Introduction. Circular curve constant radius. Transition curve decreasing radius then increasing radius. Department of Civil Engineering
|
|
|
- Basil Hood
- 9 years ago
- Views:
Transcription
1 Department of Civil Engineering Name Class Date set Surveying II Lecturer DSF Date due Horizontal Curves Ref. v 1 Grade Introduction Straight sections of road or track are connected by curves Horizontal and vertical alignments must be considered Horizontal curves are used to join two horizontal straights Vertical curves are used to join two vertical straights These notes concern horizontal curves, we are therefore concerned with horizontal distances, horizontal angles, and plan co-ordinates Circular curve constant radius Transition curve decreasing radius then increasing radius 1
2 Composite curve decreasing radius (entry transition), constant radius (circular arc), increasing radius (exit transition) R 1 small radius, tight curve, short tangent lengths, short curve length R 2 large radius, shallow curve, long tangent lengths, long curve length 2
3 Terminology of Circular Curves I = Intersection Point T and U = Tangent Points θ = Deflection Angle = angle CIU R = Radius of Curvature O = Centre of Curvature TU = Long Chord TI = IU = Tangent Length Q = any point on the curve TPU Angle ITQ = a Tangential Angle Remember Tangent Length (TI and IU) = R tan(θ/2) Curve Length (TPU) = R θ π/180 Length of Long Chord (TU) = 2 R sin(θ/2) 3
4 Question An entry straight has a bearing of 57 degrees 22 minutes and 53 seconds The exit straight has a bearing of 112 degrees 19 minutes and 38 seconds What is the deflection angle, θ? (draw a diagram) Through Chainage Through Chainage or Chainage is a distance, usually in metres, measured from the start of the scheme, to a particular point on the centre-line. Often, we will know the Chainage of I. In this case: Chainage of T = Chainage of I Tangent Length TI Chainage of U = Chainage of T + Curve Length 4
5 Question The Intersection Point, I, between two straights has the co-ordinates mE, mN, and its Through Chainage is m A point, A, on the entry straight has the co-ordinates mE, mN A point, B, on the exit straight has the co-ordinates mE, mN A circular curve of radius 200m is to connect the two straights Calculate the Through Chainage of the Tangent Points, T and U. Hints: Draw a diagram You need to know the deflection angle, so you need to know the bearings of the straights Rect to Pol co-ordinate conversion from point A to point I will give the bearing of the entry straight The same for point I to point B will give the bearing of the exit straight The difference in the bearings is the deflection angle You know the formula for the Tangent Length You know the formula for the Curve Length You know how to work out the Through Chainage of the Tangent Points from the Chainage of I, the Tangent Length and the Curve Length Easy 5
6 Horizontal Curve Design As with most Engineering Design problems, there are usually many acceptable solutions There is usually a band of interest within which our road alignment must fall to avoid certain areas of land, and existing features The designer might have some control over the bearings of the entry and exit straights (and hence the deflection angle) In a new road scheme, the band of interest may be quite large, giving the designer a lot of flexibility In the re-alignment of an existing road, the band of interest may be very narrow, giving the designer little choice The designer may also choose the radius for the curve, though this must ensure that the road alignment stays within the band of interest Obviously a tight bend (small radius) on a fast road is not a good design, so the design speed for the road is another design variable In the UK, the Department of Transport specify minimum radii for horizontal curves on roads of different design speeds The road designer therefore has to adjust deflection angle and radius to ensure that the alignment fits within the band of interest, making sure that the radius is above the published minimum for the given road design speed More flexibility is given by using composite curves rather than circular curves, and by using superelevation (banking) There are other factors to consider such as sight distance All these variables make road design an ideal application for a computer. The computer program would normally produce co-ordinates for the centre-line of the road at regular intervals of through chainage (e.g. every 10m). Setting Out Surveying textbooks (e.g. Surveying for Engineers, by Uren and Price) describe several methods of setting out horizontal curves using one or more theodolites and tapes, based on setting out data produced by hand calculation. These methods are quite slow, though they do allow checks on the setting out to be easily made. Setting out is more commonly done from co-ordinates produced by a road design computer package. You will do this during your residential field course later in the Semester. For small curves (such as kerb lines on minor roads) a quicker, simpler and cheaper method is often used, such as by Offsets from the Long Chord. (See example). 6
The Mathematics of Highway Design
The Mathematics of Highway Design Scenario As a new graduate you have gained employment as a graduate engineer working for a major contractor that employs 2000 staff and has an annual turnover of 600m.
GEOMETRIC DESIGN CIVL 3161
GEOMETRIC DESIGN CIVL 3161 Reading Assignment: p. 45-72 (4 th ed.) p.45-75 (previous ed.) in Mannering textbook. Geometric design of highway facilities deals with the proportion of physical elements of
www.passpe.com Surveying for California Civil PE License Dr. Shahin A. Mansour, PE Chapter 10 Horizontal, Spiral and Vertical Curves
www.passpe.com Surveying for California Civil PE License Dr. Shahin A. Mansour, PE Chapter 0 Horizontal, Spiral and Vertical Curves Topics to be covered Types of Horizontal Curves Deflection Angles, Chord
HORIZONTAL CURVES. What They Are And How To Deal With Them
HORIZONTAL CURVES What They Are And How To Deal With Them 2 HORIZONTAL CURVE TERMINOLOGY Symbol Terminology Equation LC Long Chord 2R sin 2 R Radius OA = OB = OC L Length of Curve L = 0.0174533 R T Tangent
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Objective: To distinguish between degree and radian measure, and to solve problems using both.
CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Area and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
Bentley Power Rail Track SELECTseries 2. Richard W. Bradshaw - Development Date
Bentley Power Rail Track SELECTseries 2 Richard W. Bradshaw - Development Date Geometry Enhancements Horizontal and vertical alignment enhancements for rail design 2 Geometry Projects & Multi-user Access
GEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
Paul Deutsch. NDDOT Office of Project Development Conference November 9, 2010
Paul Deutsch NDDOT Office of Project Development Conference November 9, 2010 What is a Horizontal Curve? Provides a transition between two tangent lengths of roadway. PI PC PT PC (Point of Curvature at
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
What is a Horizontal Curve?
Paul Deutsch What is a Horizontal Curve? Provides a transition between two tangent lengths of roadway. PI PC PT PC (Point of Curvature at beginning of curve) PI (Point of Intersection of tangents) PT (Point
Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.
Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø
Geometric Design 4.1 GEOMETRIC CROSS SECTION
CHAPTER 4 Geometric Design Geometric design for transportation facilities includes the design of geometric cross sections, horizontal alignment, vertical alignment, intersections, and various design details.
The Mathematics of Engineering Surveying (3)
The Mathematics of Engineering Surveing (3) Scenario s a new graduate ou have gained emploment as a graduate engineer working for a major contractor that emplos 2000 staff and has an annual turnover of
CURVES Section I. SIMPLE HORIZONTAL CURVES
CHAPTER 3 CURVES Section I. SIMPLE HORIZONTAL CURVES CURVE POINTS By studying TM 5-232, the surveyor learns to locate points using angles and distances. In construction surveying, the surveyor must often
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
MSc in Autonomous Robotics Engineering University of York
MSc in Autonomous Robotics Engineering University of York Practical Robotics Module 2015 A Mobile Robot Navigation System: Labs 1a, 1b, 2a, 2b. Associated lectures: Lecture 1 and lecture 2, given by Nick
The Mathematics of Engineering Surveying (1)
The Mathematics of ngineering Surveying (1) Scenario s a new graduate you have gained employment as a graduate engineer working for a major contractor that employs 2000 staff and has an annual turnover
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture 4 08-08-2011 Engineering Curves and Theory of Projection Indian Institute of Technology Guwahati Guwahati 781039 Eccentrici ty = Distance of the point from the focus
Geometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
Mathematics on the Soccer Field
Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
Arc Length and Areas of Sectors
Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.
COMMONLY USED RESIDENTIAL BUILDING CODES
COMMONLY USED RESIDENTIAL BUILDING CODES INTERNATIONAL RESIDENTIAL CODE (2009) form revised 5/10 STAIRWAYS 46. LANDINGS. Section R311 IRC 2009 R311.7.5 Landings for stairways. There shall be a floor or
www.passpe.com Surveying for California Civil PE License Dr. Shahin A. Mansour, PE Surveying for California Civil Engineering License
Well Organized, Based on the Current California Board Test Plan and References, Detailed, Computer Generated Index (8 pages), Simplified Concepts, 66 Sample Problems with Detailed Solutions, and 181 Supplemental
FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006
FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 6106/ M2 BASICS OF GRADING AND SURVEYING Laura Solano, Lecturer Name
Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
NSPS SURVEY TECHNICIAN CERTIFICATION PROGRAM LEVEL III SAMPLE EXAMINATION QUESTIONS
NSPS SURVEY TECHNICIAN CERTIFICATION PROGRAM LEVEL III SAMPLE EXAMINATION QUESTIONS NATIONAL SOCIETY OF PROFESSIONAL SURVEYORS October 2007 This booklet has been prepared to provide an example of what
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
Mathematics (Project Maths)
2010. M130 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Higher Level Time: 2 hours, 30 minutes 300 marks
Experiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Mathematics (Project Maths Phase 3)
2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300
Chapter 5: Working with contours
Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in
Grade 7 Circumference
Grade 7 Circumference 7.SS.1 Demonstrate an understanding of circles by describing the relationships among radius, diameter, and circumference of circles relating circumference to PI determining the sum
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
TECHNICAL DRAWING (67)
TECHNICAL DRAWING (67) (Candidates offering Technical Drawing Applications are not eligible to offer Technical Drawing.) Aims: 1. To develop competence among the students to pursue technical courses like
Shaft Alignment. Powertrain Vibration
Shaft Alignment and Powertrain Vibration Chris Leontopoulos C1 Shaft Alignment Definition Most shipboard configurations of shafts and bearings are likely to be aligned when some or all of the centrelines
STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete
STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS Now Obsolete Caution: This document has been prepared by scanning the original Specifications for Primary Control Surveys - 1984 and using
Geometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
Chapter 19: Magnetic Forces and Fields
Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
IV. INDUSTRIAL TRACK DESIGN
IV. INDUSTRIAL TRACK DESIGN 4.01 GENERAL The following sections govern the criteria to be used in the designing of industry tracks served, or to be served, by the Railway Company. Any deviation from these
Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50
Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall
Applications for Triangles
Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given
DUTIES OF THE CONSTRUCTION SURVEYOR In support of construction activities, the surveyor obtains the reconnaissance and preliminary data which are necessary at the planning stage. During the construction
INTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check.
INDEX SR NO NAME OF THE PRACTICALS Page No 1 Measuring the bearing of traverse lines, calculation of included angles and check. 1 2 To study the essential parts of dumpy level & reduction of levels 3 To
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
Circles - Past Edexcel Exam Questions
ircles - Past Edecel Eam Questions 1. The points A and B have coordinates (5,-1) and (13,11) respectivel. (a) find the coordinates of the mid-point of AB. [2] Given that AB is a diameter of the circle,
Diffraction of Laser Light
Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic
Lesson 22. Circumference and Area of a Circle. Circumference. Chapter 2: Perimeter, Area & Volume. Radius and Diameter. Name of Lecturer: Mr. J.
Lesson 22 Chapter 2: Perimeter, Area & Volume Circumference and Area of a Circle Circumference The distance around the edge of a circle (or any curvy shape). It is a kind of perimeter. Radius and Diameter
How to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
Spring Term. Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN. Department of Geomatics Engineering e-mail : [email protected]
Spring Term Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN Department of Geomatics Engineering e-mail : [email protected] THEODOLITE What is Theodolite? Use of Theodoite Theodolite Terminology THEODOLITE Types
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence
Version 005 Eam Review Practice Problems NOT FOR A GRADE aleander 5575 This print-out should have 47 questions Multiple-choice questions may continue on the net column or page find all choices before answering
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
MICHIGAN DESIGN MANUAL
CHAPTER 3 INDEX ALIGNMENT AND GEOMETRICS 3.01 REFERENCES 3.02 DEFINITION OF TERMS 3.03 ALIGNMENT - GENERAL A. Horizontal Alignment B. Vertical Alignment C. Combined 3.03.01 Horizontal Alignment - Design
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
AutoCAD Civil 3D 2010 ESSENTIALS
AutoCAD Civil 3D 2010 ESSENTIALS SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks. Lower Prices. Visit our website to learn more about this and other books: AutoCAD Civil
Use finite approximations to estimate the area under the graph of the function. f(x) = x 3
5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four
Unit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS
APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric
MFF 2a: Charged Particle and a Uniform Magnetic Field... 2
MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged
Handling, Erection and Bracing of Wood Trusses
Handling, Erection and Bracing of Wood Trusses Follow these guidelines for safe installation of Wood Trusses. These guidelines should not be considered to be the only method for erecting and bracing of
Lesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
Road Rehabilitation and Reconstruction Using AutoCAD Civil 3D
Road Rehabilitation and Reconstruction Using AutoCAD Civil 3D Contents Introduction... 3 Introduction to Corridor Targets... 3 Surface Targets... 4 Width and Offset Targets... 5 Elevation or Slope Targets...
Section 16: Neutral Axis and Parallel Axis Theorem 16-1
Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Calculating Astronomical Unit from Venus Transit
Calculating Astronomical Unit from Venus Transit A) Background 1) Parallaxes of the Sun (the horizontal parallaxes) By definition the parallaxes of the Sun is the angle β shown below: By trigonometry,
10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
Oxford Cambridge and RSA Examinations
Oxford Cambridge and RSA Examinations OCR FREE STANDING MATHEMATICS QUALIFICATION (ADVANCED): ADDITIONAL MATHEMATICS 6993 Key Features replaces and (MEI); developed jointly by OCR and MEI; designed for
Module 8 Surveying and Setting Out
Module 8 Contents: page 8.1 Selecting the Road Alignment 1 8.2 Instruments and Surveying Aids 10 8.3 Setting Out Horizontal Alignment 20 8.4 Setting Out Vertical Alignment 25 8.5 Setting Out Cross Sections
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
LECTURE 6: Fluid Sheets
LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by
Parametric Equations and the Parabola (Extension 1)
Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
DRAFTING MANUAL. Gears (Bevel and Hypoid) Drafting Practice
Page 1 1.0 General This section provides the basis for uniformity in engineering gears drawings and their technical data for gears with intersecting axes (bevel gears), and nonparallel, nonintersecting
+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
ex) What is the component form of the vector shown in the picture above?
Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
