Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES
|
|
|
- Dina Alison Weaver
- 9 years ago
- Views:
Transcription
1 Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES. Introduction (simple) This helpsheet is concerned with the ways that we express quantities that are not whole numbers, and how we express numbers in relation to other numbers. You may also need to refer to helpsheets on powers, measurements, and concentrations and dilutions. All of the topics that are covered here will be familiar from everyday life, but you may have already found problems with the calculations or with converting from one form to another. 2. Fractions, and adding and subtracting fractions (simple) A fraction is simply one number divided by another, for instance ¾ is (called the numerator) divided by (called the denominator). = If the numerator is equal to the denominator, the fraction has the exact value of one. If the numerator is larger than the denominator, the fraction is termed an improper fraction, and it can be expressed as a whole number and a proper fraction. For instance: =2 where divided into gives 2, leaving a remainder of. Similarly, if we have a mixed number, we can express this as an improper fraction: = 2 where is multiplied by (the denominator) to give 20, and then the extra ¼ is added to give 2. The logic of this process will (should, may) become clearer when we look at adding fractions together. 2. Adding fractions (fairly simple) Adding fractions together is simplest if the denominator is identical. For instance: = = = Fractions, decimals and proportions page of 9
2 Note that the denominator remains unchanged in this process. What we did was to add five objects, each with a value of one third, to eight objects with the same individual value. What happens if the denominators in the two fractions are not identical? One or both fractions have to be transformed so that they have a common (shared) denominator. In this example, we have expressed the mixed number used in the example above as two separate fractions, by writing the whole number as a fraction whose denominator is : = Here, we can convert both denominators to : = = 20 = 20 = 2 Note that both numerator and denominator are multiplied by the same amount. So long as you carry out exactly the same multiplication to top and bottom, the value of a fraction remains unchanged: = 0 6 = In the example, the denominator and numerator have both been increased. If it is possible to decrease the denominator, the fraction is said to have been simplified: = 2 2 = = = If when adding two fractions there is no simple way to make the denominators equal (as is the case when one is an exact multiple of the other), the denominators are multiplied together to make a new common denominator before the fractions are added: = = 66 2 = 2 The improper fraction in the answer can be converted to a mixed number, and it may then be possible to simplify the fraction part: Subtracting fractions (still fairly simple) = = = 7 The methods used to subtract fractions are the same as are used to add them together. If the denominator is the same for both fractions: = = 2 = Fractions, decimals and proportions page 2 of 9
3 If the two fractions do not have an obvious common denominator, the two denominators are multiplied together: = = 66 2 = 2 = 7 This is a slightly contrived example designed to yield an answer that simplifies easily. In this case it would have been simpler to have started by converting both fractions to mixed numbers: =2 7 = 7 = 7 The choice of whether to work with improper fractions or mixed numbers will be based on the sizes of numerators and denominators. 2. More complex additions and subtractions (a bit more complicated) Complex sums with more than two fractions can be carried out, but it is advisable to break these down into smaller units: has the common denominator 0! It is easier to rearrange into two additions and then do a subtraction with the results - this also sorts out the mixture of signs in the expression: Notice that the first set of brackets contains the sum of the positive fractions, whilst the second set is the sum of the negative fractions in the original expression. These can be evaluated: [ 20 ] 2 [ ] 2 [ ] = = 09 = 0 0 Brackets were used to break the expression into separate units and to address ambiguities that could have arisen from the mixture of signs in the expression. Note that the expressions moved within brackets may change sign, for instance: 7 can also be written as 7, but is not the same as 7 Fractions, decimals and proportions page of 9
4 . Multiplying and dividing fractions (simple) If you kept up with adding and subtracting fractions, multiplication and division will be refreshingly simple!. Multiplying fractions (still simple) To multiply two (or more) fractions, you simply need to multiply the numerators together, and also to multiply the denominators: 9 = = 2 = 2 9 Note that if both fractions have values smaller than one (as in this case), the answer will be smaller than either of the original fractions. A fraction raised to a whole-number positive power is a special case of multiplication:.2 Dividing fractions (still pretty simple) 2 = = = 2 2 Whilst multiplying fractions looks very much like adding or subtracting, it is not quite so easy to see how you can divide one fraction by another: = / This expression is a fraction itself, with the numerator equal to denominator equal to this: and the. By analogy with multiplication, the answer should look like = However, it is quite likely that either the numerator or denominator will not be a whole number - in this case the numerator is equal to 2. The way to solve this is to turn the sum into a multiplication, and this is done by inverting the denominator: = = = 20 2 = 6 For the purists, we can write this expression as: = = Fractions, decimals and proportions page of 9
5 . Decimals (simple) In section 2, you saw how to convert an improper fraction (one where the numerator is larger than the denominator) into a mixed number. The denominator divides into the numerator to yield a whole number and a fraction, whose numerator is the remainder from the division: 2 = If we divide the numerator of the fraction part of the mixed number by the denominator, we convert the fraction into a decimal: =.2 The decimal result is usually spoken as 'five point two five' (not 'five point twenty-five'). A decimal number normally comprises a whole number (that can be zero as in the fractions table in section.) and the decimal part (the part of the number that is less than one). The usual separator for these two parts of the number is a period (e.g. '2.'), although in Continental Europe a comma (e.g. '2,') is used (for this reason, it is advisable to represent thousands by using a space separator, as in '2 ', rather than a comma). You might occasionally encounter a redundant notation like 976, and in the UK a hyphen or dash is used as the separator when writing currency amounts (e.g. 7-).. Decimal places (still quite simple) The decimal part of the number can be thought of as a series of fractions, with the denominator being ten for the first decimal place to the right of the separator, 00 for the second decimal place, 000 for the third and so on. Take the decimal number 67.29: tens units separator tenths hundreths thousandths Decimal place:. First Second Third Number: Value: Any fractional value smaller than one tenth will have the number zero in the first decimal place, and any fractional value smaller than one hundreth will have zeros in the first and second decimal places. Thus: 2 =0.0 and 20 =0.00 Where the decimal result of a calculation does not yield an exact value, the result will normally be expressed as a certain number of decimal places, with the last number being rounded up if the number following it would have been between and 9. So: Fractions, decimals and proportions page of 9
6 Three decimal places Two decimal places Obviously, expressing a value to a specified number of decimal places implies something about the precision of the measurement (see the separate helpsheet on precision if you don't understand this). Say we measure the height of seven seedlings using a 0 cm ruler graduated in centimetres and millimetres. If the seven measurements are.7, 6.,.2, 7., 6.9,. and.9 cm, we can add these together and divide by 7 to calculate the mean (average) value. A typical result for this on a calculator is.6729 cm. The final '9' represents a length of just 9 nanometres, or nine millionths of a millimetre (you could fit just 00 helium atoms side-by-side into this distance). Clearly, writing the result of the mean to many more decimal places than the original measurements (which were to the nearest millimetre) is absurd, and the average should have been expressed to one decimal place as.7 cm (see also helpsheets on measurements and descriptive statistics). You may be asked to express the result of a calculation to a certain number of decimal places, or you may need to decide for yourself what is appropriate. It is often sensible to state this if you are providing a written answer (e.g. 'result is.92 to three decimal places'). The Format>Cells menu in a spreadsheet will allow you to set the number of decimal places that are displayed (the spreadsheet will round the result for you)..2 Significant figures (still quite simple) You may also come across the related concept of 'significant figures'. This is based on the same ideas about precision, but extends to the entire decimal number rather than just the decimal part. Let's look at a real-life example. Looking on Wikipedia, I find that the Earth's orbital period (or 'siderial' year) is days (see This value means that the Earth does not go once around the Sun in an exact number of days - the journey takes about a quarter of a day longer than 6 'whole' days. To keep our calendars in pace with this, we have leap years every four years, where we pretend that it takes 66 years to orbit the Sun once. However, if we did this every four years we would gradually creep ahead, which is why we miss out leap years occasionally (eg at the start of a century). So the 'real' value is years (where that last '2' is of a day or about one millisecond). In practical terms, we take the value of a year to be 6 days, which is using the first three digits of the value, which we also call 'expressing the value to three significant figures'. If we want to include the adjustment for leap years in most four year intervals, we would describe the length of a year as 6.26 years. This value has five significant figures, and better describes the length of the year. That there is a 6 rather than a or a 7 in the second decimal place implies that we can describe the length of the year with a certainty or precision of one part in one hundred thousand - equivalent to a clock that gains or loses five minutes in the space of a year. If we include eight significant figures the value is 6.266, and the value in the last decimal place implies a precision of one part in one hundred million - a clock that gains or loses about a third of a second over one year. The number of decimal places and the number of significant figures are clearly related, and both are fundamentally concerned with the precision of the value. The number of Fractions, decimals and proportions page 6 of 9
7 significant figures takes into account the size of the whole-number part, as these examples show: Value Number of decimal places Number of significant figures * 9* * Note that the value in the last row is numerically identical to that in the row above, but is expressed to an additional two decimal places and two significant figures.. Common fractions expressed as decimals Several common fractions have exact and simple decimal equivalents, whilst others are either complicated or do not have exact decimal solutions. For instance, has the decimal equivalent 0... This is denoted '0. recurring', and is written as All decimal values are shown to three decimal places (ie 0.NNN) except where there is an exact solution with four decimal places. The superscripted dot indicates a recurrent solution, and the single italicized value is an approximation rounded to three decimal places Ratios, proportions and percentages (reasonably simple) In section.2, you will have seen the concept of precision expressed by analogy with a clock that gains or loses a certain amount within a period of time. Taking an extreme example of a clock that gains a minute a day, we can say that the clock gains a minute every 0 minutes. This can be written as a 'ratio', usually in the form ':0', '/0' or 'one part in 0'. Note that the change (the gain) and the base measurement (elapsed time) are both expressed in the same unit of measurement, so that the ratio has no units and is said to be 'dimensionless'. This is not always the case, and if units for the two quantities differ, the unit(s) should be indicated Fractions, decimals and proportions page 7 of 9
8 You may also meet the term ratio used erroneously to describe the recipe for a mixture. For instance, cement mortar for bricklaying is made by mixing one part of Portland cement with five parts of sand. This is written as : (e.g. but this is not the same as the ratio described in the previous paragraph. If you take the ratio :0 described earlier, and divide the gain by the elapsed time, the result (0.0007) expresses the gain as a 'proportion' of the elapsed time. This is another way of writing the same relationship, and again it is dimensionless in this case. The proportion can be used to calculate how much the clock gains over other periods, for instance over a week (0 00 minutes) it will gain = 7 minutes. A ratio or proportion is normally a small thing expressed as part of a larger thing, but it doesn't have to be so. A ratio of 2: or a proportion of 2 both express a change that is twice the value of the base measurement. However, in most cases, proportions tend to be less than one, and are often quite small numbers. For instance, if a bank account pays interest for each 00 invested over a period of one year, the interest expressed as a proportion is 0.0 per year (note that this proportion has a unit). For a variety of reasons, proportions like this are often multiplied by 00 to yield a quantity called a 'percentage' - in this example the interest would be advertised by the bank as '% per year'. Spreadsheets and most calculators will allow you to work directly with percentages, but be careful that you understand fully how you are using them. If you are in any doubt, it is better to use proportions. percentage= proportion 00 and proportion= percentage 00 Another way that you will need to use percentages or proportions is to work out the final value or cost of something subject to increase. What does a.2% pay award mean to someone earning 9 6 per year? What will be the price of a power drill marked at -99 plus VAT? For the VAT example, value-added tax is charged at 7.% of the purchase price, so that: price including VAT = price excluding VAT + 7.% of the ex-vat price Many people will work out the VAT payable and then add this to the price. However, if you understand the relationship between percentages and proportions, you can do the calculation in one go. Remember that a percentage of 7.% is equal to a proportion of 0.7. So the equation above can be re-written as: price including VAT = ex-vat price ex-vat price =.7 ex-vat price so that: = - Returning to the pay increase, the new salary will be = The way that things like interest rates are reported in the media can cause confusion. An increase in the mortgage interest rate of 'half a percentage point' sounds fairly benign. However, if the current rate is.7%, the rate has now increased to.2% - this represents an increase of % over the previous rate, which would be reflected in monthly payments. Fractions, decimals and proportions page of 9
9 All ratios, proportions and percentages are interconvertable: Ratio Proportion Percentage : R R R 00 : % : % : % 2: 2 200% Fractions, decimals and proportions page 9 of 9
Fractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
Decimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
Revision Notes Adult Numeracy Level 2
Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands
JobTestPrep's Numeracy Review Decimals & Percentages
JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals
Arithmetic 1 Progress Ladder
Arithmetic 1 Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes
Preliminary Mathematics
Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and
Pre-Algebra Lecture 6
Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
Numerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
MathSphere MATHEMATICS. Equipment. Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions
MATHEMATICS Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions Paper, pencil, ruler Fraction cards Calculator Equipment MathSphere 6365 Round decimals. Equivalence between fractions
Multiplying Fractions
. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
DIVISION OF DECIMALS. 1503 9. We then we multiply by the
Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.
Paramedic Program Pre-Admission Mathematics Test Study Guide
Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
47 Numerator Denominator
JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE 1 Property of Paychex, Inc. Basic Business Math Table of Contents Overview...3 Objectives...3 Calculator...4 Basic Calculations...6 Order of Operation...9
A Numeracy Refresher
A Numeracy Refresher V2. January 2005 This material was developed and trialled by staff of the University of Birmingham Careers Centre and subsequently used widely throughout the HE Sector. The contributions
Math Refresher. Book #2. Workers Opportunities Resources Knowledge
Math Refresher Book #2 Workers Opportunities Resources Knowledge Contents Introduction...1 Basic Math Concepts...2 1. Fractions...2 2. Decimals...11 3. Percentages...15 4. Ratios...17 Sample Questions...18
LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to:
LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to: 1. Change fractions to decimals. 2. Change decimals to fractions. 3. Change percents to decimals.
A Short Guide to Significant Figures
A Short Guide to Significant Figures Quick Reference Section Here are the basic rules for significant figures - read the full text of this guide to gain a complete understanding of what these rules really
DECIMAL COMPETENCY PACKET
DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are
Maths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us
Decimals 1 Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us to do this 2 Some Older Number Systems 3 Can
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
Chapter 3 Review Math 1030
Section A.1: Three Ways of Using Percentages Using percentages We can use percentages in three different ways: To express a fraction of something. For example, A total of 10, 000 newspaper employees, 2.6%
CHAPTER 4 DIMENSIONAL ANALYSIS
CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.
Decimal Notations for Fractions Number and Operations Fractions /4.NF
Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
**Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals
1. Multiplying Decimals **Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals Multiplying two (or more) decimals is very similar to how
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
1. The Fly In The Ointment
Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent
Unit 6 Number and Operations in Base Ten: Decimals
Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Arithmetic Review ORDER OF OPERATIONS WITH WHOLE NUMBERS
Arithmetic Review The arithmetic portion of the Accuplacer Placement test consists of seventeen multiple choice questions. These questions will measure skills in computation of whole numbers, fractions,
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Mathematics Navigator. Misconceptions and Errors
Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...
Chapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
Negative Exponents and Scientific Notation
3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal
Math 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
+ = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson
+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding
c sigma & CEMTL
c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,
1004.6 one thousand, four AND six tenths 3.042 three AND forty-two thousandths 0.0063 sixty-three ten-thousands Two hundred AND two hundreds 200.
Section 4 Decimal Notation Place Value Chart 00 0 0 00 000 0000 00000 0. 0.0 0.00 0.000 0.0000 hundred ten one tenth hundredth thousandth Ten thousandth Hundred thousandth Identify the place value for
Mathematics. Steps to Success. and. Top Tips. Year 5
Pownall Green Primary School Mathematics and Year 5 1 Contents Page 1. Multiplication and Division 3 2. Positive and Negative Numbers 4 3. Decimal Notation 4. Reading Decimals 5 5. Fractions Linked to
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
Five daily lessons. Page 23. Page 25. Page 29. Pages 31
Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Financial Mathematics
Financial Mathematics For the next few weeks we will study the mathematics of finance. Apart from basic arithmetic, financial mathematics is probably the most practical math you will learn. practical in
5.1 Introduction to Decimals, Place Value, and Rounding
5.1 Introduction to Decimals, Place Value, and Rounding 5.1 OBJECTIVES 1. Identify place value in a decimal fraction 2. Write a decimal in words 3. Write a decimal as a fraction or mixed number 4. Compare
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.
What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction
Accuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
Using Proportions to Solve Percent Problems I
RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving
Guidance paper - The use of calculators in the teaching and learning of mathematics
Guidance paper - The use of calculators in the teaching and learning of mathematics Background and context In mathematics, the calculator can be an effective teaching and learning resource in the primary
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! YOU MUST
The Crescent Primary School Calculation Policy
The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents
Sequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
Math Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones
Math Review Knowing basic math concepts and knowing when to apply them are essential skills. You should know how to add, subtract, multiply, divide, calculate percentages, and manipulate fractions. This
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten------ million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
5.4 Solving Percent Problems Using the Percent Equation
5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last
If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
This explains why the mixed number equivalent to 7/3 is 2 + 1/3, also written 2
Chapter 28: Proper and Improper Fractions A fraction is called improper if the numerator is greater than the denominator For example, 7/ is improper because the numerator 7 is greater than the denominator
Integers, I, is a set of numbers that include positive and negative numbers and zero.
Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are
Ratio and Proportion Study Guide 12
Ratio and Proportion Study Guide 12 Ratio: A ratio is a comparison of the relationship between two quantities or categories of things. For example, a ratio might be used to compare the number of girls
Numeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators
2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators Learning Objective(s) Add fractions with like denominators. 2 Subtract fractions with like denominators. Add mixed numbers
CONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
Fractions Packet. Contents
Fractions Packet Contents Intro to Fractions.. page Reducing Fractions.. page Ordering Fractions page Multiplication and Division of Fractions page Addition and Subtraction of Fractions.. page Answer Keys..
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Lesson 4: Convert Fractions, Review Order of Operations
Lesson 4: Convert Fractions, Review Order of Operations LESSON 4: Convert Fractions, Do Order of Operations Weekly Focus: fractions, decimals, percent, order of operations Weekly Skill: convert, compute
north seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:
MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding
