Advanced Process Integration for Low Grade Heat Recovery

Size: px
Start display at page:

Download "Advanced Process Integration for Low Grade Heat Recovery"

Transcription

1 Advanced Process Integration for Low Grade Heat Recovery Anur Kapil, Igor Bulatov, Robin Smith, Jin-Ku Kim Centre for Process Integration School of Chemical Engineering and Analytical Science The University of Manchester Manchester, M13 9PL, UK 1

2 Abstract A large amount of low-grade heat in the temperature range of 30 o C and 250 o C are readily available in process industries, and wide range of technologies can be employed to recover and utilize low-grade heat. However, engineering and practical limitations associated with the integration of these technologies with the site has not been fully addressed so far in academic and industrial communities. Also, the integration of non-conventional sources of energy with the total site can be a cost-effective and promising option for retrofit, however, carrying out its design and techno-economic analysis is not straightforward, due to variable energy demands. One of the ey performance indicators for the evaluation and screening of the performance of various energy saving technologies within the total site is the potential of cogeneration for the site. A new method has been developed to estimate cogeneration potential by a combination of bottom-up and top-down procedures. In this wor, the optimization of steam levels of site utility systems, based on a new cogeneration targeting model, has been carried out and the case study illustrates the benefits of optimising steam levels for reducing the overall energy consumption of the site. There are wide range of low-grade recovery technologies and design options for the recovery of low grade heat, including heat pump, organic Ranine cycle, energy recovery from exhaust gas, absorption refrigeration and boiler feed water heating. Simulation models have been developed for techno-economic analysis of the design options for each technology and to evaluate the performance of each with respect to quantity and quality of low grade heat produced on the site. Integration of heat upgrading technologies with the total site has been studied and its benefits have been illustrated with a case study for the retrofit design. 2

3 List of contents 1 Introduction Cogeneration potential Optimization of steam levels Case Study Cogeneration potential Technology for utilization of low Grade heat Vapour compression heat pump Absorption Systems Boiler feed water (BFW) heating Organic Ranine Cycle (ORC) Thermo-compressor Drying Algorithm Case study Conclusions & future wor References Appendix A Optimization framewor Objective function Optimization constraints Electric balances Mass balances Heat balance Equipments Multi-fuel boilers Gas turbines (GT) Heat recovery steam generators (HRSG) Electric motors (EM) Steam turbines (ST)

4 1 Introduction The typical sources of low grade heat are listed in Table 1. The opportunity includes the waste heat recovery from liquids and gases, CHP (combined heat and power), drying, steam generation and distribution and waste heat utilization. The industrial application of low grade heat recovery is relevant to process industries, including chemical, petroleum, pulp and power, food and drin, manufacturing, iron and steel, and cement industries. Table 1: Sources of low grade heat[1] Opportunity Areas Waste heat recovery from gases and liquids Combined heat and power systems Heat recovery from drying processes Steam (improved generation, distribution and recovery) Energy system integration Improved process heating/heat transfer systems (improved heat exchangers, new materials, improved heat transport) Industry chemicals, petroleum, forest products chemicals, food, metals, machinery, forest products chemicals, forest products, food processing all manufacturing chemicals, petroleum, forest products, iron and steel, food, aluminium petroleum, chemicals Waste heat recovery from gases in metals iron and steel, cement and non-metallic minerals manufacture To avoid unnecessary capital expenditure for oversized equipment and to enhance controllability of the energy systems, dynamic feature of the energy supply and demand along with integration with energy recovery technology must 4

5 be incorporated into the energy study in a systematic and holistic manner. The implementation of these integrated energy saving projects within or beyond the plant may not be favoured, due to practical constraints, for example, considerable civil and piping wors required, legislative limitations, different energy utilisation patterns between sources and sins, etc. Therefore, it is vital to quantify the economic benefits of employing low grade energy recovery and its impacts on the industrial site. 2 Cogeneration potential The extent of heat recovery and cogeneration potential is closely related to the configuration of site energy distribution systems in an industrial site, in which multiple levels of steam pressure are introduced, for example, VHP (very high pressure), HP (high pressure), MP (medium pressure) and LP (low pressure). Steam levels and its corresponding pressure is an important design variable as they can be adjusted to either minimize the fuel requirement or maximise profits by exploiting site-wide trade-off of heat recovery and power generation. Optimization of levels of steam mains is based on the manipulation of targeting models for the cogeneration potential for the site utility systems. The performance of the system can be either optimized to obtain the best design, or to obtain the optimum operating conditions for an existing design, considering the part load performance of the equipment based on the optimum number of steam levels and their pressure. The simulation and optimization of the utility systems require an accurate and yet simpler model for each element of the system. Accurate estimation of the cogeneration potential is vital for the total site analysis as it aids in the evaluation of performance and profitability of the energy systems. The overall cost-effectiveness of power and heat from the site is heavily influenced by the optimum management and distribution of steam between various steam levels. Furthermore, optimum import and export targets for electricity can be obtained from steam levels, load and price of fuel and electricity. Also, energy efficiency for the utilisation of low grade heat will be 5

6 strongly influenced by operating and design conditions of existing energy systems. Therefore, the accurate estimation of cogeneration potential is essential for performing a meaningful economic evaluation of the design options considered for heat upgrading and/or waste heat recovery. A number of methods are available in the literature for estimating the cogeneration potential of utility systems. The ideal shaftpower is calculated as the exergy change of the steam passing the turbine[2]. The exergetic efficiency is considered to be independent of the load and inlet-outlet conditions, and is assumed to be a constant value. The steam conditions are approximated by the saturated conditions, but the superheat in the inlet and outlet steam conditions are neglected[3]. There is a difference of up to 30% in cogeneration potential in comparison with simulations based on THM (turbine hardware model) developed by Mavromatis and Koossis[4]. Salisbury[5] observed that the specific enthalpy of steam (i.e. enthalpy per unit mass flow) is approximately constant for all exhaust pressure values[6]. There is a linear correlation between specific power w (power per unit mass flowrate of steam) produced in the turbine and the outlet saturation temperatures. The specific power corresponds to the area of the rectangle on a graphical representation of the inlet and outlet saturation temperatures of the turbine with respect to the heat loads of steam. This methodology is based on the following assumptions: specific load (q) of steam is constant with variation in exhaust pressure and specific power is linearly proportional to the difference of inlet and outlet saturation temperatures. Mavromatis and Koossis[4] proposed a new shaftpower targeting tool called the turbine hardware model (THM) based on the principle of Willans line. Willans line approximates a linear relationship between steam flowrate and the power output. THM has limitations as Varbanov addressed[7]: the effect of bac pressure is not taen into account, and modelling assumptions for part-load performance are too 6

7 simplistic, such that the model assumes a linear relationship over the entire range of operation. Sorin and Hammache[8] introduced a different targeting method based on thermodynamic insights and Ranine cycle. The ideal shaftpower is a function of outlet heat loads and the difference in Carnot factor between the heat source and heat sin. The deviation of the actual expansion from the ideal expansion is defined in terms of isentropic efficiency. New Method Cogeneration targeting in utility systems is used to determine fuel consumptions, shaftpower production and cooling requirements before the actual design of the utility systems[8]. The previous methods available in literature have the following drawbacs. TH model does not consider the contribution of superheat in the inlet and the outlet stream in the power generation. THM parameters are based on regression parameters derived from a small sample of steam turbines, and consequently are not applicable for all the possible sizes of turbines. In order to overcome shortcomings of previous methods, new method for cogeneration targeting has been proposed in this wor, and isentropic efficiency is used in the new targeting method. TH model for targeting does not include the superheat conditions at each level which results in significant error for estimating cogeneration potential. THM model uses an iterative procedure based on specific heat loads to calculate the mass flowrate for the turbines. The calculation of flowrates in Sorin s methodology is based on the flow of energy. Power produced by the system is estimated with the isentropic efficiency, available heat for power generation and inlet and outlet temperatures of Ranine cycle. However, there is no justification for the assumption that thermodynamic behaviour of all the steam turbines to be used acts as that of the Ranine cycle. 7

8 The new algorithm calculates the minimum required flowrate from steam generation unit (e.g. boiler) and the levels of superheat at each steam main based on the heat loads specified by site profiles of heat sources and sins. The algorithm for the new procedure is given in Figure 1. The superheat temperature calculation at each steam level is made, starting with a certain superheat temperature of the steam from the boiler. The procedure is based on the assumption that steam supplied to the site utility systems from a boiler is at the superheated conditions required as VHP steam level. Figure 2 shows the temperature entropy diagram for the process. The initial conditions of superheated steam at higher pressure and temperature level are represented by point 1. The steam at lower pressure level for an isentropic expansion is shown as Point 2 on the curve. Isentrotpic expansion with an efficiency of x% is used to determine the enthalpy at point 2. It is assumed during targeting stage that all the steam turbines are operating at their full load. The cogeneration potential of the system is dependent on the expansion efficiency of x. This parameter is dependent on the capacity of the turbine and detailed calculation is given below. Steam properties are calculated for the given entropy and pressure at the lower steam level. If the degree of superheat in the resulting LP steam main is less than required, then operating conditions of VHP is updated and then re-iterates the procedure above until the acceptable superheated conditions for LP steam main is met. 8

9 Given steam levels, inlet superheat of VHP steam, process load, BFW, Condensate temperature Isentropic efficiency Calculate superheat temperatures at subsequent lower steam level using isentropic efficiencies (Equation 2) Starting from the lowest level, calculate the mass flow rates using Equation 1. Increase Boiler VHP superheat Add flow rates to determine the overall flow rates through each level (bottom up) LP superheat temperature > LP saturation temperature + T* NO STOP YES Figure 1: Algorithm for new method based on isentropic expansion 9

10 T P1 1 P2 2 2 Real Isentropic Figure 2: Temperature Entropy diagram for change in level S In the bottom up procedure, the temperature of the lowest steam level pressure is first used to calculate the steam mass flowrate for the expansion of steam between the lowest steam level and the higher pressure next to the lowest one. This procedure is sequentially repeated until the interval for highest steam pressure level. Flowrates at the higher levels are determined from the flowrate in the lower levels. The flowrate of steam for each expansion interval is a function of the heat load at that level and the enthalpy change to the condensate temperature at the given level. Superheated steam is condensed and supplied to downstream processes at condensate temperature of the steam. Q m& = & H Where, m& = mass flow rate Q & = heat load for a given level Eq 1 H = Enthalpy change from superheat conditions at the given level to condensate conditions at that pressure 10

11 Isentropic efficiency calculation It is designer s discretion to use the most appropriate value of isentropic efficiency for the developed cogeneration targeting method presented in this paper. On the other hand, information of isentropic efficiency available in the literature can be also used. Mavromatis and Koossis[4] developed a thermodynamic model to estimate the isentropic efficiency of single and multiple extraction turbines. Varbanov et al.[9] presented equations to determine the parameters in terms of saturation temperature. Medina-Flores and Picón- Núñez[10] modified the correlations of Varbanov et al.[9] to obtain the regression parameters as a function of inlet pressure. The regression parameters obtained by Varbanov et al.[9] from the turbine data of Peterson and Mann[11] are shown in Table 2. η is W = W max is,max Eq 2 Where, η is W A max = isentropic efficiency W = = 0 1 is, max B b + b B = b2 + b3 H is = isentropic enthalpy change 0, 1, 2, 3 T sat T sat A, B, b b b b = Regression coefficients T sat = Inlet pressure of the steam A Table 2: Regression coefficients for single extraction turbines[12] Single extraction bac pressure turbines W max < 2 MW b 0 (MW) 0 0 W max >2 MW 11

12 b 1 (MW o C -1 ) b b 3 ( o C -1 ) The results are investigated with STAR, which is Process Integration software for the design of utility systems for a single process or a group of processes involving power (electricity) and heat (steam) generation, and associated heat exchanging and distributing units. The design procedure of utility systems in STAR requires information about steam flowrates, heat supply and loads, VHP (very high pressure) steam specification (e.g. VHP steam generation capacity and temperature at the outlet of the boiler). At the initial targeting stage, some of these design parameters are not nown. The parameters, such as flowrate from the boiler, steam level conditions, have to be specified for the detailed design in STAR. The information required for the calculation of cogeneration potential from the utility systems is current flowrate of steam generated, maximum and minimum flow rates of equipment, thermodynamic model and efficiency of steam turbines, steam demand and surplus for each steam main, superheat condition of steam generated from the boiler, etc. STAR has two models isentropic and THM model for the calculation of power generation of steam turbine in the detailed design, while it uses TH and THM model for cogeneration targeting. 3 Optimization of steam levels As explained before, the choice of steam level in the design of site utility systems are critical to ensure cost-effective generation of heat and power, and its distribution in the site. In a new design, pressures of steam level can be readily optimized. However, for the retrofitting of existing systems, opportunities for the change of steam level conditions are limited. The mechanical limitation for the steam mains limits a significant increase in steam pressure. However, long term investment with a proper optimization of the steam levels may be economically 12

13 viable in spite of the fact that the short term investment can not be justified[13]. VHP steam generation in the boiler and hence the fuel costs in the utility boilers can be decreased by increasing number of steam mains which increases the heat recovery potential. Number of steam mains has a significant impact on the cogeneration potential. Therefore, to minimise fuel cost with maintaining high cogeneration potential, the design should be thoroughly investigated. Optimization model In this study, the optimisation framewor for determining the cost-effective conditions of steam mains for the site utility systems had been proposed with incorporating new cogeneration targeting method proposed in the wor. The optimisation model is formulated in an NLP (non-linear programming) problem and the details of models are as follows: Objective Function The objective function is to minimize the amount of hot utility to be supplied from the steam generation unit (e.g. boiler). It should be noted that the method presented in this paper is generic for taing different objective functions, for example, overall fuel cost, operating profit, etc, as long as the relevant cost parameters are available. minimise H shifted sin, VHP H heat source, VHP H shifted, VHP sin Enthalpy of shifted heat sin for VHP H, Enthalpy of heat source for VHP heat source VHP Optimization Variables P i Pressure at i Steam levels (VHP, HP, MP, LP) Four steam mains are used in the current optimisation model, as this is most common in the large-scale industrial plant, while different number of steam 13

14 mains, for example, three levels (HP, MP and LP), can be considered based on needs and operating characteristics on the plant. Constraints Total source and sin profiles are generated from stream data of the site. Design procedure for manipulating stream data to generate the site profiles is not a part of this study and those details can be found from Smith [13] and Klemes et al, [14]. In order to maintain feasibility of heat recovery across steam mains, constraint between sin and source site profiles is needed. First, the sin is shifted until the enthalpy of heat source at either of steam levels is the same as the enthalpy of heat source corresponding to the pinch point, and then enthalpy difference at each steam levels is always greater than zero. H H 0 i Steam levels (VHP, HP, MP, LP) shifted sin, i heat source, i Mass balance The mass flow rate of steam between steam levels is given: m& & i j = m j Where, mi j Q& j + H j & Mass flow rate of steam through turbine between i and j steam levels & Mass flow rate of steam through turbine between j and steam levels m j Q & j Heat duty at j steam level H j Enthalpy extracted by process from superheated steam at j level to reach condensate conditions Power is calculated base on the new design algorithm as shown in Figure 1. Figure 3 shows the model for the determination of optimal steam pressure levels for a site utility system. The change in the steam pressure levels shifts the site sin and surplus profiles along with heat demand and supply. Cogeneration 14

15 potential for the site composite is calculated from the new algorithm. The process is repeated until optimum pressure levels corresponding to minimum value of objective function are found for the site. New steam level pressure Calculate shifted sin and source profiles & heat surplus or deficit at each steam level Cogeneration potential calculation from new algorithm NO Minimum Utility requirement YES Optimum Pressure Figure 3: Flowchart to determine optimum steam pressure level Case Study Cogeneration potential An illustrative case study is used to test the different methodologies. The four steam levels considered in this example are very high pressure (VHP), high pressure (HP), medium pressure (MP), low pressure (LP) at 120, 50, 14 and 3 bar(a) respectively. The heat demand at HP, MP and LP steam levels is 50, 40 and 85 MW respectively. The efficiency of the boiler is assumed to be 100% for the simplicity, which can be updated, according to boiler data available, and it is supplying steam at a temperature of 575 o C. Water supplied to the boiler and the condensate returns are both assumed to be at a temperature of 105 o C. In this wor, cogeneration targeting methods have been applied to the case studies with only bac pressure turbines. However, it can be easily extended to condensing turbines. One of the additional constraints on condensing turbine is a maximum wetness permitted at the exhaust. Wetness factor in the condensing turbine can be controlled by adjusting the superheat in the steam mains, as similary treated in the consideration of degree of superheat in LP steam. 15

16 Table 3: Problem Data Parameters Pressure (bara) Saturation Temperature ( C) Heat Demand (MW) VHP HP MP LP The isentropic efficiency was calculated as given in Equation 2, while the mechanical efficiency was assumed to be 100%. TH Model: The shaftpower targets from TH method are shown in Table 4Error! Reference source not found.. The overall shaftpower calculated from TH model is MW. The value of conversion factor (CF) is assumed to be THM Model: The targets for the three sections VHP-HP, HP-MP and MP-LP for THM model are 9.4, 4.7 and 0 MW respectively (Table 4Error! Reference source not found.). The overall shaftpower target from THM model was 14.2 MW. Sorin s Methodology: The wor in the bottom section is used to calculate the heat load in subsequent top section as described in the methodology in the previous section. Shaftpower targets for VHP-HP, HP-MP and MP-LP of 18.2, and 8.77 MW are shown in Table 4Error! Reference source not found.. New Method Error! Reference source not found. Table 4 shows the shaftpower targets for VHP-HP, HP-MP and MP-LP sections of 14.99, and 9.75 MW respectively. The main difference between the new method and existing TH and THM model is the calculation of superheat temperature for each steam main, as explained previously. Superheat temperature of the outlet LP steam should be greater than saturation temperature of LP steam to avoid condensation of vapour at the outlet 16

17 of turbine and thereby reduced performance and efficiency. The amount of superheat in VHP steam determines the superheat in LP steam. In the new algorithm, the superheat in VHP steam from the boiler is a variable and is adjusted by trial and error to ensure the superheat in LP steam. Saturation temperature (C) VHP HP MP LP VHP Supply t/h MW t/h MW t/h 9.75 MW Qusage = 85 MW Qusage = 40 MW Qusage = 50 MW Heat Demand (MW) Figure 4: Results of the new method STAR Simulation Constant Isentropic Efficiency Once the steam levels and the heat surplus and deficit are nown, a detailed design procedure is used for the optimal design of the utility systems or to find out the optimum operating conditions for an existing design. However, as discussed before, the detailed design requires some additional parameters such as flowrates and superheat steam temperatures. These additional parameters are specified by trial and error. STAR was used to test the targeting potential against the actual production from the steam turbine. The shaftpower was calculated by the isentropic model with isentropic efficiency calculated as shown in Equation 2. The utility systems consist of a boiler supplying VHP steam at 575 o C. The steam is passed from the boiler to the higher pressure steam main to lower pressure steam main, via a steam turbine. Any unused steam can be passed through the vent. The process cooling and heating duty at each steam 17

18 main level is specified as given in Figure 3Error! Reference source not found.. The overall turbine shaftpower is MW. Comparison of Cogeneration Targeting Results Table 4Error! Reference source not found. shows a comparison of cogeneration targeting results from Sorin s methodology, new method, TH and THM model in STAR. A detailed design simulation in STAR with the constant isentropic method is used to compare the shaftpower targets from the different methodologies. As shown in Table 4Error! Reference source not found. the total power target of MW from Sorin s methodology is significantly different from the detailed design procedure of 39.0 MW with an error of 6.2%. The shaftpower target obtained from TH model of MW is 15.3% different from the shaftpower obtained from the detailed design procedure. Similarly, THM model target is 63.85% different from the actual shaftpower from the detailed design procedure. These discrepancies in the shaftpower targets are due to the assumptions used in these models. The shaftpower target obtained from the new method of MW is only 0.31% different from the detailed design procedure in STAR. Figure 5: STAR simulation isentropic efficiency 18

19 Table 4: Comparison of cogeneration targeting results Methodology Total VHP-HP HP-MP MP-LP (MW) (MW) (MW) (MW) Sorin s methodology New Method TH Model in STAR THM Model in STAR STAR Simulation Constant Isentropic Efficiency Optimization of steam levels Site data was taen from an example available in the literature [15]. Site sin and source profile is shown in Figure 6Error! Reference source not found.. Four steam mains are available at very high pressure (VHP), high pressure (HP), low pressure (LP) and medium pressure (MP) respectively. Sin profile is shifted by the minimum of the enthalpy difference between the source and sin, which identifies site pinch point for the utility system Temperature (oc) Sin Source Shifted Sin Profile Enthalpy (MW) Figure 6: Sin and source profiles for a given site The site utility grand composite curve (SUGCC) plots the difference between the hot and the cold composite curves as shown in Figure 7Error! Reference source not found.. The heat generation and use at individual steam level is 19

20 shown in Figure 7Error! Reference source not found. Error! Reference source not found. and Error! Reference source not found. plot the cogeneration potential between different steam levels as expansion zones for steam turbines. The power output for these zones for the optimized case, based on the new algorithm, is found to be 7.69 MW Temperature (oc) Enthalpy (MW) Figure 7: Site Utility Grand Composite Curve with the optimum steam levels Temperature (oc) Enthalpy (MW) Figure 8: Site Utility Grand Composite Curve with cogeneration areas Temperature (oc) Sin Source Enthalpy (MW) Figure 9: Site profile targets for steam generation and steam usage 20

21 Temperature (oc) Enthalpy (MW) Figure 10: Site profile with cogeneration potential area The objective function is the minimization of the utility cost. The hot utility is supplied as VHP steam from the boiler. The optimization framewor described in previous section and the model calculations are performed in Microsoft Excel. The size of the model and the optimization problem is small and therefore solver function in Microsoft Excel can be effectively used for the minimization of the utility cost. The number of steam levels has been assumed constant as four corresponding to VHP, HP, MP and LP respectively. Steam pressures at each level are the design variables. They affect both the level of heat recovery and the cogeneration potential, via the steam turbine networ[13]. Table 5Error! Reference source not found. shows the base case conditions for the four steam levels. Optimum steam level pressure and temperature along with heat load at each level is shown in Table 6Error! Reference source not found.. The optimum pressure in the steam mains for the lowest utility cost are 180, 46.55, and 2.25 bar in the VHP, HP, MP and LP steam loads respectively. The minimum VHP steam generation required from the boiler is MW, while the VHP steam flowrate requirement from the boiler is t/hr. Steam generation required at VHP mains has been reduced from MW to MW for the optimized case. However, the cogeneration potential reduced from 8.8 MW for base case to 7.67 MW for the optimized case. Therefore, increasing the heat recovery reduces the steam generation from the boiler as well as the cogeneration potential for this particular example. If power 21

22 generation in the site should be increased, then additional VHP steam is generated to pass through steam mains. Table 5: Base case steam levels[15] Pressure (bar) Temperature ( o C) Heat Load (MW) Saturation temperature ( o C) Table 6: Optimized steam levels Pressure (bar) Temperature ( o C) Heat Load (MW) Saturation temperature ( o C) This optimisation framewor can be extended to accommodate other economic scenarios (e.g. to minimise the fuel costs with maintaining the same cogeneration potential) or practical constraints (e.g. the number of steam levels allowed). 4 Technology for utilization of low Grade heat Low grade heat source can be very useful to provide energy to the heat sin by upgrading low-grade energy (e.g. low pressure steam). The upgrade of low grade heat can be carried out by heat pump, absorption refrigeration, thermo compressor, etc, by recovering and/or upgrading waste heat from various sources (e.g. gas turbine exhaust) and utilising them with the wide range of applications (e.g. drying and boiler feedwater heating). 4.1 Vapour compression heat pump Heat pump transfers the low grade heat at the lower temperature to higher temperature heat by the compressor. Heat pump has been used in petroleum refining, and petrochemicals, wood products, pharmaceuticals, utility system etc. [16]. Figure 11 shows a typical closed cycle heat pump. The heat from lower temperature source is transferred to the woring refrigerant in the evaporator. Electric or mechanical energy is used in the compressor to increase the pressure 22

23 of the vapour from the evaporator. High grade heat at higher temperature is released from the condenser. Pressure of the vapour is reduced by throttle valve to lower its temperature and convert it to liquid to exchange heat with low grade heat source. The main issue with the utilization of the heat pump is that it uses expensive external energy to convert low grade heat into high grade heat. In general, one unit of high grade electrical energy can produce 2-4 units of high grade thermal energy. Condenser Throttle valve Compressor Mechanical wor input Prime Mover Evaporator Heat from lower temperature source Figure 11: Heat pump cycle [17] Q COP = Q E Co Eq 3 Where, COP = coefficient of performance Q E = Heat received at low temperature by the evaporator Q Co = Electric power supplied in the compressor 4.2 Absorption Systems Low grade heat can be recovered by absorption with three different types of equipments absorption refrigeration, absorption heat pump and absorption 23

24 transformers respectively. Iyoi and Uemura [18] compared the performance of absorption refrigeration, absorption heat pump, and absorption transformer for water-lithium bromide zinc chloride calcium bromide system. a) Absorption refrigeration There has been extensive wor in literature on absorption refrigeration system, with both experimental [19] and simulation studies [20, 21] to determine the performance of absorption refrigeration. A schematic diagram of ammonia-water absorption refrigeration cycle is shown in Figure 12. Ammonia vapour at high pressure transfers heat to neighbourhood in the condenser. Liquid ammonia from the condenser is passed through an expansion valve to reach the evaporator pressure. Heat is transferred from the low temperature heat source to convert liquid ammonia to vapour state. Ammonia vapour is absorbed by a wea solution of water and ammonia to form a concentrated solution of ammonia-water at the bottom of absorber. This concentrated solution is passed to the generator for the production of ammonia vapour while the lean solution from the generator is passed bac to the absorber unit. Low grade heat is used in the generator for the production of ammonia vapour. Lean ammonia solution from the generator exchanges heat with the high concentration ammonia solution from the absorber. Figure 12: Ammonia water absorption refrigeration cycle [19] 24

25 The coefficient of performance for an absorption refrigeration system is defined as the ratio of heat removed from the evaporator to heat supplied in the generator. Where, Q COP = Q COP = coefficient of performance Q E Q G E G = Heat received at low temperature by the evaporator = High temperature heat used in the generator Eq 4 b) Absorption heat pump A single stage absorption heat pump consists of a generator, absorber, evaporator, condenser and heat exchanger. High grade heat is supplied at higher temperature to the generator to separate the refrigerant from the solution. Low grade waste heat is supplied to the evaporator, while medium temperature heat is released from the condenser. Thermal energy at higher temperature is used to convert low grade heat into high grade heat. Coefficient of performance of an absorption heat pump is the ratio of heat removed from the medium temperature heat removed form the absorber and condenser to the high grade heat supplied in the generator. Where, QA + Q COP = Q COP = coefficient of performance Q A Q C G = Heat released by the absorber = Heat released by the condenser C Eq 5 Q G = High temperature heat used in the generator c) Absorption heat transformer The basic schematic diagram of absorption heat transformer is shown in Figure 13. Absorption heat transformer consists of 25

26 the same units as absorption heat pump. However, the main difference is that evaporator and absorber are maintained at a higher pressure, while in absorption pump they are at a lower pressure. Low grade heat is used in the generator and evaporator to produce heat at higher temperature in the absorber. The process can be described briefly as follows: High pressure refrigerant vapour from an evaporator is absorbed into the lean refrigerant absorbent solution in the absorber. High pressure strong solution of refrigerant absorbent is passed via a throttle valve to reduce the pressure. This solution exchanges heat with wea solution from a generator, before it reaches the generator. Low temperature heat in the generator is used to separate the refrigerant from the solution. Refrigerant vapour from the generator is condensed in a condenser. The refrigerant is subsequently pumped to higher pressure where it gains heat at low temperature to convert into vapour. Generator Condenser Heat Exchanger Absorber Evaporator Figure 13: Absorption heat transformer (Ammonia water) The ratio of high temperature heat from the absorber to the low grade heat supplied in the generator and evaporator is defined as the coefficient of performance of absorption transformer. QA COP = Q + Q G E Eq 6 26

27 Where, COP = coefficient of performance Q A Q E Q G = Heat released by the absorber = Heat consumed in the evaporator = High temperature heat used in the generator 4.3 Boiler feed water (BFW) heating Low grade heat can be used to increase the temperature of mae-up water to reduce the fuel cost in the boiler. Additional heat exchanger capital cost is required for exchange of heat between the boiler mae up water and low grade heat. The increase in temperature of mae up water using low grade heat decreases the fuel consumption in the boiler. 4.4 Organic Ranine Cycle (ORC) A Ranine cycle for extracting electricity from waste heat sources is possible with the use of organic fluids as woring fluids. Efficiency of operation of Ranine cycle depends on conditions of the cycle and woring fluid. A typical organic Ranine cycle consists of an evaporator, turbine, condenser and pump respectively (Figure 14). Organic fluid such as benzene, toluene, p-xylene and refrigerants R113 and R123 [22] have been used as woring fluids in ORC. Woring fluid vaporises by exchanging heat with low grade heat in the evaporator. Vapour is passed through turbine for generation of electricity. Vapour is condensed in condenser at lower temperature and releases heat to the outside atmosphere. Organic fluid is raised from lower pressure to high pressure in the pump. The amount of energy consumed in pumping the fluid is considerably low. 27

28 Turbine Pump Condenser Figure 14: Organic Ranine Cycle (ORC) Efficiency of ORC is defined as the ratio of power generated by the turbine to the low grade energy supplied in the evaporator. Where, η ORC P = Q turb η ORC = Efficiency of ORC E Eq 7 Q E = Heat received at low temperature by the evaporator P turb = Electric power generated by the turbine 4.5 Thermo-compressor Thermo-compressor uses high pressure steam to compress low or intermediate pressure waste steam into medium pressure steam. Figure 15 shows a thermocompressor where high pressure steam enters as a high velocity fluid, which entrains the low pressure steam by suction. The resulting mixture is compressed and discharged as a medium pressure steam from the divergent section of the thermo-compressor. The main advantage of thermo compressor is high reliability and less compression power requirement. 28

29 Figure 15: Thermo compressor Drying Biomass (wood, bagasse, grass, straw, agriculture residues, etc.) have significant amount of moisture. This moisture reduces the theoretical flame temperature as a part of heat of combustion is used in evaporation of moisture from the biomass [23]. Calorific value and theoretical flame temperature from the biomass fuels can be increased by drying. Effective use of industrial waste heat in drying of biomass increases the overall efficiency of the process, leading to significantly lesser amount of fossil fuel to be burned and hence much less green house emissions. 5 Algorithm Once the number of steam levels and their pressure has been determined by optimization in total site profiles, the performance of the system can be either optimized to obtain the best design, or to obtain the optimum operating conditions for an existing design, considering the part load performance of the equipment. The simulation and optimization of the utility systems require accurate and yet simpler model for each element of the system. Varbanov [9] and Aguillar [24] developed simple models for the equipments in the utility systems. Models developed by Aguillar [24] have been adopted for the purpose 1 ( 29

30 of optimization which determines the optimum design (i.e. the configuration of utility systems) or operating conditions in this wor (Appendix A). The algorithm for evaluation of integration of low grade heat upgrade technologies with an existing site utility system is shown in Figure 16. The characteristics of low grade energy such as available heat load at temperatures for use in heat pump, ORC, and boiler feed water heating is obtained from total site sin and source profiles. HYSYS simulation is used to obtain the performance indicators such as COP, efficiency, purchase cost etc. for low grade heat upgrade technology. Heat load is varied for the HYSYS simulation to calculate the change in performance and purchase cost. This information is fed to the optimization framewor for calculating the overall annual cost with integration of these design technologies. The optimization framewor [24] is used for minimization of overall annual cost or operating cost minimization for a multiperiod operational, retrofit or grassroots design problem. Linear models have been derived for all the energy equipments so that MILP optimizers can be used for optimization to reduce the computational cost. Figure 16: Algorithm for evaluation of low grade heat upgrade technology 30

31 6 Case study The various design options for low grade heat upgrade are evaluated with the help of a case study. The base case design is shown in Figure 17. The base design consists of four boilers each with capacity of 40 g/s. There are four bac pressure turbines for generation of electricity from VHP to HP and one bac pressure turbine between HP and LP steam levels. Two multistage turbines are available for expansion of steam between HP-MP and MP-LP respectively. Four mechanical pumps having a steam turbo driver and an electric motor supply the feed water to the boiler. Figure 17: Base case design [24] Site data for heat load, electricity demands, pump electricity demand, condensate return and cooling water is shown in Table 7. The site operating seasons are divided into two major categories summer and winter, with 67% of year as winter. The ambient temperature, relative humidity, electricity natural gas and fuel oil price is shown in Table 8. The total number of woring hours for the 31

32 site is assumed to be 8600 hrs per year. The latent heat values for fuel oil and natural gas are 45 and MJ/g respectively. Table 7: Total site data - Requirements for the utility system Units Winter Summer Electricity demand MW VHP steam demand MW HP steam demand MW MP steam demand MW LP steam demand MW Total steam demand MW Condensate return % Power Pump 1 MW Power Pump 2 MW Power Pump 3 MW Power Pump 4 MW Process CW demand MW Table 8: Site conditions Season Units Winter Summer Fraction of the year % Ambient temperature o C Relative humidity % Electricity prices Pea ($/Wh) Off- Pea ($/Wh) Pea hours /day Hrs 7 12 Fuel Oil price $/g Natural gas price $/g Raw water price $/ton Grand composite curves (GCC) of the individual process are modified by removing the pocets corresponding to additional heat recovery within the process. These modified process GCC are then combined together to form the total site sin and source profile (Figure 18(a)). Sin profile is shifted until the source and shifted sin profile touch each other (Figure 18(b)) or the source and the sin steam generation and consumption lines touch each other corresponding to site pinch. Site utility grand composite curve (SUGCC) represents the horizontal separation between the source and the sin. Steam demand at VHP, HP, MP and LP levels are 110.8, 21.4, 9.3 and 73.6 MW 32

33 respectively. Power generation potential is represented as areas in SUGCC with VHP-HP, HP-MP and MP-LP cogeneration potential of 79.8, 58.4 and 49.1 MW respectively (Figure 18(c)) Temperature (oc) Temperature (oc) Enthalpy (MW) (a) Enthalpy (MW) (b) Temperature (oc) Enthalpy (MW) (c) Figure 18: Site composite curves; (a) Site source and sin composite curve (b) Site source and shifted composite curve with the cogeneration potential area (c) Site utility grand composite curve (SUGCC) Integration of heat pump HYSYS model heat pump A model of heat pump has been simulated in HYSYS. It consists of four equipments evaporator (E-102), compressor (K-100), condenser (E-100) and a throttle valve (VLV-100). Refrigerant R112-a is used as a woring fluid. Low grade heat is supplied in the evaporator at the temp of 115 o C. High grade electric energy is used in the compressor to raise the pressure of the vapour. LP steam 33

34 is generated from the condenser at temperature of 150 o C. Throttle valve is used to reduce the pressure of the vapour liquid mixture from the condenser. Figure 19: Vapour compression heat pump Figure 20 shows the variation of COP for heat pump system with respect to variation in the evaporator duty. COP varies within a small range from and can be assumed to be constant for the refrigerant (R-112a) and the corresponding heat pump cycle (Figure 19). COP of 3.3, means that 1 MW of electric energy and 2.3 MW of low grade energy generate 3.3 MW of high grade energy. 34

35 COP Evaporator Duty Figure 20: COP with respect to evaporator duty Purchase cost of heat pump Purchase cost of heat pump is calculated as the sum of the cost of evaporator, condenser, and compressor. Purchase cost of heat pump is approximated based on a linear correlation between the cost and the evaporator duty. PC heat pump = A H eva + B Eq 8 Where, heat pump PC = Purchase cost heat pump eva H = Evaporator duty (MW) A, B = Regression coefficients A = 0.1 MM$/MW B = 1.15 MM$ Purchase cost 12 y = x Purchase Cost (MM$) Evaporator duty (W) Figure 21: Linear correlation between purchase cost and evaporator duty 35

36 The total site source and sin profile before and after integration of the heat pump is shown in Figure 22 and Table 9. LP steam demand changes from to MW in summer and from to MW in winter. Low grade heat is extracted from the site source only till 115 o C corresponding to temperature diff of 10 o C in the evaporator of the heat exchanger. COP of heat pump as calculated from HYSYS simulations is 3.3. Therefore, the external electricity consumption from the site increases as shown in Table 10 from to MW in summer and from 62.2 to 78.8 MW in winter. Table 9: LP steam demand before and after integration of heat pump Summer (MW) Winter (MW) Before heat pump After heat pump Table 10: Electricity demands before and after integration of heat pump Summer (MW) Winter (MW) Before heat pump After heat pump Temperature (oc) Enthalpy (MW) Figure 22: Site composite curve with heat pump integration Annualized capital cost with operational optimization of the existing plant Operational optimization of total site annual cost with the integration of heat pump is shown in Table 10. External power cost increases from MM$ to 36

37 35.03 MM$ after integration of heat pump, while fuel cost decreases from to MM$. Total annual cost increases to MM$/yr from MM$/yr after integration of heat pump. Therefore, with these costs of fuel and electricity and the capital cost of heat pump it is not economic to set up a heat pump. Table 11: Annual costs before and after integration of heat pump External Power (MM$) Fuel Cost (MM$) Before heat pump After heat pump Integration of Organic Ranine Cycle (ORC) HYSYS model ORC HYSYS is used to calculate the efficiency and the purchase cost function for ORC. ORC set up consists of an evaporator (E-100), turbine (K-100), condenser (E-101) and a pump (P-100). Benzene is used as the organic woring fluid. Low grade heat at 110 o C is used to vaporize benzene at high pressures (1.145 bar). Benzene vapour is used to drive a turbine along with reduction in pressure (14.5 Pa). Vapour stream from turbine at low pressure condensed in the condenser (27 o C). Pump is used to pump the low pressure organic liquid stream to high pressure (1.145 bar) before being fed to the evaporator. 37

38 Figure 23: Organic Ranine Cycle (ORC) Efficiency of ORC Figure 24 shows the variation of efficiency of ORC with respect to evaporator duty. The efficiency of ORC is approximately constant around 11% with the variation in evaporator duty Efficiency Evaporator duty (MW) Figure 24: ORC efficiency with evaporator duty Purchase cost of ORC Purchase cost of ORC is given as the total cost of equipments such as condenser, evaporator and turbine. The cost of the evaporator and condenser is 38

39 obtained from the online database 2, while turbine cost is obtained from Peters et al. [25]. Purchase cost of ORC is approximated based on a linear correlation between the cost and the evaporator duty. Where, PC ORC = A H ORC PC = Purchase cost ORC eva eva H = Evaporator duty (MW) A, B = Regression coefficients A = 0.01 MM$/MW B = 25.1 MM$ + B Eq y = 1E-05x Purchase Cost (MM$) Evaporator Duty (W) Figure 25: Linear correlation between purchase cost and evaporator duty The total site source and sin profile after integration of heat pump is shown in Figure 26. Low grade heat corresponding to MW is saved corresponding to a temperature of 105 o C. Cold utility requirement is reduced by MW. As shown before with the efficiency of 11%, the amount of electrical energy is reduced from to MW during summer and from 62.2 to MW during winter. Purchase cost of ORC corresponding to given evaporator duty is MM$

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

How To Calculate The Performance Of A Refrigerator And Heat Pump

How To Calculate The Performance Of A Refrigerator And Heat Pump THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics International Journal of Scientific & Engineering Research Volume 2, Issue 8, August-2011 1 Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

More information

REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

More information

POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES

POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES M. Bantle 1, I. Tolstorebrov, T. M. Eikevik 2 1 Department of Energy Efficiency, SINTEF Energy Research, Trondheim, Norway,

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Chapter 3.4: HVAC & Refrigeration System

Chapter 3.4: HVAC & Refrigeration System Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration

More information

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

More information

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units. COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

Low grade thermal energy sources and uses from the process industry in the UK

Low grade thermal energy sources and uses from the process industry in the UK Low grade thermal energy sources and uses from the process industry in the UK Yasmine Ammar, Sharon Joyce, Rose Norman, Yaodong Wang, Anthony P. Roskilly Sustainable Thermal Energy Management in the Process

More information

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1 Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

How To Power A Power Plant With Waste Heat

How To Power A Power Plant With Waste Heat Power Generation Siemens Organic Rankine Cycle Waste Heat Recovery with ORC Answers for energy. Table of Contents Requirements of the Future Power Supply without extra Fuel Siemens ORC-Module Typical Applications

More information

BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT. Jaroslav Lahoda Olaf Arndt Walter Hanstein. Siemens Power Generation (PG)

BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT. Jaroslav Lahoda Olaf Arndt Walter Hanstein. Siemens Power Generation (PG) BIOMASS LOOKING FOR EFFICIENT UTILIZATION THE REHEAT CONCEPT Jaroslav Lahoda Olaf Arndt Walter Hanstein Siemens Power Generation (PG) Brno, Czech Republic & Görlitz, Germany BIOMASS LOOKING FOR EFFICIENT

More information

Thermal Coupling Of Cooling and Heating Systems

Thermal Coupling Of Cooling and Heating Systems This article was published in ASHRAE Journal, February 2011. Copyright 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org. This article may not

More information

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

Air-sourced 90 Hot Water Supplying Heat Pump HEM-90A Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A" Takahiro OUE *1, Kazuto OKADA *1 *1 Refrigeration System & Energy Dept., Compressor Div., Machinery Business Kobe Steel has developed an air-sourced

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

Basics of Steam Generation

Basics of Steam Generation Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian

More information

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

Last update: January 2009 Doc.: 08A05203_e

Last update: January 2009 Doc.: 08A05203_e Last update: January 2009 Doc.: 08A05203_e Organic Rankine Cycle (ORC) modules ORC is a commercial technology for distributed production of combined heat and power from various energy sources. TURBODEN

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

Ambient Energy Fraction of a Heat Pump

Ambient Energy Fraction of a Heat Pump Ambient Energy Fraction of a Heat Pump u Aye, R. J. Fuller and.. S. Charters International Technologies Centre (IDTC) Department of Civil and Environmental Engineering The University of Melbourne Vic 3010

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS Presented at Short Course on Geothermal Drilling, Resource Development and Power Plants, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January -, 0. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A.

More information

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine G Vicatos J Gryzagoridis S Wang Department of Mechanical Engineering,

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

Increasing the evaporation temperature with the help of an internal heat exchanger

Increasing the evaporation temperature with the help of an internal heat exchanger Increasing the evaporation temperature with the help of an internal heat exchanger A. TAMBOVTSEV (a), H. QUACK (b) (a,b) Technische Universität Dresden, D-01062, Dresden, Germany (a) Fax: (+49351) 463-37247,

More information

AMMONIA AND CARBON DIOXIDE HEAT PUMPS FOR HEAT RECOVERY IN INDUSTRY

AMMONIA AND CARBON DIOXIDE HEAT PUMPS FOR HEAT RECOVERY IN INDUSTRY AMMONIA AND CARBON DIOXIDE HEAT PUMPS FOR HEAT RECOVERY IN INDUSTRY Wiebke Brix (a), Stefan W. Christensen (b), Michael M. Markussen (c), Lars Reinholdt (d) and Brian Elmegaard (a) (a) DTU Technical University

More information

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA joost.j.brasz@carrier.utc.com I K Smith and N Stosic

More information

Desuperheater Online Program Sizing Guidance

Desuperheater Online Program Sizing Guidance Local regulations may restrict the use of this product to below the conditions quoted. In the interests of development and improvement of the product, we reserve the right to change the specification without

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India. International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

More information

High Pressure Ammonia Systems New Opportunities

High Pressure Ammonia Systems New Opportunities Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 High Pressure Ammonia Systems New Opportunities Andy Pearson Star Refrigeration

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems William M. Corcoran, George Rusch, Mark W. Spatz, and Tim Vink AlliedSignal, Inc. ABSTRACT

More information

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle INL/CON-05-00740 PREPRINT Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle Geothermal Resources Council Annual Meeting Greg Mines October 2005 This is a preprint of a paper intended for publication

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS RTP TM /ADVANCED CYCLE VS. COMBUSTION STEAM CYCLES OR WHY NOT SIMPLY COMBUST? For decades, the only commercial option available for the production

More information

Top Technology for Industry, Agriculture, Business and Communities

Top Technology for Industry, Agriculture, Business and Communities Top Technology for Industry, Agriculture, Business and Communities CHP The Technology with a Potential for Saving Energy Combined Heat and Power (CHP) is a highly efficient technology for the conversion

More information

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

LG Electronics AE Company, Commercial Air Conditioning

LG Electronics AE Company, Commercial Air Conditioning www.lgeaircon.com New concept Ecofriendly Highefficiency Heating solution Total heating & Hot water Solution for MULTI V LG Electronics AE Company, Commercial Air Conditioning 2 Yeouidodong, Yeongdeungpogu,

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district PLANT TORINO NORD Iren Energia is the company in the Iren Group whose core businesses are the production and distribution of electricity, the production and distribution of thermal energy for district

More information

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Supercritical CO2 Power Cycle Symposium September 9-10, 2014 Pittsburg, Pennsylvania USA Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Dr. Leonid Moroz, Dr. Maksym

More information

UNDERSTANDING REFRIGERANT TABLES

UNDERSTANDING REFRIGERANT TABLES Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten Strand Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten

More information

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1:

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1: PART 1: CO 2 Commercial refrigeration has been in the environmental spotlight for more than a decade, especially as leakage studies have revealed the true effects of hydrofluorocarbon (HFC) emissions.

More information

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device Project No TREN/FP7EN/218952 ALONE small scale solar cooling device Collaborative Project Small or Medium-scale Focused Research Project DELIVERABLE D5.2 Start date of the project: October 2008, Duration:

More information

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR SERVICE CAPACITY (Value) : Rs. 15,40,000/- MONTH AND YEAR : July, 2014 OF PREPARATION PREPARED BY : Sh. Sunil Arora Investigator (Mechanical) 1. INTRODUCTION

More information

V. ENERGY SAVINGS IN INDUSTRY

V. ENERGY SAVINGS IN INDUSTRY V. ENERGY SAVINGS IN INDUSTRY A. Energy Use in Industry Industry is the major user of energy in modern society, accounting for roughly 40% of final energy use. Coal or oil are heavily used, especially

More information

THE EUROPEAN GREEN BUILDING PROGRAMME. Technical Module on Combined Heat and Power

THE EUROPEAN GREEN BUILDING PROGRAMME. Technical Module on Combined Heat and Power THE EUROPEAN GREEN BUILDING PROGRAMME Technical Module on Combined Heat and Power Contents Foreword...1 1. Introduction...2 2. Inventory of the CHP system...3 3. Assessment of technical energy saving measures...5

More information

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling Computers and Chemical Engineering 31 (2007) 712 721 Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling Jørgen Bauck Jensen, Sigurd Skogestad Department

More information

ARP Food Industry, Portugal

ARP Food Industry, Portugal Food Industry, Portugal In a Portuguese food company colibri will install a twostage ammonia-water-absorption refrigeration system. The 1st refrigeration stage provides the customer with liquid ammonia

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design C. Patrascioiu Abstract The paper describes the modeling and simulation of the heat pumps domain processes. The main

More information

Energy savings in commercial refrigeration. Low pressure control

Energy savings in commercial refrigeration. Low pressure control Energy savings in commercial refrigeration equipment : Low pressure control August 2011/White paper by Christophe Borlein AFF and l IIF-IIR member Make the most of your energy Summary Executive summary

More information

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A Jignesh K. Vaghela Assistant Professor, Mechanical Engineering Department, SVMIT, Bharuch-392001, (India) ABSTRACT

More information

Energy Saving by ESCO (Energy Service Company) Project in Hospital

Energy Saving by ESCO (Energy Service Company) Project in Hospital 7th International Energy Conversion Engineering Conference 2-5 August 2009, Denver, Colorado AIAA 2009-4568 Tracking Number: 171427 Energy Saving by ESCO (Energy Service Company) Project in Hospital Satoru

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Steam Generation Efficiency Module Blowdown Losses Section

Steam Generation Efficiency Module Blowdown Losses Section Steam End User Training Steam Generation Efficiency Module Blowdown Losses Section Slide 1 Blowdown Losses Module This section will discuss blowdown loss and its affect on boiler efficiency. [Slide Visual

More information

Putting a chill on global warming

Putting a chill on global warming Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent

More information

Mohan Chandrasekharan #1

Mohan Chandrasekharan #1 International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

More information

Experimental Study on Super-heated Steam Drying of Lignite

Experimental Study on Super-heated Steam Drying of Lignite Advanced Materials Research Vols. 347-353 (2012) pp 3077-3082 Online available since 2011/Oct/07 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.347-353.3077

More information

Optimization of Natural Gas Processing Plants Including Business Aspects

Optimization of Natural Gas Processing Plants Including Business Aspects Page 1 of 12 Optimization of Natural Gas Processing Plants Including Business Aspects KEITH A. BULLIN, Bryan Research & Engineering, Inc., Bryan, Texas KENNETH R. HALL, Texas A&M University, College Station,

More information

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT Radu-Cristian DINU, Ion MIRCEA, Emilia-Marinela DINU University of Craiova, Faculty of Electrotechnique, Electroputere S.A., Craiova rcdinu@elth.ucv.ro,

More information

AIR CONDITIONING TECHNOLOGY

AIR CONDITIONING TECHNOLOGY AIR CONDITIONING TECHNOLOGY PART 9 Water Cooled Condensers & Cooling Towers IN LAST month s article we looked at how Air Cooled Condensers are used to transfer the total heat of rejection from the air

More information

Haldor Topsøe Catalysing Your Business

Haldor Topsøe Catalysing Your Business Haldor Topsøe Catalysing Your Business Haldor Topsøe A/S Established: 1940 Ownership: Haldor Topsøe Holding A/S (100%) Annual turnover: ~ 700 MM EUR Number of employees: ~ 2,050 Offices worldwide Copenhagen

More information

HIGH-EFFICIENCY CO 2 HEAT PUMP WATER HEATER SYSTEMS FOR RESIDENTIAL AND NON-RESIDENTIAL BUILDINGS

HIGH-EFFICIENCY CO 2 HEAT PUMP WATER HEATER SYSTEMS FOR RESIDENTIAL AND NON-RESIDENTIAL BUILDINGS 1 HIGH-EFFICIENCY CO 2 HEAT PUMP WATER HEATER SYSTEMS FOR RESIDENTIAL AND NON-RESIDENTIAL BUILDINGS Jørn Stene SINTEF Energy Research, 7465 Trondheim, Norway Jorn.Stene@sintef.no In hotels, hospitals,

More information

Integrating renewable energy sources and thermal storage

Integrating renewable energy sources and thermal storage Integrating renewable energy sources and thermal storage Sven Werner Halmstad University Sweden BRE, October 10, 2013 1 Outline Fundamental idea of district heating Heat supply to European district heating

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS Oleg N. Favorsky Russian Academy of Science, Division of Physical-Technical Problems of Energetics, Moscow, Russia Keywords: Power, heat,

More information

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Mark Schiffhauer, ATSI Engineering Services Cameron Veitch, Combustion and Energy Systems Scott Larsen, New York State Energy

More information

GLOBACON 05 HVAC Systems for Cogen

GLOBACON 05 HVAC Systems for Cogen GLOBACON 05 HVAC Systems for Cogen Track 2, Session 2B Advanced HVAC and Building Systems Date: March 24th, 2005 Gearoid Foley President Integrated CHP Systems Corp. Integrated CHP Systems Corp. Electricity

More information

Gas Absorption Heat Pumps. Future proofing your heating and hot water

Gas Absorption Heat Pumps. Future proofing your heating and hot water Gas Absorption Heat Pumps Future proofing your heating and hot water Gas Absorption Heat Pumps 1 Contents Gas Absorption Heat Pumps (GAHPs) The heating solution What is a Gas Absorption Heat Pump? How

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

ENERGY EFFICIENCY IN POWER PLANTS

ENERGY EFFICIENCY IN POWER PLANTS Plenary session Producing more with less: Efficiency in Power Generation ENERGY EFFICIENCY IN POWER PLANTS Frans van Aart, Wim Kok, Pierre Ploumen KEMA Power Generation & Sustainables ENERGY EFFICIENCY

More information

Optimization of combined heating and cooling in Supermarkets

Optimization of combined heating and cooling in Supermarkets Optimization of combined heating and cooling in Supermarkets Funder-Kristensen T. 1 ; Fösel G. 2 and Bjerg P. 3 1 Ph.d. Head of Public & Industry Affairs, Danfoss, Nordborg, 6430, Denmark. 2 Dipl.-Ing.

More information

Research on the Air Conditioning Water Heater System

Research on the Air Conditioning Water Heater System Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 28 Research on the Air Conditioning Water Heater System Fei Liu Gree Electric

More information

Low GWP Replacements for R404A in Commercial Refrigeration Applications

Low GWP Replacements for R404A in Commercial Refrigeration Applications Low GWP Replacements for R404A in Commercial Refrigeration Applications Samuel YANA MOTTA, Mark SPATZ Honeywell International, 20 Peabody Street, Buffalo, NY 14210, Samuel.YanaMotta@honeywell.com Abstract

More information

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ

EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Parallel session Producing more with less: Efficiency in Power Generation EFFICIENT ENERGY SUPPLY (ELECTRICITY AND DISTRICT HEAT) FOR THE CITY OF LINZ Johann Gimmelsberger Linz Strom GmbH EFFICIENT ENERGY

More information

Testing methods applicable to refrigeration components and systems

Testing methods applicable to refrigeration components and systems Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University

More information

DRAFT. Appendix C.2 - Air Conditioning Thermodynamics 1

DRAFT. Appendix C.2 - Air Conditioning Thermodynamics 1 Appendix C.2 - Air Conditioning Thermodynamics 1 To aid in discussing the alternative technologies, it is helpful to have a basic description of how air conditioning systems work. Heat normally flows from

More information

Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator

Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle - is not very

More information

Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

More information

Daikin Altherma hybrid heat pump. The natural combination

Daikin Altherma hybrid heat pump. The natural combination Daikin Altherma hybrid heat pump The natural combination Daikin Altherma hybrid heat pump, the natural combination Why choose Daikin Altherma hybrid heat pump? What the customer wants: more energy efficient

More information

Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications

Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications

More information