bottom ash. Loop seal ash distribution more or less tallied the requirement. Figure 3 is based on extensive trials in a CFBC
4 unit. It could be confirmed that the cyclone performance is OK. I had advised for the change of coal size as in the AFBC boiler looking at the higher content of over size particles. At the time of visit, the view holes in dip legs of Cyclone were opened & seen. It was found that there was improper recycling in one of the cyclones. There was reverse flow in one dip leg. See photo 1 & 2. It was calculated that the total loop seal air flow requirement should be 1000 m3/h, whereas the present roots blower capacity is 3210 m3/h and all its capacity was used up for loop seal. This was reduced gradually by opening the relief valve to 30%. The loop seal was seen working after this. The ash recycling is very important to attain higher efficiency. The carbon burn up improves with the presence of fine particulates. The working of the loop seal could be identified by the heavier airbox pressure seen in dip leg and riser leg has less airbox pressure. See picture 3, showing the inadequate dip leg pressures. See picture 4 which shows the dip leg airbox pressure is more than the riser leg side. I left the plant insisting on the coal particle size and ash recycling arrangement required for maintaining the fines content in the furnace for improving steam generation & carbon burn up. The second visit After months later, the customer called up again asking for the visit. By this time the OEM had tried everything & left it to me. When the customer called up, I requested them to change the coal size first. I promised to visit only after this is done. Two days after the switch over I had visited. Boiler performance on Coal of 8 mm top size crushed coal In the last two days the coal size was changed as per the recommendation given earlier. This has helped in rising the boiler steam generation without having to exceed the furnace temperature above 930 deg C. The dust load in the free board is found to rise as indicated by the free board pressure transmitter. Earlier the differential pressure between upper & lower furnace before switching over to 8 mm coal was hardly 20 mmwc. Now it is seen as 50 mmwc. See picture 1 & 2. The boiler was seen to generate 75 TPH with a bed temperature of 925 deg C. The loop seal temperature has reduced to deg C. Earlier this was going to 950 deg C and with high excess air. The boiler exit gas temperature was more than 190 deg C. Loop seal working In this visit also I found that one of the loop seals was not working. Then the damper settings of air to loop seals were adjusted. The dip leg seal must be filled with material to a height more than the riser leg side. The material height at riser is fixed by the construction of the loop seal. When the bed expands beyond 600 mmwc, the material overflows to furnace. The height of the dip leg is maintained by adjusting the aeration. After correcting the loop seal, it was seen to contribute for dust load in free board. The bed temperatures were then seen to be within limits. The boiler was operated at 75 TPH (beyond rated capacity) without having to raise the temperature beyond 930 deg C. In a nut shell, the loop seal operation is very vital in recirculation of fines and this can contribute increasing the dilute bed above the dense bed. In fact the dip leg air flow is maintained at 0.3 m/s or less just to promote the aeration of material in dip leg.
5 In riser leg the transfer is a function of the fluidizing air velocity. This is designed for 1.3 m/s. It needs modulation depending on the fine ash generation. In case the fines are increasing beyond limit and the furnace gets loaded with dust, the same can be drained from dip leg drain. Conclusion CFBC boilers need certain essential instrumentation for proper combustor operation & identification of a deviation. Figures 1 to 3 are provided for the interest of the CBFC owners. Figure 1- Furnace & loop seal instrumentation 1. The air flow adjustment valve is for regulation of aeration at dip leg. Helps in proper start up. Or else it would take more time to establish the loop seal. 2. Air flow control valve at riser leg decides the transfer rate to main furnace. Excess transfer rate will lead to seal break. In adequate transfer rate will result in plugging of loop seal. 3. Air flow indications provide the operators parameters for regulation. Or else operators have to make blind adjustment. Many times loop seal will break. 4. Vent control valve is required since a twin lobe blower is used here. Or else VFD will be required. 5. Loop seal needs drain in order to control the lean bed density. Too much of dust will result in combustion temperature. 6. Drains are required for the main combustor as well. The bed ash cooler may malfunction any time. 7. Presence of adequate ash in dip leg is known by this. 8. Comparison of the pressures tells the loop seal is functioning. 9. Height of dense bed is known by this (includes drop across distributor). 10. Height of lean bed is known by this. 11. Secondary air is adjusted to complete the combustion in furnace itself. Figure 2: Primary air system 1. Air flow meter after APH ensures the leakage air flow in APH is ignored. Moreover tube leakage is identifiable in case the damper opening increases for the same air flow. 2. As APH develops tube leakage the pressure drop across APH can be used for inference. 3. Cold air is used for coal chute flushing. This prevents the chute fires / explosions / chute clinkering. 4. Air pressure is a measurable parameter for monitoring. Damper settings are not reliable. Figure 3: Secondary air system 1. Air flow meter after APH ensured that the leakage air flow at APH is ignored. 2. Pressure to ensure penetration is possible for CO ppm reduction is possible by choosing to close dampers optionally. 3. Valves to choose levels of secondary air ports based on FC / VM ratio. 4. As APH develops leakage the pressure drop can be used for diagnosis. New buyers may now review the instrumentation requirement. Existing CFBC owners can review what supplement instrumentation is required for their plant.
6 Figure 1: The principle of CFBC Figure 2: CFBC illustration with cyclone & loop seal. Coal Top Bottom mean size % wt mean Mean particle size 5.65 Bed ash Top Bottom mean size % wt mean Mean particle size 2.07 Cyclone ash Top Bottom mean size % wt mean Mean particle size 0.26 Table 1: Sieve analysis of coal, bed ash & loop seal ash. Figure 3: Typical size distribution of particles in a CFBC boiler. Photo 1: flow of ash in loop seal- working well. Photo 2: Backing of ash in the next loop seal.
7 Figure 4: A view of CFBC boiler.
8 Picture 1: This is the picture of furnace at the first visit. The furnace bottom temperature is higher that the free board. The free board pressure is hardly 11 mmwc. There is considerable temperature drop in free board. Again at loop seal the temperature is more. It means combustion is taking place at loop seal. Picture 2: After the parameters were corrected, the steam generation went to 75 TPH with furnace & loop seal temperatures at deg C. The lean bed height is now 42 mmwc.
9 Picture 3: Loop seals not working before the adjustments were made. The dip leg airbox pressure is less than the riser leg side airbox pressure in right cyclone. There is no markable difference in the left cyclone either. Picture 4: The air flows between cyclones were balanced & valves were throttled to see that there is at least 200 mmwc more pressure at the dip leg side. This picture was taken immediately after the adjustment. Within 2 hrs the boiler reached full load at a lower furnace temperature.
10
11
12
1.3 Properties of Coal
1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified
SIMPLIFIED BOILER START UP METHOD FOR FLUIDISED BED COMBUSTION BOILERS
SIMPLIFIED BOILER START UP METHOD FOR FLUIDISED BED COMBUSTION BOILERS 1.0 SYNOPSIS The start up of fluidised bed combustion boilers has always been a subject of the most difficult operation. Many boiler
Efficiency on a large scale CFB Steam Boilers
Efficiency on a large scale CFB Steam Boilers Circulating Fluidized Bed Steam Boiler The Circulating Fluidized Bed Steam Boiler is an offering from Bosch Thermotechnology a member of the worldwide Bosch
Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency
Babcock & Wilcox's IR-CFB Boiler Technology. S. P. Ganeshan. Papertech -2010, Hyderabad. Divisional Manager, Thermax Limited, Boilers & Heaters Group
Babcock & Wilcox's IR-CFB Boiler Technology S. P. Ganeshan Divisional Manager, Thermax Limited, Boilers & Heaters Group Papertech -2010, Hyderabad Thursday 17, June 2010 1 Thermax - Vision To be a globally
Committed to make a better world
Committed to make a better world 1. Higher Availability & Reliability 2. Highest Plant efficiency 3. Lower Heat Rate 4. Minimum Auxiliary Power Consumption 5. Minimum Emission of Pollutants Committed to
Chapter 2.2: Boilers
Chapter 2.2: Boilers Part I: Objective type Questions and Answers 1. The minimum capacity of any closed vessel which generates steam under Indian Boilers Regulation Act is. a) 2.275 liters b) 22.75 kilo
Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results
Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results 64 TH IEA FLUIDIZED BED CONVERSION MEETING Naples 3 rd of June, 2012 Authors: David Wöß, Gregor
Pulverized Coal Pipe Testing and Balancing
Pulverized Coal Pipe Testing and Balancing By Richard F. (Dick) Storm, PE The first step in optimizing combustion system performance is balancing the air and fuel flowing through each of the plant's coal
The Fate of Ammonia and Mercury in the Carbon Burn-Out (CBO ) Process
The Fate of Ammonia and Mercury in the Carbon Burn-Out (CBO ) Process Vincent M Giampa Progress Materials, Inc., One Progress Plaza, St. Petersburg, Florida 33701 KEYWORDS: mercury, ammonia, carbon burn-out,
A Review of Biomass Boiler Technologies. Fernando Preto CanmetENERGY, Natural Resources Canada
A Review of Biomass Boiler Technologies Fernando Preto CanmetENERGY, Natural Resources Canada Agricultural Biomass for Combustion Energy April 14 2011, Guelph About CanmetENERGY CanmetENERGY is a science
EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER
EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER Chetan T. Patel 1, Dr.Bhavesh K. patel 2, Vijay K. Patel 3 M.E. in Energy Engineering 4 th sem, Government Engineering
COMBLOC The future of packaged multi-fuel fired steam boilers. Ultra Compact. High Performance
HEATING SBU Cooling & Heating Division TM COMBLOC The future of packaged multi-fuel fired steam boilers. Ultra Compact. High Performance Capacity Range 1500 to 6000 kg/hr Standard Design Pressure 10.54
Originators of the Flexible Water Tube design
BRYAN FLEXIBLE WATER TUBE AB SERIES STEAM AND WATER BOILER 900,000 TO 3,000,000 BTUH FORCED DRAFT GAS, OIL OR DUAL FUEL FIRED Water Boiler AB120-W-FDGO Steam Boiler AB250-S-150-FDG Originators of the Flexible
Alstom Development of Oxyfuel PC and CFB Power Plants
Alstom Development of Oxyfuel PC and CFB Power Plants Frank Kluger & John Marion 3 rd Oxy-Combustion Workshop Yokohama, Japan March 06, 2008 Improvement Measures for Fossil Power Plants Regarding CO2 Mitigation
Thermal efficiency of pulverized fuel boiler
Thermal efficiency of pulverized fuel boiler V.VARA LAKSHMI 1, P.S.KISHORE 2 M.E student, Heat Transfer studies in Energy Systems, Dept. of Mechanical Engineering, Andhra University, Visakhapatnam, A.P,
BEST PRACTICES TOWARDS ENERGY EFFECIENCY. UltraTech Cement Limited. (Unit -Kotputli Cement Works)
BEST PRACTICES TOWARDS ENERGY EFFECIENCY UltraTech Cement Limited. (Unit -Kotputli Cement Works) Best Practices towards Energy Efficiency 1. Selected Vertical Mills installed at Raw Mill, Cement Mills
TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS
TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS Dr. Abhay Kumar Sahay, AGM(CC OS) Bijay Manjul, AGM( Operation) Kahalgaon Boiler has three inputs Steam generator 1. WATER 2. COAL 3. AIR Burner Air preheater
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain
Biomass Boiler House Best Practices. Irene Coyle & Fernando Preto CanmetENERGY
Biomass Boiler House Best Practices Irene Coyle & Fernando Preto CanmetENERGY Growing the Margins London, Ontario March 2010 The Biomass & Renewables Group of Industrial Innovation Group (IIG) of CanmetENERGY
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
Development of Coal Gasification System for Producing Chemical Synthesis Source Gas
27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA
THE OPTIMISATION OF BIOMASS COMBUSTION IN SMALL BOILERS
The optimisation of biomass INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 6/28, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 63 69 Komisja Technicznej Infrastruktury
COKE PRODUCTION FOR BLAST FURNACE IRONMAKING
COKE PRODUCTION FOR BLAST FURNACE IRONMAKING By Hardarshan S. Valia, Scientist, Ispat Inland Inc INTRODUCTION A world class blast furnace operation demands the highest quality of raw materials, operation,
1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.
Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study
Stora Enso Fors Ltd Sweden
THE ANALYSIS REPORT OF PLANT NO. 3 Cofiring of biomass - evaluation of fuel procurement and handling in selected existing plants and exchange of information (COFIRING) - Part 2 Stora Enso Fors Ltd Sweden
Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla
Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian
Basics of Steam Generation
Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian
Factory owners must ensure the boiler is:
Factory owners must ensure the boiler is: * Registered with the Boilers and Pressure Vessels Division, Labour Department * Examined by an appointed examiner and has a valid certificate of fitness * Supervised
OROT RABIN POWER STATION UNITS 1-4. 4 x 350 MW
ISRAEL ELECTRIC OROT RABIN POWER STATION UNITS 1-4 4 x 350 MW COAL BOILER CONVERSION TO LOW NO X NATURAL GAS AND COAL FIRING BY PRIMARY AND SECONDARY MEASURES INSTALLATION Replacing the Burner Management
Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers
For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC
BOILERS & THERMIC FLUID HEATERS
BOILERS & THERMIC FLUID HEATERS 1. INTRODUCTION...1 2. TYPE OF BOILERS...2 3. ASSESSMENT OF A BOILER...9 4. ENERGY EFFICIENCY OPPORTUNITIES...26 5. OPTION CHECKLIST...32 6. WORKSHEETS AND OTHER TOOLS...36
International Journal of Engineering Research and Development
International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 4, Issue 8 (November 202), PP. 94-00 Investigation of Improvement in Boiler Efficiency
(205) 670-5088 (205) 670-5863
Ruth Ann Yongue Roxann Laird Senior Engineer Assistant Project Director [email protected] [email protected] (205) 670-5088 (205) 670-5863 Southern Company Services Power Systems Development
5.2. Vaporizers - Types and Usage
5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,
R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler
[N.2.1.1] R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler (Environment-Friendly, High-Efficiency Boiler Group) Takashi Murakawa, Yasuhiro Kotani, Kazuhiro Kamijo, Koichi Tsujimoto, Hiroshi
1. ENERGY PERFORMANCE ASSESSMENT OF BOILERS
1. ENERGY PERFORMANCE ASSESSMENT OF BOILERS 1.1 Introduction Performance of the boiler, like efficiency and evaporation ratio reduces with time, due to poor combustion, heat transfer fouling and poor operation
IMPROVING ENERGY EFFICIENCY IN CEMENT PLANTS
IMPROVING ENERGY EFFICIENCY IN CEMENT PLANTS USING COMPUTATIONAL FLUID DYNAMICS (CFD) For Bureau of Energy Efficiency Best Practices in Energy Efficiency in Cement Sector" Date : 23 rd June 2015 Jodhpur,
Coal waste slurries as a fuel for integrated gasification combined cycle plants
Coal waste slurries as a fuel for integrated gasification combined cycle plants Marcin A. Lutynski 1,a, and Aleksander Lutynski 2 1 Silesian University of Technology, Faculty of Mining and Geology, ul.
Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal
19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi
Boiler efficiency measurement. Department of Energy Engineering
Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation
B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h
Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department
Bubbling Fluidized Bed or Stoker Which is the Right Choice for Your Renewable Energy Project?
Technical Paper Bubbling Fluidized Bed or Stoker Which is the Right Choice for Your Renewable Energy Project? J.P. DeFusco, P.A. McKenzie and M.D. Fick Barberton, Ohio, U.S.A. Presented to: CIBO Fluid
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
ISSN (Online) 31 004 ISSN (Print) 31 556 Vol. 3, Issue 6, June 015 Monitoring Boiler Efficiency using DASY Lab and a Case Study on Analysis of Boiler Losses Chayalakshmi C.L. 1, D.S. Jangamshetti, Savita
HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS
HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS William K. Scullion, Application Engineering Leader, MEGTEC Systems, De Pere, WI Introduction Competitive pressures continuously motivate us to examine our
Description of Thermal Oxidizers
Description of Thermal Oxidizers NESTEC, Inc. is a full service equipment supplier specializing in solutions for plant emission problems. The benefit in working with NESTEC, Inc. is we bring 25+ years
Waste to Energy. Anders Damgaard. Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides
Denmark (Thomas Astrup) Denmark (COWI) Waste to Energy Anders Damgaard Austria (CEWEP) Thanks to Jiri Hyks and Thomas H Christensen DTU for some slides Copyright Anders Damgaard & Morton A. Barlaz, NC
BOILERS, BOILER FUEL AND BOILER EFFICIENCY
BOILERS, BOILER FUEL ND BOILER EFFICIENCY WIENESE Sugar Milling Research Institute, Durban 1, South frica bstract This paper describes the modern boilers in the South frican sugar industry. new equation
Glossary of Heating, Ventilation and Air Conditioning Terms
Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment
Condensing Boiler Efficiency
Condensing Boiler Efficiency Date: July 17, 2012 PRES E NT ED BY DO N L E O NA RDI LE O N A RD I I NC. HV AC T RAI N I N G & C ON SU LT IN G Concepts 1 The current state of evolution in boiler design 2
MOSS WOOD BOILER SYSTEMS
GEORGE K. MOSS CO., INC. INSIDE THIS ISSUE: WOOD WATER T U- TUBE BOILER WOOD FIREBOX BOILER WOOD HYBRID BOILER GASIFIER COM B- BUSTION SYS- TEM PNEUMATIC COMBUSTION SYSTEM WOOD BOILER PLC CONTROLS PLC
Recovery Boiler Research Needs An Industry Perspective
Recovery Boiler Research Needs An Industry Perspective Andrew Jones International Paper 7th International Colloquium on Black Liquor Combustion and Gasification International Paper Recovery Operation Goals
FUELS & COMBUSTION. This section describes types of fuels: solid, liquid, and gaseous.
FUELS & COMBUSTION 1. INTRODUCTION...1 2 TYPE OF FUELS...1 3. PERFORMANCE EVALUATION OF FUELS...11 4. ENERGY EFFICIENCY OPPORTUNITIES...17 5. OPTION CHECKLIST...20 6. WORKSHEETS...23 7. REFERENCES...24
1 DESCRIPTION OF THE APPLIANCE
1 DESCRIPTION OF THE APPLIANCE 1.1 INTRODUCTION The cast iron SF boilers are a valid solution for the present energetic problems, since they can run with solid fuels: wood and coal. These series of boilers
BEST PRACTICE GUIDE. Energy Efficiency: Steam, Hot Water and Process Heating Systems
BEST PRACTICE GUIDE Energy Efficiency: Steam, Hot Water and Process Heating Systems Contents 1 Introduction 4 2 The business benefits of steam system, hot water system and process heating system efficiency
Fluidized Bed Based CO 2 Capture by Carbonate Looping
Fluidized Bed Based CO 2 Capture by Carbonate Looping Prof. Dr.-Ing. Bernd Epple [email protected] www.est.tu-darmstadt.de Tel. +49 6151 16 4717 1 Carbonator: T 450 750 C CaO + CO 2 CaCO
Boiler Preparation, Start-Up and Shutdown
Boiler Preparation, Start-Up and Shutdown Learning Outcome When you complete this module you will be able to: Describe the basic preparation of a boiler for start-up, and the start-up and shutdown procedures.
Assessing the Changes Required by the Industrial Boiler MACT Regulations
Technical Paper MS-17 Assessing the Changes Required by the Industrial Boiler MACT Regulations Authors: A.L. LeClair L.M. McDermitt Babcock & Wilcox Power Generation Group, Inc. Barberton, Ohio, U.S.A
Routine and Emergency Boiler Operation
Routine and Emergency Boiler Operation Learning Outcome When you complete this module you will be able to: Describe the routine safe and efficient operation of a packaged boiler. Learning Objectives Here
Putting a chill on global warming
Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent
Chapter 3.5: Fans and Blowers
Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist
I. STEAM GENERATION, BOILER TYPES
I. STEAM GENERATION, BOILER TYPES and BOILER PLANT SYSTEMS 1 Steam Generation Water s Unique Properties: High Thermal Capacity (Specific Heat) High Critical Temperature Ideal Medium for Heat Delivery High
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences
2nd IEA Oxyfuel Combustion Conference
2nd IEA Oxyfuel Combustion Conference Oxyfuel Combustion with Hitachi's DST - Burner at Vattenfall's 30Wth Pilot Plant at Schwarze Pumpe S. Rehfeldt, F.-P. Schiffer, P. Weckes, C. Bergins, K.-D. Tigges
Chokes. Types Reasons Basics of Operations Application
Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic
Your Boiler Room: A Time Bomb?
Your Boiler Room: A Time Bomb? Is you boiler room a potential Time Bomb? A few basics you need to know to work safely in the boiler room: Two potentials for explosions in a boiler room: Water/steam side
Subpart 1. Installation. All plumbing systems must be. installed and tested according to this chapter and chapter 4715,
4658.4500 PLUMBING SYSTEMS; NEW CONSTRUCTION. Subpart 1. Installation. All plumbing systems must be installed and tested according to this chapter and chapter 4715, the Minnesota Plumbing Code. Subp. 2.
How much do you know about HVAC? Try testing yourself with the following questions and then take a look at the answers on the following page.
Demystifying HVAC Test Your HVAC Knowledge By Ron Prager How much do you know about HVAC? Try testing yourself with the following questions and then take a look at the answers on the following page. 1)
Filtering Samples to On-Line Process Analyzers. Guidelines for Proper Filtration and Delivery of Samples to On-Line Process Analyzers
Filtering Samples to On-Line Process Analyzers Guidelines for Proper Filtration and Delivery of Samples to On-Line Process Analyzers Filtering samples to on-line analyzers Use these guidelines to ensure
5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.
413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above
Overview. Introduction Cooling Tower Basics Principles of Operation Types of Cooling Towers Common Applications Design Considerations
Stephen Lowe ASHRAE Hampton Roads Chapter Past President AECOM Design Mechanical Engineering Discipline Manager, Virginia Beach Division Professional Engineer Commonwealth of Virginia, NCEES BSME University
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 38 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia CAUSTIC AND CHEMICAL TABLE OF CONTENT
Energy Efficient Operations and Maintenance Strategies for Boilers
Energy Efficient Operations and Maintenance Strategies for Boilers Large, complex and widely used, industrial boilers are major consumers of fuel. Proper operations and maintenance (O&M) procedures must
Liquid level measurement using hydrostatic pressure and buoyancy
iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,
Care and Maintenance of Circulating Fluidized Bed Boilers Refractory Failure
Care and Maintenance of Circulating Fluidized Bed Boilers Refractory Failure By Kurt Knitter Power Generation Consultant Eighth Street Services LLC Among the numerous maintenance items encountered with
Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant
Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Petteri Peltola 1, Maurizio Spinelli 2, Aldo Bischi 2, Michele Villani 2, Matteo C. Romano 2, Jouni
Fired Heater Design and Simulation
Fired Heater Design and Simulation Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E. Chemical Engineering Department, L.D. College of Engineering, Ahmedabad-380 015 2 Associate Professor, Chemical Engineering
Evaluate, Clean, and Tune Guidance
Evaluate, Clean, and Tune Guidance The Evaluate, Clean and Tune (ECT) process serves three essential purposes in the Weatherization Assistance Program (WAP). The first is to evaluate the existing system
Modern Sand Reclamation Technologies for Economy, Environment Friendliness and Energy Efficiency
Modern Sand Reclamation Technologies for Economy, Environment Friendliness and Energy Efficiency Aniruddha Ghosh GM, The Wesman Engineering Co. Ltd, Kolkata ABSTRACT Unlike green sand, chemically-bonded
Upgrading of Heavy Oils with FLEXICOKING. ExxonMobil Research & Engineering Company Tim Hilbert
Upgrading of Heavy Oils with FLEXICOKING ExxonMobil Research & Engineering Company Tim Hilbert FLEXICOKING: Integrated Coking and Gasification FLEXICOKING TM Integrated Coke Gasification Key features of
Rainwater Harvesting
Rainwater Harvesting With climate change now a reality rather than a speculated possibility, the demand on water resources has gone up, whilst the amount of water available for supply has gone down. Forth
Advanced Steam Parameters in a Large Scale CFB Application Operating on REF and Biofuels background and experiences
Advanced Steam Parameters in a Large Scale CFB Application Operating on REF and Biofuels background and experiences Matts Strömberg Soderenergi AB, Sweden Presented at Power Gen Europe 2011 Milan, Italy
A Comparison of Fluid-Bed Technologies for Renewable Energy Applications
Technical Paper BR-1833 A Comparison of Fluid-Bed Technologies for Renewable Energy Applications Authors: J.P. DeFusco P.A. McKenzie W.R. Stirgwolt Babcock & Wilcox Power Generation Group, Inc. Barberton,
HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3
HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- BY MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3 SYNOPSIS JP Steel Plantech Co. has developed Hybrid system for EAF off-gas heat recovery, with EAF
Boiler & Pressure Vessel Inspection discrepancies and failures
Boiler & Pressure Vessel Inspection discrepancies and failures Water Heaters / Pressure Vessels Pressure Vessels are inspected once every three years. This requires a test of A: safety relief devices B:
Overview of Heat Recovery Boiler Systems and Operating Costs Factors Effecting Blowdown Blowdown Heat Recovery The Energy Tank
Overview of Heat Recovery Boiler Systems and Operating Costs Factors Effecting Blowdown Blowdown Heat Recovery The Energy Tank Unbiased, Third-Party, Water & Energy Management Consulting Firm: - Not affiliated
Phoenix Process Engineering, Inc. Project Experience Helping Clients Achieve MACT Compliance
Phoenix Process Engineering, Inc. Project Experience Helping Clients Achieve MACT Compliance The Boiler MACT, 40 CFR 63, Subpart DDDDD, was vacated in 2007 by the U.S Court of Appeals and the 2004 rule
HVAC Processes. Lecture 7
HVAC Processes Lecture 7 Targets of Lecture General understanding about HVAC systems: Typical HVAC processes Air handling units, fan coil units, exhaust fans Typical plumbing systems Transfer pumps, sump
WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS
WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS Abstract Mahin RAMESHNI, P.E. Technical Director, Sulphur Technology [email protected] WorleyParsons 125 West Huntington
Mechanical Seal Piping Plans
Mechanical Seal Piping Plans Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54, 55 Quench Seals plans 62, 65A, 65B, 66A, 66B Gas Seals plans 72, 74, 75,
NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS
NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION
DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING
By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
Iron and Steel Manufacturing
Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Iron and Steel Manufacturing Industry Description and Practices Steel is manufactured by the chemical reduction of iron
Well Positioned for the Future
Dominion Generation Virginia City Hybrid Energy Center Well Positioned for the Future The Coal Institute July 13, 2015 Rick Boyd Manager of Fuel Origination & Operations 1 Dominion Profile Operating Segments
Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin
Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with
