International Journal of Advanced Research in Computer Science and Software Engineering
|
|
|
- Joy Skinner
- 9 years ago
- Views:
Transcription
1 Volume 3, Issue 7, July 23 ISSN: X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Greedy Algorithm: Huffman Algorithm Annu Malik, Neeraj Goyat, Prof. Vinod Saroha(Guide) Computer Science and Engineering (Network Security) B.P.S M.V.,Khanpur kalan Haryana, India Abstract This paper presents a survey on Greedy Algorithm. This discussion is centered on overview of huffman code, huffman algorithm and applications of greedy algorithm. A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum. In many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.greedy algorithms determine the minimum number of coins to give while making change. These are the steps a human would take to emulate a greedy algorithm to represent 36 cents using only coins with values {, 5,, 2}. The coin of the highest value, less than the remaining change owed, is the local optimum. (Note that in general the change-making problem requires dynamic programming or integer programming to find an optimal solution; However, most currency systems, including the Euro and US Dollar, are special cases where the greedy strategy does find an optimum solution.) Keywords Greedy, huffman, activity, optimal, algorithm etc I. INTRODUCTION Greedy Algorithm solves problem by making the choice that seems best at the particular moment. Many Optimization problems can be solved using a greedy algorithm. Some problems have no efficient solution, but a greedy algorithm may provide an efficient solution that is close to optimal. A greedy algorithm works if a problem exhibit the following two properties: ) Greedy Choice Property: A globally optimal solution can be arrived at by making a locally optimal solution. In other words, an optimal solution can be obtained by making greedy choices. 2) Optimal Substructure: Optimal solutions contains optimal sub solutions. In other words, solutions to sub problems of an optimal solution are optimal. II. HUFFMAN CODES Data can be encoded efficiently using Huffman codes. It is widely used and very effective technique for compressing data; savings of 2% to 9% are typical, depending on the characteristics of the file being compressed. Huffman's greedy algorithm uses a table of the frequencies of occurrence of each character to build up an optimal way of representing each character as a binary string. Suppose we have 5 characters in a data file. Normal storage: 8 bits per character (ASCII)-8* 5 bits in a file. But, we want to compress the file and store it compactly. Suppose only 6 characters appear in the file: a b c d e f Total Frequency How can we represent the data in a compact way? [] Fixed Length Code: Each letter represented by an equal number of bits. With a fixed length code, at least 3 bits per character: For example: a b c d e f For a file with 5 characters, we need 3* 5 bits. 23, IJARCSSE All Rights Reserved Page 296
2 July - 23, pp [2] A Variable-length code: It can do considerably better than fixed -length code, by giving frequent characters short code words and infrequent characters long code words. For example, a b c d e f Number of bits = (45*+3*3+2*3+6*3+9*4+5*4)* =2.24* 5 bits. Thus, 224 bits to represent the file, a saving of approximately 25%. In fact, this is an optimal character code for this file. Let us denote the characters by C, C 2, C 3,.., C n and devote their frequencies by f, f 2,, f n. Suppose there is an encoding E in which a bit string S i of length s i represents C i, the length of the file compressed by using encoding E is L(E, F) = s i * f i for i= to n III. PREFIX CODES The prefixes of an encoding of one character must not be equal to a complete encoding of another character e.g. and are not valid codes because is a prefix of. This constraint is called the prefix constraint. Codes in which no codewords is also a prefix f some other code word are called prefix codes. Shortening the encoding of one character may lengthen the encoding of others. To find an encoding E that satisfies the prefix constraint and minimizes L(E, F). Prefix codes are desirable because they simplify encoding(compression) and decoding. Encoding is always simple for any binary character code, we just concatenate the code words representing each character of the file. Decoding is also quite simple with a prefix code. Since no codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous. We can simply identify the initial codeword, and repeat the decoding process on the remainder of the encoded file. The decoding process needs a convenient representation for the prefix code so that the initial codeword can be easily picked off. A binary tree whose leaves are the given characters provides one such representation. We interpret the binary codeword for a character as the path from the root to that character, where means go to the left child and means go to the right child. Note that these are not binary search trees, since the leaves need not appear in sorted order and internal nodes do not contain character keys. An optimal code for a file is always represented by a full binary tree, in which every non-leaf node has two children. The fixed-length code in our example is not optimal since its tree, because it is not a full binary tree: there are code words beginning..., but none beginning... Since we can now restrict our attention to full binary trees, we can say that if C is the alphabet from which the characters are drawn, then the tree for an optimal prefix code has exactly C leaves, one for each letter of the alphabet, and exactly C - internal nodes. Fig. Trees corresponding to the coding schemes. Each leaf is labeled with a character and its frequency of occurrence. Each internal node is labeled with the sum of the weights of the leaves in its subtree b:3 c:2 d:6 e:9 f:5 (a). Not Optimal (a). The tree corresponding to the fixed-length code a=,...,f= 23, IJARCSSE All Rights Reserved Page 297
3 July - 23, pp c:2 b:3 4 d:6 f:5 e:9 (b) Optimal (b). the tree corresponding to the optimal prefix code a=,b=,..., f=. GREEDY ALGORITHM FOR CONSTRUCTING A HUFFMAN CODE Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman Code. A+B A B A B The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner. It begins with a set of C leaves and performs a sequence of C - merging operations to create the final tree. In the pseudo code HUFFMAN(C), we assume that C is a set of n characters and that each character c C is an object with a defined frequency f[c]. A priority queue Q, keyed 23, IJARCSSE All Rights Reserved Page 298
4 July - 23, pp on f, is used to identify the two least-frequent objects to merge together. The result of the merger of two objects is a new object whose frequency is the sum of the frequencies of the two objects that were merged. HUFFMAN(C) 3) n C 4) Q C 5) for I to n- 6) do z ALLOCATE-NODE() 7) x left[z] EXTRACT-MIN(Q) 8) y right[z] EXTRACT-MIN(Q) 9) f[z] f[x] + f[y] ) INSERT(Q, z) ) return EXTRACT-MIN(Q) The analysis of the remaining time of Huffman's algorithm assumes that Q is implemented as a binary heap. For a set of n characters, the initialization of Q in line Q in the 2 can be performed in O(n) time using the BUILD-HEAP operation requires time O(nlgn), the loop contributes O(nlgn) to the running time. Thus, the total running time of HUFFMAN on a set of n characters is O(nlgn). The algorithm is based on a reduction of a problem with n characters to a problem with n- characters. A new character replaces two existing ones. f:5 e:9 c:2 b:3 d:6 c:2 b:3 4 d:6 f:5 e: d:6 f:5 e:9 c:2 b: c:2 b:3 4 d:6 f:5 e:9 23, IJARCSSE All Rights Reserved Page 299
5 July - 23, pp c:2 b:3 4 d:6 f:5 e:9 a b c d e f Example: Find an optimal huffman code for the following set of frequencies: a : 5 b : 25 c : 5 d : 4 e : 75 Solution: Given that :C = {a, b, c, d, e} f ( C ) = {5, 25, 5, 4, 75} n = 5 Q c i.e., c 5 b 25 d 4 a 5 e 75 For i to 4 i = Z Allocate node x Extract-Min(Q) y Extract-Min(Q) c 5 b 25 d 4 a 5 e 75 x y 23, IJARCSSE All Rights Reserved Page 3
6 July - 23, pp Left[z] x Right[z] y F[z] f(x) + f[y] =5+25 F[z] = 4 i.e., z 4 d 4 a 5 e 75 c 5 b 25 x Left[z] y Right[z] Again, for i = 2 x 4 y d 4 a 5 e 75 c 5 b 25 z Allocate node x 4 y 4 left[z] x Right[z] y F[z] = = 8 8 a 5 e 75 Left[z] x 4 d 4 y Right[z] c 5 b 25 23, IJARCSSE All Rights Reserved Page 3
7 July - 23, pp Similarly we apply the same process, we get d 4 c 5 b 25 a 5 e d 4 a 5 e 75 c 5 b 25 Huffman Tree Using Huffman Codes Each message has a different tree. The tree must be saved with the message. Huffman codes are effective for long files where the savings in the message can offset the cost for storing the tree. Decode files by starting at root and proceeding down the tree according to the bits in the message ( = left, = right). When a leaf is encountered, output the character at that leaf and restart at the root. Huffman codes are also effective when the tree can be pre-computed and used for a large number of messages (e.g., a tree based on the frequency of occurrence of characters in the English Language). Huffman codes are not very good for random files(each character about the same frequency). 23, IJARCSSE All Rights Reserved Page 32
8 July - 23, pp IV. APPLICATIONS Greedy algorithms mostly (but not always) fail to find the globally optimal solution, because they usually do not operate exhaustively on all the data. They can make commitments to certain choices too early which prevent them from finding the best overall solution later. For example, all known greedy coloring algorithms for the graph coloring problem and all other NP-complete problems do not consistently find optimum solutions. Nevertheless, they are useful because they are quick to think up and often give good approximations to the optimum. If a greedy algorithm can be proven to yield the global optimum for a given problem class, it typically becomes the method of choice because it is faster than other optimization methods like dynamic programming. Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees, Dijkstra's algorithm for finding single-source shortest paths, and the algorithm for finding optimum Huffman trees. V. CONCLUSION Greedy algorithms are usually easy to think of, easy to implement and run fast. Proving their correctness may require rigorous mathematical proofs and is sometimes insidious hard. In addition, greedy algorithms are infamous for being tricky. Missing even a very small detail can be fatal. But when you have nothing else at your disposal, they may be the only salvation. With backtracking or dynamic programming you are on a relatively safe ground. With greedy instead, it is more like walking on a mined field. Everything looks fine on the surface, but the hidden part may backfire on you when you least expect. While there are some standardized problems, most of the problems solvable by this method call for heuristics. There is no general template on how to apply the greedy method to a given problem, however the problem specification might give you a good insight. In some cases there are a lot of greedy assumptions one can make, but only few of them are correct. They can provide excellent challenge opportunities... REFERENCES Wikipedia Google Algorithms Design and Analysis by Udit Agarwal 23, IJARCSSE All Rights Reserved Page 33
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM
THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM Iuon Chang Lin Department of Management Information Systems, National Chung Hsing University, Taiwan, Department of Photonics and Communication Engineering,
Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433
Class Notes CS 3137 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 1. FIXED LENGTH CODES: Codes are used to transmit characters over data links. You are probably aware of the ASCII code, a fixed-length
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
Symbol Tables. Introduction
Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Information, Entropy, and Coding
Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated
Data Structures Fibonacci Heaps, Amortized Analysis
Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:
Binary Trees and Huffman Encoding Binary Search Trees
Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary
Arithmetic Coding: Introduction
Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
International Journal of Software and Web Sciences (IJSWS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International
Data Structures. Chapter 8
Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
A Non-Linear Schema Theorem for Genetic Algorithms
A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland
Gambling and Data Compression
Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction
Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014
Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient
Converting a Number from Decimal to Binary
Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive
Lecture 5 - CPA security, Pseudorandom functions
Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.
encoding compression encryption
encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -
Algorithms and Data Structures
Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2
Fast Sequential Summation Algorithms Using Augmented Data Structures
Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik [email protected] Abstract This paper provides an introduction to the design of augmented data structures that offer
The following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2).
CHAPTER 5 The Tree Data Model There are many situations in which information has a hierarchical or nested structure like that found in family trees or organization charts. The abstraction that models hierarchical
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
APP INVENTOR. Test Review
APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Analysis of Compression Algorithms for Program Data
Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory
Chapter 8: Bags and Sets
Chapter 8: Bags and Sets In the stack and the queue abstractions, the order that elements are placed into the container is important, because the order elements are removed is related to the order in which
Binary Coded Web Access Pattern Tree in Education Domain
Binary Coded Web Access Pattern Tree in Education Domain C. Gomathi P.G. Department of Computer Science Kongu Arts and Science College Erode-638-107, Tamil Nadu, India E-mail: [email protected] M. Moorthi
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Cpt S 223. School of EECS, WSU
Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
SMALL INDEX LARGE INDEX (SILT)
Wayne State University ECE 7650: Scalable and Secure Internet Services and Architecture SMALL INDEX LARGE INDEX (SILT) A Memory Efficient High Performance Key Value Store QA REPORT Instructor: Dr. Song
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
Binary Search Trees CMPSC 122
Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than
ER E P M A S S I CONSTRUCTING A BINARY TREE EFFICIENTLYFROM ITS TRAVERSALS DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1998-5
S I N S UN I ER E P S I T VER M A TA S CONSTRUCTING A BINARY TREE EFFICIENTLYFROM ITS TRAVERSALS DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE REPORT A-1998-5 UNIVERSITY OF TAMPERE DEPARTMENT OF
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time
Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary
6 Creating the Animation
6 Creating the Animation Now that the animation can be represented, stored, and played back, all that is left to do is understand how it is created. This is where we will use genetic algorithms, and this
Scalable Prefix Matching for Internet Packet Forwarding
Scalable Prefix Matching for Internet Packet Forwarding Marcel Waldvogel Computer Engineering and Networks Laboratory Institut für Technische Informatik und Kommunikationsnetze Background Internet growth
Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 18: Applications of Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day
Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology Professors Erik Demaine and Shafi Goldwasser Quiz 1.
Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Quiz 1 Quiz 1 Do not open this quiz booklet until you are directed
Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *
Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
Efficient Data Structures for Decision Diagrams
Artificial Intelligence Laboratory Efficient Data Structures for Decision Diagrams Master Thesis Nacereddine Ouaret Professor: Supervisors: Boi Faltings Thomas Léauté Radoslaw Szymanek Contents Introduction...
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b
In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should
File Management. Chapter 12
Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
CHAPTER 6. Shannon entropy
CHAPTER 6 Shannon entropy This chapter is a digression in information theory. This is a fascinating subject, which arose once the notion of information got precise and quantifyable. From a physical point
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:
Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)
5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
On the Use of Compression Algorithms for Network Traffic Classification
On the Use of for Network Traffic Classification Christian CALLEGARI Department of Information Ingeneering University of Pisa 23 September 2008 COST-TMA Meeting Samos, Greece Outline Outline 1 Introduction
Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R
Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent
A Catalogue of the Steiner Triple Systems of Order 19
A Catalogue of the Steiner Triple Systems of Order 19 Petteri Kaski 1, Patric R. J. Östergård 2, Olli Pottonen 2, and Lasse Kiviluoto 3 1 Helsinki Institute for Information Technology HIIT University of
Optimal Binary Search Trees Meet Object Oriented Programming
Optimal Binary Search Trees Meet Object Oriented Programming Stuart Hansen and Lester I. McCann Computer Science Department University of Wisconsin Parkside Kenosha, WI 53141 {hansen,mccann}@cs.uwp.edu
Rotation Operation for Binary Search Trees Idea:
Rotation Operation for Binary Search Trees Idea: Change a few pointers at a particular place in the tree so that one subtree becomes less deep in exchange for another one becoming deeper. A sequence of
1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++
Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The
The application of prime numbers to RSA encryption
The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
Binary Heaps. CSE 373 Data Structures
Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely
Storage Optimization in Cloud Environment using Compression Algorithm
Storage Optimization in Cloud Environment using Compression Algorithm K.Govinda 1, Yuvaraj Kumar 2 1 School of Computing Science and Engineering, VIT University, Vellore, India [email protected] 2 School
Cpt S 223. School of EECS, WSU
The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring
Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C
Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate
CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team
CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A
Mining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm
Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College
Network File Storage with Graceful Performance Degradation
Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed
Linear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
Problem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
Wan Accelerators: Optimizing Network Traffic with Compression. Bartosz Agas, Marvin Germar & Christopher Tran
Wan Accelerators: Optimizing Network Traffic with Compression Bartosz Agas, Marvin Germar & Christopher Tran Introduction A WAN accelerator is an appliance that can maximize the services of a point-to-point(ptp)
A binary search tree is a binary tree with a special property called the BST-property, which is given as follows:
Chapter 12: Binary Search Trees A binary search tree is a binary tree with a special property called the BST-property, which is given as follows: For all nodes x and y, if y belongs to the left subtree
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
Heaps & Priority Queues in the C++ STL 2-3 Trees
Heaps & Priority Queues in the C++ STL 2-3 Trees CS 3 Data Structures and Algorithms Lecture Slides Friday, April 7, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks
1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier.
Study Group 1 Variables and Types 1. Define: (a) Variable, (b) Constant, (c) Type, (d) Enumerated Type, (e) Identifier. 2. What does the byte 00100110 represent? 3. What is the purpose of the declarations
B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers
B+ Tree and Hashing B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree Properties Balanced Tree Same height for paths
Chapter 4: Computer Codes
Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data
