Keywords data mining, prediction techniques, decision making.
|
|
|
- Britney Ashley Copeland
- 10 years ago
- Views:
Transcription
1 Volume 5, Issue 4, April 2015 ISSN: X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Analysis of Datamining Prediction Techniques in Healthcare Management System K. Rajalakshmi Dr. S. S. Dhenakaran M.Phil Research Scholar Assistant Professor Computer Science &Engineering, Computer Science &Engineering, Alagappa University, Tamil Nadu, India Alagappa University, Tamil Nadu, India Abstract One of the rapid growing fields is health care industries. The medical industries have great amount of data set collections about diagnosis, patient details and medications. To turns these data is into useful pattern and to predicting forthcoming trends data mining approaches are used in health care industries. The medical industries come across with new treatments and medicine every day. The healthcare industries should provide better diagnosis and therapy to the patients to attaining good quality of service. This paper explores different data mining techniques which are used in medicine field for good decision making. Keywords data mining, prediction techniques, decision making. I. INTRODUCTION Data mining is the methodology for finding hidden values from enormous amount of data. As the patients population increases the medical databases also growing every day. The transactions and analysis of these medical data is complex without the computer based analysis system. The computer based analysis system indicates the automated medical diagnosis system. This automated diagnosis system support the medical practitioner to make good decision in treatment and disease. Data mining is the massive areas for the doctors to handling the huge amount of patient s data sets in many ways such as make sense of complex diagnostic tests, interpreting previous results, and combining the different data together. Traditionally Infirmaries decision is shaped by the medical practitioner s observations and fore knowledge rather than the knowledge which obtain from the large amount of data. This automated diagnosis system leads to increases the quality of service provided to the patients and decreases the medical expenditure. II. DATA MINING Data mining is the process of combining the different data source and derives the new pattern from that data collection. The following diagram represents different stages of data mining process: Fig. 1 Data mining process 2015, IJARCSSE All Rights Reserved Page 1343
2 III. HEALTHCARE DATA MINING Healthcare data mining is the growing research area in data mining technology. Data mining holds great promising for healthcare management to allow health system to systematically use data and analysis to improve the care and reduce the cost concurrently could apply to as much as 30% of overall healthcare spending. In the healthcare management data mining prediction are playing active role. Some of the prediction based data mining techniques are as follows: 1. Decision tree 2. Bayesian Classifiers 3. Neural network 4. Support Vector Machine Fig. 2 Healthcare Prediction IV. PREDICTION TECHNIQUES 1. Decision Tree The decision tree is the model that consists of root node, branch and leaf node. The root node is the top most nodes in the tree structure, each internal node specifies the test on attributes, the class label is hold by the leaf node, and the branch node is used to hold the test results. Decision tree is easy and fast method since it does not require any domain knowledge. In the decision tree inputs are divided into two or more groups repeat the steps till complete the tree as shown on Fig. 3 Some of the decision tree algorithms as follows: a) ID3 (Iterative Dichotomiser 3) b) C4.5 (Successor of ID3) c) CART (Classification & Regression Tree) d) CHAID (CHI-squared Automatic Interaction Detector) Fig. 3 Decision tree Structure 2015, IJARCSSE All Rights Reserved Page 1344
3 2. Bayesian Classifier It is statistical classification approach based on the Bayes theorem Theorem: P (B given A) = P (A and B)/P (A) to calculate probability of A given B, the algorithm counts the number of cases where A and B occurs together and divides it by the number of cases where A occurs alone. Let X be a data tuple, In Bayesian terms, X is considered Evidence. Let H be some hypothesis, such that the data tuple X belongs to class C. P (H X) is posterior probability, of H conditioned on X. In contract, P (H) is the prior probability of H. P (H X) = Posterior = 3. Artificial Neural Network Neural network is a widely used decision making technique. Since 1959 neural network are proposed for healthcare decision making. In neural network the neurons are started with random weights. Neuron doesn t know anything they have to train. Fig.4 Neural Network 4. Support Vector Machine (SVM) Normally SVM is the classification technique. Initially it developed for binary type classification later extended to multiple classifications. This SVM creates the hyper plane on the original inputs for effective separation of data points. Fig. 5 Input Fig. 6 Output using SVM V. COMPARITIVE STUDY OF DIFFEEENT PREDICTION IN HEALTHCARE An ultimate of the data mining in the medical domain is better prediction through the experience and scientific observations. This section explores different data mining prediction applications which are in medical domain. This section examines data mining applications in medical domain by different research worker given in detail. Various data mining tools are used to predict in different healthcare problems. In this section, the following list of medical issues has been studied and estimated. 2015, IJARCSSE All Rights Reserved Page 1345
4 a. Heart disease b. Cancer c. Eye disease d. Diabetics There may be large number of data mining techniques and data mining tools are available for predicting heart disease, various cancers, diabetics, eye disease and dermatological conditions. The following table presents comparison of disease, data mining techniques and the accuracy of the data mining techniques. Table 1 Comparison of data mining techniques VI. CONCLUSION We presented this paper to analyze the various data mining application in the healthcare domain to discover new range of pattern information. There is variety of data mining tools and techniques are available for health care diagnosis systems that are clearly defined in this paper. This data mining based prediction system are reduces the human effects and cost effective one. REFERENCES [1] Muhamad Hariz Muhamad Adnan,Wahidah Husain, Nur'Aini Abdul Rashid, Data Mining for Medical Systems: A Review. [2] V. Krishnaiah et al, Diagnosis of Lung Cancer Prediction System Using Data Mining Classification Techniques, International Journal of Computer Science and Information Technologies, Vol. 4 (1), 2013, [3] Abdelghani Bellaachia, Erhan Guven, Predicting Breast Cancer Survivability Using Data Mining Techniques. [4] Ravi Sanakal, Smt. T Jayakumari, Prognosis of Diabetes Using Data mining Approach-Fuzzy C Means Clustering and Support Vector Machine,International Journal of Computer Trends and Technology (IJCTT) volume 11 number 2 May [5] L. G. Kabari and E. O. Nwachukwu, Neural Networks and Decision Trees For Eye Diseases Diagnosis. [6] Qeethara Kadhim Al-Shayea and Itedal S. H. Bahia, Urinary System Diseases Diagnosis Using Artificial Neural Networks, IJCSNS International Journal of Computer Science and Network security, VOL.10 No.7, July , IJARCSSE All Rights Reserved Page 1346
5 [7] Dhanashree S.Medhekar,Mayur P.Bote,Shruti D.Deshmukh, Heart Disease Prediction using Naïve Bayes, International Journal Of Enhanced Research In Science Technology & Engineering Vol.2 Issue 3, March [8] Ms.Rupali R.Patil, Heart disease prediction system using Naïve Bayes and Jelinek-mercer smoothing, International Journal Advanced Research in Computer and Communication Engineering, Vol.3, Issue 5, may [9] A.H. Hadjahmadi, and Taiebeh J. Askari, A Decision Support System for Parkinson's Disease Diagnosis using Classification and Regression Tree, The Journal of Mathematics and Computer Science Vol. 4 No.2 (2012) [10] Hian Chye Koh and Gerald Tan. Data Mining Applications in Healthcare. [11] M. Durairaj, V. Ranjani, Data Mining Applications In Healthcare Sector: A Study, International Journal Of Scientific & Technology Research Volume 2, Issue 10, October , IJARCSSE All Rights Reserved Page 1347
DATA MINING AND REPORTING IN HEALTHCARE
DATA MINING AND REPORTING IN HEALTHCARE Divya Gandhi 1, Pooja Asher 2, Harshada Chaudhari 3 1,2,3 Department of Information Technology, Sardar Patel Institute of Technology, Mumbai,(India) ABSTRACT The
Prediction of Heart Disease Using Naïve Bayes Algorithm
Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Customer Classification And Prediction Based On Data Mining Technique
Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor
Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-6, January 2013 Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing
INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY DATA MINING IN HEALTHCARE SECTOR. [email protected]
IJFEAT INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY DATA MINING IN HEALTHCARE SECTOR Bharti S. Takey 1, Ankita N. Nandurkar 2,Ashwini A. Khobragade 3,Pooja G. Jaiswal 4,Swapnil R.
ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA
ENSEMBLE DECISION TREE CLASSIFIER FOR BREAST CANCER DATA D.Lavanya 1 and Dr.K.Usha Rani 2 1 Research Scholar, Department of Computer Science, Sree Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh,
Classification algorithm in Data mining: An Overview
Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department
ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS
ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS Abstract D.Lavanya * Department of Computer Science, Sri Padmavathi Mahila University Tirupati, Andhra Pradesh, 517501, India [email protected]
Data Mining On Diabetics
Data Mining On Diabetics Janani Sankari.M 1,Saravana priya.m 2 Assistant Professor 1,2 Department of Information Technology 1,Computer Engineering 2 Jeppiaar Engineering College,Chennai 1, D.Y.Patil College
(knowledge discovery) (health) (data mining)
Magiran: Iranmedex, SID, Google Scholar, OVID, Scopus, PubMed (knowledge discovery) (health) (data mining) [email protected] Mine Data (Knowledge discovery) Magiran, Iranmedex, data SID, Google
Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification
Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati [email protected], [email protected]
Impelling Heart Attack Prediction System using Data Mining and Artificial Neural Network
General Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Impelling
A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE
A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE Kasra Madadipouya 1 1 Department of Computing and Science, Asia Pacific University of Technology & Innovation ABSTRACT Today, enormous amount of data
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Decision Support System on Prediction of Heart Disease Using Data Mining Techniques
International Journal of Engineering Research and General Science Volume 3, Issue, March-April, 015 ISSN 091-730 Decision Support System on Prediction of Heart Disease Using Data Mining Techniques Ms.
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
EFFICIENCY OF DECISION TREES IN PREDICTING STUDENT S ACADEMIC PERFORMANCE
EFFICIENCY OF DECISION TREES IN PREDICTING STUDENT S ACADEMIC PERFORMANCE S. Anupama Kumar 1 and Dr. Vijayalakshmi M.N 2 1 Research Scholar, PRIST University, 1 Assistant Professor, Dept of M.C.A. 2 Associate
Effective Analysis and Predictive Model of Stroke Disease using Classification Methods
Effective Analysis and Predictive Model of Stroke Disease using Classification Methods A.Sudha Student, M.Tech (CSE) VIT University Vellore, India P.Gayathri Assistant Professor VIT University Vellore,
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
BIG DATA IN HEALTHCARE THE NEXT FRONTIER
BIG DATA IN HEALTHCARE THE NEXT FRONTIER Divyaa Krishna Sonnad 1, Dr. Jharna Majumdar 2 2 Dean R&D, Prof. and Head, 1,2 Dept of CSE (PG), Nitte Meenakshi Institute of Technology Abstract: The world of
Decision Support System For A Customer Relationship Management Case Study
61 Decision Support System For A Customer Relationship Management Case Study Ozge Kart 1, Alp Kut 1, and Vladimir Radevski 2 1 Dokuz Eylul University, Izmir, Turkey {ozge, alp}@cs.deu.edu.tr 2 SEE University,
A Secured Approach to Credit Card Fraud Detection Using Hidden Markov Model
A Secured Approach to Credit Card Fraud Detection Using Hidden Markov Model Twinkle Patel, Ms. Ompriya Kale Abstract: - As the usage of credit card has increased the credit card fraud has also increased
A Content based Spam Filtering Using Optical Back Propagation Technique
A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Data Mining Technology for Efficient Network Security Management Ankit Naik [1], S.W. Ahmad [2] Student [1], Assistant Professor [2] Department of Computer Science and Engineering
Predictive Data modeling for health care: Comparative performance study of different prediction models
Predictive Data modeling for health care: Comparative performance study of different prediction models Shivanand Hiremath [email protected] National Institute of Industrial Engineering (NITIE) Vihar
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Data Mining Techniques for Prognosis in Pancreatic Cancer
Data Mining Techniques for Prognosis in Pancreatic Cancer by Stuart Floyd A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUE In partial fulfillment of the requirements for the Degree
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Identifying At-Risk Students Using Machine Learning Techniques: A Case Study with IS 100
Identifying At-Risk Students Using Machine Learning Techniques: A Case Study with IS 100 Erkan Er Abstract In this paper, a model for predicting students performance levels is proposed which employs three
USING DATA SCIENCE TO DISCOVE INSIGHT OF MEDICAL PROVIDERS CHARGE FOR COMMON SERVICES
USING DATA SCIENCE TO DISCOVE INSIGHT OF MEDICAL PROVIDERS CHARGE FOR COMMON SERVICES Irron Williams Northwestern University [email protected] Abstract--Data science is evolving. In
SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING
I J I T E ISSN: 2229-7367 3(1-2), 2012, pp. 233-237 SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING K. SARULADHA 1 AND L. SASIREKA 2 1 Assistant Professor, Department of Computer Science and
COMPARING NEURAL NETWORK ALGORITHM PERFORMANCE USING SPSS AND NEUROSOLUTIONS
COMPARING NEURAL NETWORK ALGORITHM PERFORMANCE USING SPSS AND NEUROSOLUTIONS AMJAD HARB and RASHID JAYOUSI Faculty of Computer Science, Al-Quds University, Jerusalem, Palestine Abstract This study exploits
Inner Classification of Clusters for Online News
Inner Classification of Clusters for Online News Harmandeep Kaur 1, Sheenam Malhotra 2 1 (Computer Science and Engineering Department, Shri Guru Granth Sahib World University Fatehgarh Sahib) 2 (Assistant
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
Feature Subset Selection in E-mail Spam Detection
Feature Subset Selection in E-mail Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 14-16 March, 2012 Feature
Real Time Data Analytics Loom to Make Proactive Tread for Pyrexia
Real Time Data Analytics Loom to Make Proactive Tread for Pyrexia V.Sathya Preiya 1, M.Sangeetha 2, S.T.Santhanalakshmi 3 Associate Professor, Dept. of Computer Science and Engineering, Panimalar Engineering
Association Technique on Prediction of Chronic Diseases Using Apriori Algorithm
Association Technique on Prediction of Chronic Diseases Using Apriori Algorithm R.Karthiyayini 1, J.Jayaprakash 2 Assistant Professor, Department of Computer Applications, Anna University (BIT Campus),
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
REVIEW OF HEART DISEASE PREDICTION SYSTEM USING DATA MINING AND HYBRID INTELLIGENT TECHNIQUES
REVIEW OF HEART DISEASE PREDICTION SYSTEM USING DATA MINING AND HYBRID INTELLIGENT TECHNIQUES R. Chitra 1 and V. Seenivasagam 2 1 Department of Computer Science and Engineering, Noorul Islam Centre for
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
Data Mining using Artificial Neural Network Rules
Data Mining using Artificial Neural Network Rules Pushkar Shinde MCOERC, Nasik Abstract - Diabetes patients are increasing in number so it is necessary to predict, treat and diagnose the disease. Data
An Experimental Study on Ensemble of Decision Tree Classifiers
An Experimental Study on Ensemble of Decision Tree Classifiers G. Sujatha 1, Dr. K. Usha Rani 2 1 Assistant Professor, Dept. of Master of Computer Applications Rao & Naidu Engineering College, Ongole 2
REVIEW ON PREDICTION SYSTEM FOR HEART DIAGNOSIS USING DATA MINING TECHNIQUES
International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031(Online) ǁ Volume 1 Issue 5ǁOctober 2015 ǁ PP 09-14 REVIEW ON PREDICTION SYSTEM FOR HEART DIAGNOSIS USING
EMPIRICAL STUDY ON SELECTION OF TEAM MEMBERS FOR SOFTWARE PROJECTS DATA MINING APPROACH
EMPIRICAL STUDY ON SELECTION OF TEAM MEMBERS FOR SOFTWARE PROJECTS DATA MINING APPROACH SANGITA GUPTA 1, SUMA. V. 2 1 Jain University, Bangalore 2 Dayanada Sagar Institute, Bangalore, India Abstract- One
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier G.T. Prasanna Kumari Associate Professor, Dept of Computer Science and Engineering, Gokula Krishna College of Engg, Sullurpet-524121,
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Comparison of Data Mining Techniques used for Financial Data Analysis
Comparison of Data Mining Techniques used for Financial Data Analysis Abhijit A. Sawant 1, P. M. Chawan 2 1 Student, 2 Associate Professor, Department of Computer Technology, VJTI, Mumbai, INDIA Abstract
Neural Networks in Data Mining
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Manjeet Kaur Bhullar, Kiranbir Kaur Department of CSE, GNDU, Amritsar, Punjab, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Multiple Pheromone
Comparison of Six Classification Techniques for Post Operative Patient data in the Medicable discipline
Comparison of Six Classification Techniques for Post Operative Patient data in the Medicable discipline Chinky Gera 1, Kirti Joshi 2 Research Scholar 1, Assistant Professor 2 Department of Computer Science
Data Mining for Knowledge Management. Classification
1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh
Application of Data Mining Techniques to Model Breast Cancer Data
Application of Data Mining Techniques to Model Breast Cancer Data S. Syed Shajahaan 1, S. Shanthi 2, V. ManoChitra 3 1 Department of Information Technology, Rathinam Technical Campus, Anna University,
Data Mining Applications In Healthcare Sector: A Study
Data Mining Applications In Healthcare Sector: A Study M. Durairaj, V. Ranjani ABSTRACT: In this paper, we have focused to compare a variety of techniques, approaches and different tools and its impact
A Survey on Intrusion Detection System with Data Mining Techniques
A Survey on Intrusion Detection System with Data Mining Techniques Ms. Ruth D 1, Mrs. Lovelin Ponn Felciah M 2 1 M.Phil Scholar, Department of Computer Science, Bishop Heber College (Autonomous), Trichirappalli,
Question 2 Naïve Bayes (16 points)
Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the
SHIV SHAKTI International Journal in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 1, February- March -2014 (ISSN 2278 5973)
SHIV SHAKTI International Journal in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 1, February- March -2014 (ISSN 2278 5973) A Review on Data Mining Techniques Used in Healthcare Industry
Application of Data Mining in Medical Decision Support System
Application of Data Mining in Medical Decision Support System Habib Shariff Mahmud School of Engineering & Computing Sciences University of East London - FTMS College Technology Park Malaysia Bukit Jalil,
First Semester Computer Science Students Academic Performances Analysis by Using Data Mining Classification Algorithms
First Semester Computer Science Students Academic Performances Analysis by Using Data Mining Classification Algorithms Azwa Abdul Aziz, Nor Hafieza IsmailandFadhilah Ahmad Faculty Informatics & Computing
Spam Mail Detection through Data Mining A Comparative Performance Analysis
I.J. Modern Education and Computer Science, 2013, 12, 31-39 Published Online December 2013 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijmecs.2013.12.05 Spam Mail Detection through Data Mining A
Data Mining Analysis (breast-cancer data)
Data Mining Analysis (breast-cancer data) Jung-Ying Wang Register number: D9115007, May, 2003 Abstract In this AI term project, we compare some world renowned machine learning tools. Including WEKA data
BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL
The Fifth International Conference on e-learning (elearning-2014), 22-23 September 2014, Belgrade, Serbia BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL SNJEŽANA MILINKOVIĆ University
How To Solve The Kd Cup 2010 Challenge
A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China [email protected] [email protected]
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
REVIEW OF ENSEMBLE CLASSIFICATION
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 2, Issue.
The Use of Data Mining Classification Techniques to Predict and Diagnose of Diseases
205, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com The Use of Data Mining ification Techniques to Predict and Diagnose of Diseases Sajjad
Anti-Spam Filter Based on Naïve Bayes, SVM, and KNN model
AI TERM PROJECT GROUP 14 1 Anti-Spam Filter Based on,, and model Yun-Nung Chen, Che-An Lu, Chao-Yu Huang Abstract spam email filters are a well-known and powerful type of filters. We construct different
Data Mining and Machine Learning in Bioinformatics
Data Mining and Machine Learning in Bioinformatics PRINCIPAL METHODS AND SUCCESSFUL APPLICATIONS Ruben Armañanzas http://mason.gmu.edu/~rarmanan Adapted from Iñaki Inza slides http://www.sc.ehu.es/isg
IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES
IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES Bruno Carneiro da Rocha 1,2 and Rafael Timóteo de Sousa Júnior 2 1 Bank of Brazil, Brasília-DF, Brazil [email protected] 2 Network Engineering
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,
Random forest algorithm in big data environment
Random forest algorithm in big data environment Yingchun Liu * School of Economics and Management, Beihang University, Beijing 100191, China Received 1 September 2014, www.cmnt.lv Abstract Random forest
Predictive time series analysis of stock prices using neural network classifier
Predictive time series analysis of stock prices using neural network classifier Abhinav Pathak, National Institute of Technology, Karnataka, Surathkal, India [email protected] Abstract The work pertains
The Big Data mining to improve medical diagnostics quality
The Big Data mining to improve medical diagnostics quality Ilyasova N.Yu., Kupriyanov A.V. Samara State Aerospace University, Image Processing Systems Institute, Russian Academy of Sciences Abstract. The
Decision Trees from large Databases: SLIQ
Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values
COMBINED METHODOLOGY of the CLASSIFICATION RULES for MEDICAL DATA-SETS
COMBINED METHODOLOGY of the CLASSIFICATION RULES for MEDICAL DATA-SETS V.Sneha Latha#, P.Y.L.Swetha#, M.Bhavya#, G. Geetha#, D. K.Suhasini# # Dept. of Computer Science& Engineering K.L.C.E, GreenFields-522502,
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
Towards applying Data Mining Techniques for Talent Mangement
2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Towards applying Data Mining Techniques for Talent Mangement Hamidah Jantan 1,
A survey on Data Mining approaches for Healthcare
, pp. 241-266 http://dx.doi.org/10.14257/ijbsbt.2013.5.5.25 A survey on Data Mining approaches for Healthcare Divya Tomar and Sonali Agarwal Indian Institute of Information Technology, Allahabad, India
CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19
PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations
Prediction and Diagnosis of Heart Disease by Data Mining Techniques
Prediction and Diagnosis of Heart Disease by Data Mining Techniques Boshra Bahrami, Mirsaeid Hosseini Shirvani* Department of Computer Engineering, Sari Branch, Islamic Azad University Sari, Iran [email protected];
Applying Data Mining Technique to Sales Forecast
Applying Data Mining Technique to Sales Forecast 1 Erkin Guler, 2 Taner Ersoz and 1 Filiz Ersoz 1 Karabuk University, Department of Industrial Engineering, Karabuk, Turkey [email protected], [email protected]
Role of Social Networking in Marketing using Data Mining
Role of Social Networking in Marketing using Data Mining Mrs. Saroj Junghare Astt. Professor, Department of Computer Science and Application St. Aloysius College, Jabalpur, Madhya Pradesh, India Abstract:
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
HYBRID PROBABILITY BASED ENSEMBLES FOR BANKRUPTCY PREDICTION
HYBRID PROBABILITY BASED ENSEMBLES FOR BANKRUPTCY PREDICTION Chihli Hung 1, Jing Hong Chen 2, Stefan Wermter 3, 1,2 Department of Management Information Systems, Chung Yuan Christian University, Taiwan
Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers
Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers Manjit Kaur Department of Computer Science Punjabi University Patiala, India [email protected] Dr. Kawaljeet Singh University
Financial Trading System using Combination of Textual and Numerical Data
Financial Trading System using Combination of Textual and Numerical Data Shital N. Dange Computer Science Department, Walchand Institute of Rajesh V. Argiddi Assistant Prof. Computer Science Department,
Heart Disease Diagnosis Using Predictive Data mining
ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference
Predicting Car Purchase Intent Using Data Mining Approach
2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) Predicting Car Purchase Intent Using Data Mining Approach 1 Yap Bee Wah, 2 Nor Huwaina Ismail Faculty of Computer and
Predict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, [email protected] Department of Electrical Engineering, Stanford University Abstract Given two persons
COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction
COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised
DETECTION OF HEALTH CARE USING DATAMINING CONCEPTS THROUGH WEB
DETECTION OF HEALTH CARE USING DATAMINING CONCEPTS THROUGH WEB Mounika NaiduP, Mtech(CS), ASCET, Gudur, pmounikanaidu@gmailcom C Rajendra, Prof, HOD, CSE Dept, ASCET, Gudur, hodcse@audisankaracom Abstract:
