An Introduction to Extreme Value Theory

Size: px
Start display at page:

Download "An Introduction to Extreme Value Theory"

Transcription

1 An Introduction to Extreme Value Theory Petra Friederichs Meteorological Institute University of Bonn COPS Summer School, July/August, 2007

2 Applications of EVT Finance distribution of income has so called fat tails value-at-risk: maximal daily lost re-assurance Hydrology protection against flood Q100: maximal flow that is expected once every 100 years Meteorology extreme winds risk assessment (e.g. ICE, power plants) heavy precipitation events heat waves, hurricanes, droughts extremes in a changing climate

3 Application In classical statistics: focus on AVERAGE behavior of stochastic process central limit theorem In extreme value theory: focus on extreme and rare events Fisher-Tippett theorem What is an extreme? from Ulrike Schneider

4 Extreme Value Theory Block Maximum M n =max {X 1,, X n } for n M n follows a Generalized Extreme Value (GEV) distribution Peak over Threshold (POT) {X i u X i u} very large threshold u follow a Generalized Pareto Distribution (GPD) Poisson-Point GPD Process combines POT with Poisson point process

5 Extreme Value Theory Block Maximum M n =max {X 1,, X n } Example: station precipitation (DWD) at Dresden : 57 seasonal (Nov-March and May-Sept) (maxima over approximately 150 days) Summer Winter Dresden

6 GEV Fisher-Tippett Theorem The distribution of n converges to ( ) M n =max {X 1,, X n } 0 G y=exp [1 y ] 1/ =0 G y=exp exp y which is called the Generalized Extreme Value (GEV) distribution. It has three parameters location parameter scale parameter shape parameter

7 GEV Types of Distributions GEV has 3 types depending on shape parameter =0 G x=exp exp[ x ] Gumbel x= y Fréchet =1/0 G x=exp [1 x ] Weibull = 1/0 G x=exp [1 x ]

8 GEV Types of Distributions GEV has 3 types depending on shape parameter Gumbel =0 exponential tail x= y Fréchet =1/0 so called fat tail Weibull = 1/0 upper finite endpoint

9 GEV Types of Distribution Conditions to the sample X i {X 1,, X n } from which the maxima are drawn must be independently identically distributed (i.i.d.) Let F x be the distribution of X i F x is in the domain of attraction of a Gumbel type GEV iff lim x 1 F xtb x 1 F x =e t p=0.99 p=0.9 F(x) for all t0 Exponential decay in the tail of F x x 0.9 x 0.99

10 GEV Types of Distribution Conditions to the sample X i {X 1,, X n } from which the maxima are drawn must be independently identically distributed (i.i.d.) Let F x be the distribution of X i F x is in the domain of attraction of a Frechet type GEV iff lim x 1 F x 1 F x = 1/ for all 0 polynomial decay in the tail of F x

11 GEV Types of Distribution Conditions to the sample X i {X 1,, X n } from which the maxima are drawn must be independently identically distributed (i.i.d.) Let F x be the distribution of X i F x there exists and is in the domain of attraction of a Weibull type GEV iff lim x F with F F =1 1 F F 1 x 1 F F 1 x 1 = 1/ for all 0 F x has a finite upper end point F

12 GEV return level Of interest often is return level z m value expected every m observation (block maxima) Prob yz m =1 G yz m = 1 m calculated using invers distribution function (quantile function) z m = G m = 1 log1 1/m z m = log log 1 1/m can be estimated empirically as the z m = G m = inf y F y 1 m

13 Block Maxima Maximum daily precipitation for Nov-March (Winter) and May-Sept (Summer) Dresden Summer Winter

14 Block Maxima

15 Block Maxima

16 Peak over Threshold Peak over Threshold (POT) {X i u X i u} very large threshold u follow a Generalized Pareto Distribution (GPD) Daily precipitation for Nov-March (green) and May-Sept (red) Dresden

17 Peak over Threshold Peak over Threshold (POT) The distribution of exceedances over large threshold u are asymptotically distributed following a Generalized Pareto Distribution (GPD) two parameters scale parameter shape parameter Y i :=X i u X i u H y X i u=1 1 y 1/ u advantage: more efficient use of data disadvantage: how to choose threshold not evident

18 POT Types of Distribution GDP has same 3 types as GEV depending on shape parameter Gumbel =0 H y=1 exp y u exponential tail Pareto (Fréchet) 0 1 H y~c y 1/ polynomial tail behavior Weibull 0 has upper end point F = u

19 Peak over Threshold POT: threshold u = 15mm

20 Poisson Point GPD Process Poisson point GPD process with intensity A=t 2 t 1 [1 y u 1/ ] u on A=t 1, t 2 y,

21 Estimation and Uncertainty General concept of estimating parameters from a sample { y i }, i=1,,n Maximum Likelihood (ML) Method Assume and PDF { y i } are draw from a GEV (GPD,...) with unknown parameters y i ~F y,, f y,,=f ' y,,

22 Maximum Likelihood Method The likelihood L of the sample is then L,,= i=1 n f y i,, It is easier to minimize the negative logarithm of the likelihood l,,= i=1 n log f y i,, in general there is no analytical solution for the minimum with respect to the parameters Minimize using numerical algorithms. The estimates,, maximize the likelihood of the data.

23 Profile log Likelihood

24 To Take Home There exists a well elaborated statistical theory for extreme values. It applies to (almost) all (univariate) extremal problems. EVT: extremes from a very large domain of stochastic processes follow one of the three types: Gumbel, Frechet/Pareto, or Weibull Only those three types characterize the behavior of extremes! Note: Data need to be in the asymptotic limit of a EVD!

25 References Coles, S (2001): An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer Verlag London. 208p Beirlant, J; Y. Goegebeur; J. Segers; J. Teugels (2005): Statistics of Extremes. Theory and Applications. John Wiley & Sons Ltd. 490p Embrechts, Küppelberg, Mikosch (1997): Modelling Extremal Events for Insurance and Finance. Springer Verlag Heidelberg.648p Gumbel, E.J. (1958): Statistics of Extremes. (Dover Publication, New York 2004) R Development Core Team (2003): R: A language and environment for statistical computing, available at The evd and ismev Packages by Alec Stephenson and Stuard Coles

An introduction to the analysis of extreme values using R and extremes

An introduction to the analysis of extreme values using R and extremes An introduction to the analysis of extreme values using R and extremes Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg Graybill VIII

More information

CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE

CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE EKONOMIKA A MANAGEMENT Valéria Skřivánková, Alena Tartaľová 1. Introduction At the end of the second millennium, a view of catastrophic events during

More information

Estimation and attribution of changes in extreme weather and climate events

Estimation and attribution of changes in extreme weather and climate events IPCC workshop on extreme weather and climate events, 11-13 June 2002, Beijing. Estimation and attribution of changes in extreme weather and climate events Dr. David B. Stephenson Department of Meteorology

More information

Applying Generalized Pareto Distribution to the Risk Management of Commerce Fire Insurance

Applying Generalized Pareto Distribution to the Risk Management of Commerce Fire Insurance Applying Generalized Pareto Distribution to the Risk Management of Commerce Fire Insurance Wo-Chiang Lee Associate Professor, Department of Banking and Finance Tamkang University 5,Yin-Chuan Road, Tamsui

More information

COMPARISON BETWEEN ANNUAL MAXIMUM AND PEAKS OVER THRESHOLD MODELS FOR FLOOD FREQUENCY PREDICTION

COMPARISON BETWEEN ANNUAL MAXIMUM AND PEAKS OVER THRESHOLD MODELS FOR FLOOD FREQUENCY PREDICTION COMPARISON BETWEEN ANNUAL MAXIMUM AND PEAKS OVER THRESHOLD MODELS FOR FLOOD FREQUENCY PREDICTION Mkhandi S. 1, Opere A.O. 2, Willems P. 3 1 University of Dar es Salaam, Dar es Salaam, 25522, Tanzania,

More information

An analysis of the dependence between crude oil price and ethanol price using bivariate extreme value copulas

An analysis of the dependence between crude oil price and ethanol price using bivariate extreme value copulas The Empirical Econometrics and Quantitative Economics Letters ISSN 2286 7147 EEQEL all rights reserved Volume 3, Number 3 (September 2014), pp. 13-23. An analysis of the dependence between crude oil price

More information

Statistical methods to expect extreme values: Application of POT approach to CAC40 return index

Statistical methods to expect extreme values: Application of POT approach to CAC40 return index Statistical methods to expect extreme values: Application of POT approach to CAC40 return index A. Zoglat 1, S. El Adlouni 2, E. Ezzahid 3, A. Amar 1, C. G. Okou 1 and F. Badaoui 1 1 Laboratoire de Mathématiques

More information

An application of extreme value theory to the management of a hydroelectric dam

An application of extreme value theory to the management of a hydroelectric dam DOI 10.1186/s40064-016-1719-2 RESEARCH Open Access An application of extreme value theory to the management of a hydroelectric dam Richard Minkah * *Correspondence: [email protected] Department of Statistics,

More information

Statistical Software for Weather and Climate

Statistical Software for Weather and Climate Statistical Software for Weather and Climate Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg Effects of climate change: coastal systems,

More information

Operational Risk Management: Added Value of Advanced Methodologies

Operational Risk Management: Added Value of Advanced Methodologies Operational Risk Management: Added Value of Advanced Methodologies Paris, September 2013 Bertrand HASSANI Head of Major Risks Management & Scenario Analysis Disclaimer: The opinions, ideas and approaches

More information

The R programming language. Statistical Software for Weather and Climate. Already familiar with R? R preliminaries

The R programming language. Statistical Software for Weather and Climate. Already familiar with R? R preliminaries Statistical Software for Weather and Climate he R programming language Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg R Development

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

Extreme Value Theory with Applications in Quantitative Risk Management

Extreme Value Theory with Applications in Quantitative Risk Management Extreme Value Theory with Applications in Quantitative Risk Management Henrik Skaarup Andersen David Sloth Pedersen Master s Thesis Master of Science in Finance Supervisor: David Skovmand Department of

More information

EVIM: A Software Package for Extreme Value Analysis in MATLAB

EVIM: A Software Package for Extreme Value Analysis in MATLAB EVIM: A Software Package for Extreme Value Analysis in MATLAB Ramazan Gençay Department of Economics University of Windsor [email protected] Faruk Selçuk Department of Economics Bilkent University [email protected]

More information

The Extremes Toolkit (extremes)

The Extremes Toolkit (extremes) The Extremes Toolkit (extremes) Weather and Climate Applications of Extreme Value Statistics Eric Gilleland National Center for Atmospheric Research (NCAR), Research Applications Laboratory (RAL) Richard

More information

A Comparative Software Review for Extreme Value Analysis

A Comparative Software Review for Extreme Value Analysis A Comparative Software Review for Extreme Value Analysis Eric Gilleland Research Applications Laboratory, National Center for Atmospheric Research, U.S.A. Mathieu Ribatet Institute of Mathematics, University

More information

Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk

Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Jose Blanchet and Peter Glynn December, 2003. Let (X n : n 1) be a sequence of independent and identically distributed random

More information

Generating Random Samples from the Generalized Pareto Mixture Model

Generating Random Samples from the Generalized Pareto Mixture Model Generating Random Samples from the Generalized Pareto Mixture Model MUSTAFA ÇAVUŞ AHMET SEZER BERNA YAZICI Department of Statistics Anadolu University Eskişehir 26470 TURKEY [email protected]

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

A software review for extreme value analysis

A software review for extreme value analysis Extremes (2013) 16:103 119 DOI 10.1007/s10687-012-0155-0 A software review for extreme value analysis Eric Gilleland Mathieu Ribatet Alec G. Stephenson Received: 8 September 2011 / Revised: 12 June 2012

More information

Extreme Value Theory for Heavy-Tails in Electricity Prices

Extreme Value Theory for Heavy-Tails in Electricity Prices Extreme Value Theory for Heavy-Tails in Electricity Prices Florentina Paraschiv 1 Risto Hadzi-Mishev 2 Dogan Keles 3 Abstract Typical characteristics of electricity day-ahead prices at EPEX are the very

More information

Contributions to extreme-value analysis

Contributions to extreme-value analysis Contributions to extreme-value analysis Stéphane Girard INRIA Rhône-Alpes & LJK (team MISTIS). 655, avenue de l Europe, Montbonnot. 38334 Saint-Ismier Cedex, France [email protected] Abstract: This

More information

Inference on the parameters of the Weibull distribution using records

Inference on the parameters of the Weibull distribution using records Statistics & Operations Research Transactions SORT 39 (1) January-June 2015, 3-18 ISSN: 1696-2281 eissn: 2013-8830 www.idescat.cat/sort/ Statistics & Operations Research c Institut d Estadstica de Catalunya

More information

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: [email protected] web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

The Extreme-Value Dependence Between the Chinese and. Other International Stock Markets

The Extreme-Value Dependence Between the Chinese and. Other International Stock Markets Econometrics Working Paper EWP1003 ISSN 1485-6441 Department of Economics The Extreme-Value Dependence Between the Chinese and Other International Stock Markets Qian Chen a, David E. Giles b & Hui Feng

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

GENERALIZED PARETO FIT TO THE SOCIETY OF ACTUARIES LARGE CLAIMS DATABASE

GENERALIZED PARETO FIT TO THE SOCIETY OF ACTUARIES LARGE CLAIMS DATABASE GENERALIZED PARETO FIT TO THE SOCIETY OF ACTUARIES LARGE CLAIMS DATABASE Ana C. Cebrián, Michel Denuit and Philippe Lambert Dpto. Metodos Estadisticos. Ed. Matematicas Universidad de Zaragoza Zaragoza

More information

FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang

FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang 87. Li, J.; Tang, Q. Interplay of insurance and financial risks in a discrete-time model with strongly regular variation. Bernoulli 21 (2015), no. 3,

More information

Intra-Day Seasonality in Foreign Exchange Market Transactions. John Cotter and Kevin Dowd *

Intra-Day Seasonality in Foreign Exchange Market Transactions. John Cotter and Kevin Dowd * Intra-Day Seasonality in Foreign Exchange Market Transactions John Cotter and Kevin Dowd * Abstract This paper examines the intra-day seasonality of transacted limit and market orders in the DEM/USD foreign

More information

A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks

A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks May 2011 Tsuyoshi Nagafuji Takayuki

More information

Uncertainty quantification for the family-wise error rate in multivariate copula models

Uncertainty quantification for the family-wise error rate in multivariate copula models Uncertainty quantification for the family-wise error rate in multivariate copula models Thorsten Dickhaus (joint work with Taras Bodnar, Jakob Gierl and Jens Stange) University of Bremen Institute for

More information

Probabilistic Real-Time Systems

Probabilistic Real-Time Systems Probabilistic Real-Time Systems Liliana Cucu-Grosjean, INRIA Nancy-Grand Est [email protected] The results presented are joint work with PROARTIS partners / 3 Luxembourg June 9th, 202 Outline Probabilistic

More information

Volatility modeling in financial markets

Volatility modeling in financial markets Volatility modeling in financial markets Master Thesis Sergiy Ladokhin Supervisors: Dr. Sandjai Bhulai, VU University Amsterdam Brian Doelkahar, Fortis Bank Nederland VU University Amsterdam Faculty of

More information

Quantitative Models for Operational Risk: Extremes, Dependence and Aggregation

Quantitative Models for Operational Risk: Extremes, Dependence and Aggregation Quantitative Models for Operational Risk: Extremes, Dependence and Aggregation V. Chavez-Demoulin, P. Embrechts and J. Nešlehová Department of Mathematics ETH-Zürich CH-8092 Zürich Switzerland http://www.math.ethz.ch/~valerie/

More information

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a

More information

NIST GCR 06-906 Probabilistic Models for Directionless Wind Speeds in Hurricanes

NIST GCR 06-906 Probabilistic Models for Directionless Wind Speeds in Hurricanes NIST GCR 06-906 Probabilistic Models for Directionless Wind Speeds in Hurricanes Mircea Grigoriu Cornell University NIST GCR 06-906 Probabilistic Models for Directionless Wind Speeds in Hurricanes Prepared

More information

Armenian State Hydrometeorological and Monitoring Service

Armenian State Hydrometeorological and Monitoring Service Armenian State Hydrometeorological and Monitoring Service Offenbach 1 Armenia: IN BRIEF Armenia is located in Southern Caucasus region, bordering with Iran, Azerbaijan, Georgia and Turkey. The total territory

More information

Un point de vue bayésien pour des algorithmes de bandit plus performants

Un point de vue bayésien pour des algorithmes de bandit plus performants Un point de vue bayésien pour des algorithmes de bandit plus performants Emilie Kaufmann, Telecom ParisTech Rencontre des Jeunes Statisticiens, Aussois, 28 août 2013 Emilie Kaufmann (Telecom ParisTech)

More information

Extreme Value Analysis of Corrosion Data. Master Thesis

Extreme Value Analysis of Corrosion Data. Master Thesis Extreme Value Analysis of Corrosion Data Master Thesis Marcin Glegola Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, The Netherlands July 2007 Abstract

More information

UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.

UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 Non-Life Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This

More information

Multivariate Extremes, Max-Stable Process Estimation and Dynamic Financial Modeling

Multivariate Extremes, Max-Stable Process Estimation and Dynamic Financial Modeling Multivariate Extremes, Max-Stable Process Estimation and Dynamic Financial Modeling by Zhengjun Zhang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks 1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics

More information

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985 Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985 Small sample estimation and testing for heavy tails Fabián, Zdeněk (1st author) Academy of Sciences of

More information

MONITORING OF DROUGHT ON THE CHMI WEBSITE

MONITORING OF DROUGHT ON THE CHMI WEBSITE MONITORING OF DROUGHT ON THE CHMI WEBSITE Richterová D. 1, 2, Kohut M. 3 1 Department of Applied and Land scape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech

More information

Optimal reinsurance with ruin probability target

Optimal reinsurance with ruin probability target Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1 Ruin, solvency

More information

THE IMPORTANCE OF OPERATIONAL RISK MODELING FOR ECONOMIC CAPITAL MANAGEMENT IN BANKING 1

THE IMPORTANCE OF OPERATIONAL RISK MODELING FOR ECONOMIC CAPITAL MANAGEMENT IN BANKING 1 THE IMPORTANCE OF OPERATIONAL RISK MODELING FOR ECONOMIC CAPITAL MANAGEMENT IN BANKING 1 Petr Teplý Radovan Chalupka Jan Černohorský Charles University in Prague Charles University in Prague University

More information

Analysis and Classification of Volcanic Eruptions

Analysis and Classification of Volcanic Eruptions Analysis and Classification of Volcanic Eruptions Prof. S. C. Wirasinghe, PEng (APEGA) Ms. H. Jithamala Caldera I 3 R 2 May 2014 Purdue University Department of Civil Engineering, Schulich School of Engineering

More information

How to Model Operational Risk, if You Must

How to Model Operational Risk, if You Must How to Model Operational Risk, if You Must Paul Embrechts ETH Zürich (www.math.ethz.ch/ embrechts) Based on joint work with V. Chavez-Demoulin, H. Furrer, R. Kaufmann, J. Nešlehová and G. Samorodnitsky

More information

Fuzzy Probability Distributions in Bayesian Analysis

Fuzzy Probability Distributions in Bayesian Analysis Fuzzy Probability Distributions in Bayesian Analysis Reinhard Viertl and Owat Sunanta Department of Statistics and Probability Theory Vienna University of Technology, Vienna, Austria Corresponding author:

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

Operational Risk Modeling Analytics

Operational Risk Modeling Analytics Operational Risk Modeling Analytics 01 NOV 2011 by Dinesh Chaudhary Pristine (www.edupristine.com) and Bionic Turtle have entered into a partnership to promote practical applications of the concepts related

More information

Properties of Future Lifetime Distributions and Estimation

Properties of Future Lifetime Distributions and Estimation Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.

More information

Contributions to Modeling Extreme Events on Financial and Electricity Markets

Contributions to Modeling Extreme Events on Financial and Electricity Markets Contributions to Modeling Extreme Events on Financial and Electricity Markets Inauguraldissertation zur Erlangung des Doktorgrades der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

APPLYING COPULA FUNCTION TO RISK MANAGEMENT. Claudio Romano *

APPLYING COPULA FUNCTION TO RISK MANAGEMENT. Claudio Romano * APPLYING COPULA FUNCTION TO RISK MANAGEMENT Claudio Romano * Abstract This paper is part of the author s Ph. D. Thesis Extreme Value Theory and coherent risk measures: applications to risk management.

More information

Operational Risk - Scenario Analysis

Operational Risk - Scenario Analysis Institute of Economic Studies, Faculty of Social Sciences Charles University in Prague Operational Risk - Scenario Analysis Milan Rippel Petr Teplý IES Working Paper: 15/2008 Institute of Economic Studies,

More information

Measurement and Modelling of Internet Traffic at Access Networks

Measurement and Modelling of Internet Traffic at Access Networks Measurement and Modelling of Internet Traffic at Access Networks Johannes Färber, Stefan Bodamer, Joachim Charzinski 2 University of Stuttgart, Institute of Communication Networks and Computer Engineering,

More information

Visualization Tools for Insurance Risk Processes

Visualization Tools for Insurance Risk Processes Visualization Tools for Insurance Risk Processes IV.7 Krzysztof Burnecki, Rafał Weron 7.1 Introduction... 2 7.2 Software... 4 7.3 Fitting Loss and Waiting Time Distributions... 4 Mean Excess Function...

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

MODELLING, ESTIMATING AND VALIDATING MULTIDIMENSIONAL DISTRIBUTION FUNCTIONS -WITH APPLICATIONS TO RISK MANAGEMENT- By Markus Junker D 368

MODELLING, ESTIMATING AND VALIDATING MULTIDIMENSIONAL DISTRIBUTION FUNCTIONS -WITH APPLICATIONS TO RISK MANAGEMENT- By Markus Junker D 368 MODELLING, ESTIMATING AND VALIDATING MULTIDIMENSIONAL DISTRIBUTION FUNCTIONS -WITH APPLICATIONS TO RISK MANAGEMENT- By Markus Junker D 368 Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands Supplementary Material to A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands G. Lenderink and J. Attema Extreme precipitation during 26/27 th August

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Message-passing sequential detection of multiple change points in networks

Message-passing sequential detection of multiple change points in networks Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal

More information

Large Insurance Losses Distributions

Large Insurance Losses Distributions Vicky Fasen and Claudia Klüppelberg Abstract Large insurance losses happen infrequently, but they happen. In this paper we present the standard distribution models used in fire, wind storm or flood insurance.

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Financial Time Series Analysis (FTSA) Lecture 1: Introduction

Financial Time Series Analysis (FTSA) Lecture 1: Introduction Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often

More information

Climate Change risk and Agricultural Productivity in the Sahel

Climate Change risk and Agricultural Productivity in the Sahel Climate Change risk and Agricultural Productivity in the Sahel Imed Drine and Younfu Huang World Institute for Development Economics Research, United Nations University UNU WIDER) 1 The Sahel is extremely

More information

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory

More information

Frequency analysis of the hydrological drought regime. Case of oued Mina catchment in western of Algeria

Frequency analysis of the hydrological drought regime. Case of oued Mina catchment in western of Algeria Frequency analysis of the hydrological drought regime. Case of oued Mina catchment in western of Algeria A. Yahiaoui (), B. Touaïbia (2), C. Bouvier (3) () Chargé de Cours. Département Hydraulique. Université

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Loss Distribution Approach for operational risk

Loss Distribution Approach for operational risk A. Frachot, P. Georges & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France First version: March 30, 2001 This version: April 25, 2001 Abstract In this paper, we explore the Loss Distribution

More information