arxiv: v1 [cond-mat.stat-mech] 8 May 2008

Size: px
Start display at page:

Download "arxiv:0805.1170v1 [cond-mat.stat-mech] 8 May 2008"

Transcription

1 Path integral formulation of fractional Brownian motion for general Hurst exponent arxiv:85.117v1 [cond-mat.stat-mech] 8 May 28 I Calvo 1 and R Sánchez 2 1 Laboratorio Nacional de Fusión, Asociación EURAOM-CIEMA, 284 Madrid, Spain 2 Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, N 37831, U.S.A. 1. Introduction ivan.calvo@ciemat.es, sanchezferlr@ornl.gov Abstract. In J. Phys. A: Math. Gen. 28, , K. L. Sebastian gave a pathintegral computation of the propagator of subdiffusive fractional Brownian motion fbm, i.e. fbm with a Hurst or self-similarity exponent H, 1/2. he extension of Sebastian s calculation to superdiffusion, H 1/2, 1], becomes however quite involved due to the appearance of additional boundary conditions on fractional derivatives of the path. In this paper, we address the construction of the path integral representation in a different fashion, which allows to treat both subdiffusion and superdiffusion on an equal footing. he derivation of the propagator of fbm for general Hurst exponent is then performed in a neat and unified way. PACS numbers: 5.4.-a, 2.5.Ey, 5.1.Gg he Langevin representation for Brownian motion has been known for a long time [1, 2]. In one dimension, it can be formally written as xt = x + t where ξt is a Gaussian, uncorrelated noise function: ξt dt, 1 ξtξt = δt t. 2 he propagator of Brownian motion, which gives the probability of finding the Brownian walker at some location x at time t > after having started at x at time, is a Gaussian whose width grows as t 1/2 : Gx, t x, = 1 2πt exp x x 2 2t. 3 However, many interesting processes ranging from hydrology [3] to finance [4] or tracer transport by turbulent flows [5] exhibit anomalous diffusion, x x 2 t 2H,

2 Path integral formulation of fbm for general Hurst exponent 2 with H 1/2. In many situations the anomalous behaviour is due to spatiotemporal correlations, which translate into long-term time correlations in Lagrangian quantities. A generalization of Brownian motion which was proposed to include such correlations is known as fractional Brownian motion fbm [6]. Although slightly different representations can be found in the literature [6, 7], the one more convenient for our purposes is xt = x + 1 ΓH t t t H 1 2 ξt dt, 4 where Γ is the Gamma function and ξt is still Gaussian and uncorrelated. he exponent H corresponds to both the self-similarity exponent of the process [6] and the Hurst exponent [8] of the incremental process dxt := xt + dt xt. On the one hand, the average motion is invariant under the transformation x, t µ H x, µt. On the other hand, the increments dxt are uncorrelated for H = 1/2 and anticorrelated correlated for H, 1/2 H 1/2, 1]. Consequently, 4 can be used to model diffusive H = 1/2, subdiffusive H, 1/2, and superdiffusive H 1/2, 1] transport processes. In a beautiful paper [9], K. L. Sebastian showed that it is very advantageous to rewrite fbm in terms of fractional differential operators, xt = x + D H+1/2 t ξ, 5 where Dt α is the Riemann-Liouville fractional integral of order α [1, 11]. Indeed, by combining path integral methods [12] with fractional calculus, he computed the exact propagator of 4 for H 1/2. However, the case H > 1/2 is not addressed in [9] because the problem becomes quite more complicated from the technical point of view. he difficulties may be explained as follows. Sebastian constructs the path integral by inverting 5 in terms of Riemann-Liouville fractional differential operators. his is easy for H 1/2 because such inversion is well-defined simply imposing the boundary conditions x = x and x = x. However, if H > 1/2 additional boundary conditions involving fractional derivatives at t = are required. Not only is the physical meaning of these fractional initial conditions unclear, but also the computation along the lines of [9] results too cumbersome. In this paper, we formulate the path integral for fbm using instead ξt as the integration variable. his choice avoids the need to invert 5, and thus the need for the additional fractional initial conditions. In our approach the difficulty resides in how to manage the boundary conditions of xt, which translate into a non-local constraint on the admissible realizations of the noise. We will see below that the usage of Lagrange multipliers allows to do this in an easy and transparent way, thus providing a general path-integral derivation of the well-known propagator of fbm [13].

3 Path integral formulation of fbm for general Hurst exponent 3 2. Path integral calculation of the propagator Given a Langevin equation describing the motion of a particle, the propagator Gx, x, is defined as the probability to find the particle at x = x at time t = if initially, t =, it was located at x = x. Hence, the propagator can be viewed as the motion of the particle averaged over all realizations of the noise compatible with the boundary conditions x = x, x = x. In the path integral formalism this is formulated as follows. he essential object is the probability measure PξtDξt on the space of maps ξt : [, ] R. Since ξt is uncorrelated in time and distributed as a Gaussian for each t, this is naturally defined as PξtDξt = exp 1 ξt 2 dt Dξt. 6 2 We want to compute the propagator of 5. Firstly, note that the boundary conditions x = x, x = x translate into the following constraint on ξt: D H+1/2 ξ = x x. 7 herefore, the propagator can be written as the expectation value: Gx, x, = δ D H+1/2 ξ x x exp 1 ξt 2 dt Dξt, 8 2 where the Dirac delta function ensures that we only integrate over maps ξt satisfying 7. We proceed to compute the path integral on the right-hand side of 8. Define the action S[ξt] = 1 2 ξt 2 dt, 9 and consider infinitesimal variations on the space of maps ξt satisfying 7. We denote by ξt the map which makes the action stationary under such variations. Observe that, in particular, ξt verifies 7. Now, we perform the following change of variables in 8: ξt = ξt + ηt. 1 he constraint 7 implies that D H+1/2 η =. 11 Using that the action is quadratic in ξt and that ξt makes it stationary, Gx, x, = e S[ ξt] δ η e S[ηt] Dηt, 12 D H+1/2 whence we deduce that the propagator is of the form Gx, x, = fe S[ ξt]. 13 he function f will be determined at the end of the calculation by imposing the normalization condition Gx, x, dx = 1,. 14

4 Path integral formulation of fbm for general Hurst exponent 4 It only remains to compute the stationary points of S[ξt] subject to the constraint 7. It is difficult to do it directly, for the condition 7 is hard to implement. he technique of Lagrange multipliers saves the day, though. Our problem is equivalent to finding the stationary points of S[ξt, ] = 1 ξt 2 dt + D H+1/2 ξ x x, 15 2 under arbitrary infinitesimal variations of ξt and the Lagrange multiplier R. From variations with respect to, δ S[ξt, ] = δ D H+1/2 ξ x x, 16 we recover, of course, the constraint 7: D H+1/2 ξ = x x. 17 Let us perform now variations in ξt: δ ξ S[ξt, ] = Writing explicitly the fractional integral: δ ξ S[ξt, ] = ξtδξtdt + = ξt + ξtδξtdt + D H+1/2 δξ. 18 ΓH + 1/2 th 1/2 ΓH + 1/2 Since δ ξ S[ ξt, ] must vanish for arbitrary δξt, we deduce ξt + t H 1/2 δξtdt 19 δξtdt. 2 ΓH + 1/2 th 1/2 =. 21 he Lagrange multiplier is determined by applying D H+1/2 using 17: x x + Immediately, we find and x x + ΓH + 1/2 2 2H Γ 2 H + 1/2 2H to Eq. 21 and t 2H 1 dt =. 22 =, 23 = 2HΓ 2 H + 1/2 x x. 24 2H Inserting this in 21: ξt = 2HΓH + 1/2 x x 2H th 1/2. 25 Going back to 13 we straightforwardly obtain Gx, x, = f exp HΓ 2 H + 1/2 x x H

5 Path integral formulation of fbm for general Hurst exponent 5 And f is obtained from the normalization property, 14: H ΓH + 1/2 f =. 27 π H Hence, finally, H ΓH + 1/2 Gx, x, = exp HΓ 2 H + 1/2 x x π H 2H 2.1. he kinetic equation Once the propagator is known, we can easily derive the kinetic equation associated to fbm. he Fourier transform of Gx, t x, with respect to x is t 2H Ĝk, t = exp 4HΓ 2 H + 1/2 k2. 29 Differentiating with respect to t: t 2H 1 t Ĝk, t = 2Γ 2 H + 1/2 k2 Ĝk, t. 3 Finally, we Fourier invert this expression to get the kinetic equation: t Gx, t = t 2H 1 2Γ 2 H + 1/2 2 xgx, t, 31 which is a diffusion equation with time-dependent diffusivity, as originally deduced in [13] from arguments based on the fluctuation-dissipation theorem. he invariance of 31 under the transformation x, t µ H x, µt is manifest. Obviously, when H = 1/2 we retrieve the standard diffusion equation associated to Brownian motion: t Gx, t = xgx, t Conclusions In this paper we have computed by path integral methods the well-known propagator of fbm for general Hurst exponent, extending the construction of [9], which was restricted to the subdiffusive case. he key technical point in our approach is to use the noise as path integral variable instead of the coordinate of the particle trajectory. Acknowledgements: I. C. acknowledges the hospitality of Oak Ridge National Laboratory, were this work was carried out. Part of this research was sponsored by the Laboratory Research and Development Program of Oak Ridge National Laboratory, managed by U-Battelle, LLC, for the US Department of Energy under contract number DE-AC5-OR22725.

6 Path integral formulation of fbm for general Hurst exponent 6 References [1] P. Langevin. C. R. Acad. Sci. Paris, 146:53 533, 198. [2] G. E. Uhlenbeck and L. S. Ornstein. Phys. Rev., 36: , 193. [3] F. J. Molz, H. H. Liu, and J. Szulga. Water Resour. Res., 33:2273, [4] R. J. Elliott and J. van der Hoek. Fractional Brownian motion and financial modeling. In rends in Mathematics, Birkhäuser Verlag, Basel, 21. [5] R. Sánchez, B. A. Carreras, D. E. Newman, V. E. Lynch, and B. Ph. van Milligen. Phys. Rev. E, 74:1635, 26. [6] B. B. Mandelbrot and J. W. van Ness. SIAM Rev., 1:422, [7] G. Samorodnitsky and M. S. aqqu. Stable non-gaussian processes. Chapman & Hall, New York, [8] H. E. Hurst. rans. Am. Soc. Civ. Eng., 116:77, [9] K. L. Sebastian. J. Phys. A: Math. Gen., 28:435, [1] K. Oldham and J. Spanier. he Fractional Calculus. Academic Press, New York, [11] I. Podlubny. Fractional differential equations. Academic Press, New York, [12] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, [13] K. G. Wang and C. W. Lung. Phys. Lett. A, 151:119, 199.

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES Teodor M. Atanackovic and Bogoljub Stankovic 2 Abstract We treat the fractional order differential equation that contains the left

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

Convection in stars is a highly turbulent, 3-dimensional and non-local motion in compressible medium on dynamical. 10 10 ; η viscosity; v

Convection in stars is a highly turbulent, 3-dimensional and non-local motion in compressible medium on dynamical. 10 10 ; η viscosity; v Energy transport by convection Convection in stars is a highly turbulent, 3-dimensional and non-local motion in compressible medium on dynamical timescales. (Reynolds number Re := vρl m 10 10 ; η viscosity;

More information

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0 Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results Condensed Matter Physics, Vol. 3, No, 3: 8 http://www.icmp.lviv.ua/journal Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results V. Ilyin, I. Procaccia, A. Zagorodny

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

Frakcionális Brown mozgás által. Sztochasztikus differenciálegyenletek megoldásának közelíté. Soós Anna

Frakcionális Brown mozgás által. Sztochasztikus differenciálegyenletek megoldásának közelíté. Soós Anna Frakcionális Brown mozgás által vezérelt sztochasztikus differenciálegyenletek megoldásának közelítése Babes-Bolyai Tudományegyetem asoos@math.ubbcluj.ro 2014.10.15. fbm közelítése ( ) B(t) fbm, H > 1.

More information

Path Integrals in Quantum Mechanics

Path Integrals in Quantum Mechanics Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demonstrate

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

15 Kuhn -Tucker conditions

15 Kuhn -Tucker conditions 5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

More information

3. Diffusion of an Instantaneous Point Source

3. Diffusion of an Instantaneous Point Source 3. Diffusion of an Instantaneous Point Source The equation of conservation of mass is also known as the transport equation, because it describes the transport of scalar species in a fluid systems. In this

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

arxiv:hep-th/0507236v1 25 Jul 2005

arxiv:hep-th/0507236v1 25 Jul 2005 Non perturbative series for the calculation of one loop integrals at finite temperature Paolo Amore arxiv:hep-th/050736v 5 Jul 005 Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo

More information

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Optimal order placement in a limit order book Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Outline 1 Background: Algorithm trading in different time scales 2 Some note on optimal execution

More information

Truncated Levy walks applied to the study of the behavior of Market Indices

Truncated Levy walks applied to the study of the behavior of Market Indices Truncated Levy walks applied to the study of the behavior of Market Indices M.P. Beccar Varela 1 - M. Ferraro 2,3 - S. Jaroszewicz 2 M.C. Mariani 1 This work is devoted to the study of statistical properties

More information

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT Anyons as Dirac Strings, the A x = 0 Gauge LPTB 93-1 John McCabe Laboratoire de Physique Théorique, 1 Université Bordeaux I 19 rue du Solarium, 33175 Gradignan FRANCE arxiv:cond-mat/930104v1 0 Jan 1993

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15 Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

A STOCHASTIC MODEL FOR THE SPREADING OF AN IDEA IN A HUMAN COMMUNITY

A STOCHASTIC MODEL FOR THE SPREADING OF AN IDEA IN A HUMAN COMMUNITY 6th Jagna International Workshop International Journal of Modern Physics: Conference Series Vol. 7 (22) 83 93 c World Scientific Publishing Company DOI:.42/S29452797 A STOCHASTIC MODEL FOR THE SPREADING

More information

221A Lecture Notes Path Integral

221A Lecture Notes Path Integral 1A Lecture Notes Path Integral 1 Feynman s Path Integral Formulation Feynman s formulation of quantum mechanics using the so-called path integral is arguably the most elegant. It can be stated in a single

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

4 The M/M/1 queue. 4.1 Time-dependent behaviour

4 The M/M/1 queue. 4.1 Time-dependent behaviour 4 The M/M/1 queue In this chapter we will analyze the model with exponential interarrival times with mean 1/λ, exponential service times with mean 1/µ and a single server. Customers are served in order

More information

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

More information

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble arxiv:cond-mat/9405067v1 24 May 1994 Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble Yang Chen and Henrik Jeldtoft Jensen Department of Mathematics Imperial College 180 Queen

More information

Moving Least Squares Approximation

Moving Least Squares Approximation Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

More information

Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

Trading activity as driven Poisson process: comparison with empirical data

Trading activity as driven Poisson process: comparison with empirical data Trading activity as driven Poisson process: comparison with empirical data V. Gontis, B. Kaulakys, J. Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 2, LT-008

More information

Markups and Firm-Level Export Status: Appendix

Markups and Firm-Level Export Status: Appendix Markups and Firm-Level Export Status: Appendix De Loecker Jan - Warzynski Frederic Princeton University, NBER and CEPR - Aarhus School of Business Forthcoming American Economic Review Abstract This is

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON

DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON Vol. 65 (2010) REPORTS ON MATHEMATICAL PHYSICS No. 2 DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES IVÁN CALVO Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, E-28040 Madrid, Spain

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

SURVEY ON DYNAMICAL YANG-BAXTER MAPS. Y. Shibukawa

SURVEY ON DYNAMICAL YANG-BAXTER MAPS. Y. Shibukawa SURVEY ON DYNAMICAL YANG-BAXTER MAPS Y. Shibukawa Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan e-mail: shibu@math.sci.hokudai.ac.jp Abstract In this survey,

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Grey Brownian motion and local times

Grey Brownian motion and local times Grey Brownian motion and local times José Luís da Silva 1,2 (Joint work with: M. Erraoui 3 ) 2 CCM - Centro de Ciências Matemáticas, University of Madeira, Portugal 3 University Cadi Ayyad, Faculty of

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Capturing the Complete Multifractal Characteristics of Network Traffic

Capturing the Complete Multifractal Characteristics of Network Traffic Capturing the Complete Multifractal Characteristics of Network Traffic Trang Dinh Dang, Sándor Molnár, István Maricza High Speed Networks Laboratory, Dept. of Telecommunications & Telematics Budapest University

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation 1 Green s functions The harmonic oscillator equation is This has the solution mẍ + kx = 0 (1) x = A sin(ωt) + B cos(ωt), ω = k m where A, B are arbitrary constants reflecting the fact that we have two

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

The derivation of the balance equations

The derivation of the balance equations Chapter 3 The derivation of the balance equations In this chapter we present the derivation of the balance equations for an arbitrary physical quantity which starts from the Liouville equation. We follow,

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

Outline Lagrangian Constraints and Image Quality Models

Outline Lagrangian Constraints and Image Quality Models Remarks on Lagrangian singularities, caustics, minimum distance lines Department of Mathematics and Statistics Queen s University CRM, Barcelona, Spain June 2014 CRM CRM, Barcelona, SpainJune 2014 CRM

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

P.A.M. Dirac Received May 29, 1931

P.A.M. Dirac Received May 29, 1931 P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 1931 Quantised Singularities in the Electromagnetic Field P.A.M. Dirac Received May 29, 1931 1. Introduction The steady progress of physics requires for its theoretical

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Determining distribution parameters from quantiles

Determining distribution parameters from quantiles Determining distribution parameters from quantiles John D. Cook Department of Biostatistics The University of Texas M. D. Anderson Cancer Center P. O. Box 301402 Unit 1409 Houston, TX 77230-1402 USA cook@mderson.org

More information

Thermodynamics: Lecture 2

Thermodynamics: Lecture 2 Thermodynamics: Lecture 2 Chris Glosser February 11, 2001 1 OUTLINE I. Heat and Work. (A) Work, Heat and Energy: U = Q + W. (B) Methods of Heat Transport. (C) Infintesimal Work: Exact vs Inexact Differentials

More information

Web-based Supplementary Materials for. Modeling of Hormone Secretion-Generating. Mechanisms With Splines: A Pseudo-Likelihood.

Web-based Supplementary Materials for. Modeling of Hormone Secretion-Generating. Mechanisms With Splines: A Pseudo-Likelihood. Web-based Supplementary Materials for Modeling of Hormone Secretion-Generating Mechanisms With Splines: A Pseudo-Likelihood Approach by Anna Liu and Yuedong Wang Web Appendix A This appendix computes mean

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Auctioning Keywords in Online Search

Auctioning Keywords in Online Search Auctioning Keywords in Online Search Jianqing Chen The Uniersity of Calgary iachen@ucalgary.ca De Liu Uniersity of Kentucky de.liu@uky.edu Andrew B. Whinston Uniersity of Texas at Austin abw@uts.cc.utexas.edu

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note

Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile

More information