Real-World Analytics with Solr Cloud and Spark

Size: px
Start display at page:

Download "Real-World Analytics with Solr Cloud and Spark"

Transcription

1 Real-World Analytics with Solr Cloud and Spark Solving Analytic Problems for Billions of Records Within Seconds Johannes Weigend Apache Big Data North America 2016 May 2016 Vancouver, May 2016 Johannes Weigend QAware GmbH

2 Any Question? Ask or Twitter with the Hashtag #cloudnativenerd

3 The Problem We Want to Solve Interactive applications with runtimes lower than a second! Processing of billions of records ( rows / records) Continuously import data (near realtime) Applications on top of the Reactive Manifesto

4

5 Apache Big Data North America Vancouver Johannes Weigend QAware GmbH

6 Horizontal Scalability can be difficult! Horizontal Scalability of functions Trivial Loadbalancing of (stateless) services (makro- / microservices) More users! more machines Not trivial More machines! faster response times Horizontal Scalability of data Trivial Linear distribution of data on multiple machines More machines! more data Not trivial Constant response times with growing datasets

7 Hadoop Gives Answers for Horizontal Scalability of Data and Functions

8

9 The Processing of Distributed Data can be Quite Slow! Reduce foreach() -> Minutes / Hours Map Map Map Filter Filter Filter Read Read Read Data Flow HDFS / NFS / NoSQL 9

10 With Former Indexing and Searching, Less Data has to be Read and Filtered. Reduce Map Map Map foreach() -> Seconds/Minutes Filter Filter Filter Data Flow Search Search Search Search / NoSQL 10

11 Frontend Spark Reduce Map Map Map Business Layer Cluster Processing Search Search Search Distributed Data

12 DEMO

13 Reduce Map Map Map Spark Filter Filter Filter Search Search Search Data Flow Search / NoSQL 1. Solr Cloud for Analytics

14 Cloud Document based NoSQL database with outstanding search capabilities A document is a collection of fields (string, number, date, ) Single und multiple fields (fields can be arrays) Nested documents Static und dynamic scheme Powerful query language (Lucene) Horizontal scalable with Solr Cloud Distributed data in separate shards Resilience by the combination of zookeeper and replication Powerful aggregations (aka facets) Stable > V 6.0

15 The Architecture of Solr Cloud Leader Zookeeper Zookeeper Zookeeper Zookeeper Cluster Solr Server Solr Server Solr Server Solr Cloud Collection Shard1 Shard2 Shard3 Shard4 Shard5 Shard6 Shard7 Shard8 Shard9 Shards Replica4 Replica8 Replica9 Replica7 Replica2 Replica3 Replica1 Replica5 Replica6 Replicas Scale Out

16 Solr Stores Everything in a Single Table (BigTable). Searching is Extremely Fast and Powerful. * Customer Order Name Address 1 * Amount Product SolrDocument SolrDocument SolrDocument SolrDocument Type ID Name Address Amount Product C2O Customer 1 K 1 A [3,5] Customer 2 K 2 A [4] Order Z 1 P 1 [1] Order Z 2 P 2 [2]... (*) With 100 million documents per shard, runtimes of queries and aggregations are normally less then 100ms

17 A Solr Cloud can be Started in Seconds. Create a scheme by reusing an existing set of solr config files There are examples in the installation directory $SOLR_HOME/server/solr/configsets which can be copied and modified cp $SOLR_HOME/server/solr/configsets/basic_configs \ $SOLR_HOME/server/solr/configsets/bigdata2016 Start solr When the wizzard asks for a collection name use bigdata2016 (see above) $SOLR_HOME/bin/solr start e cloud Make a first test curl localhost:8983/solr/jax2016/query?q=*:*

18 With the Solr Cloud Collection API, Shards can be Created, Changed or Deleted. Create a collection <<SOLR URL>>/solr/admin/collections?action=CREATE& name=<<name of collection>>& numshards=16& replicationfactor=2& maxshardspernode=8& collection.configname= <<name of uploaded zookeeper configuration>> Delete a collection <<SOLR URL>>/solr/admin/collections?action=DELETE& name=<<name of collection>>

19 Zookeeper has to be Started First and the Solr Configuration must be Uploaded to Use a Solr Cloud. 1. Start zookeeper on 2n+1 nodes (odd number) $ZOO_HOME/bin/zkServer.sh start 2. Upload the solr configuration into zookeeper $SOLR_HOME/server/scripts/cloud-scripts$./zkcli.sh -cmd upconfig -zkhost :2181, :2181, confname ekgdata -solrhome /opt/solr/server/solr -confdir /opt/solr/ server/solr/configsets/ekgdata_configs/conf 3. Start solr on n-nodes connected to the zookeeper cluster $SOLR_HOME/bin/solr start c -z :2181, :2181, Create a collection with a number of shards and replicas

20 Example: Solr Cloud for Analytics of Insurance Data IBM Watson insurance sample data containing the following fields Education Gender Income...

21 DEMO

22 Executing Facet Queries

23 Term Facets Group and Count a Single Field. Apache Big Data North America Vancouver Johannes Weigend QAware GmbH 23

24 Function Facets Aggregate Fields. 24

25 Pivot Facets Compose Facets to Hierarchies. 25

26 Solr 6 Supports SQL Solr 6 supports distributed SQL The JDBC Driver is part of the solrj client library A collection is currently mapped as single table. Collection -> Table SolrDocument -> Row Field -> Column The Solr 6.0 JDBC Driver is very limited, but more functionality is expected in upcoming versions No database metadata, no prepared statements, no mapping to tables per type field

27 Resilience The number of replicas per shard is configurable (replication factor) This number corresponds with the number of nodes which can silently fail Zookeeper is the single source of failure, but can also be failsafe by running multiple instances Solr knows all zookeeper instances and can silently switch over to the next available leader if last connected zookeeper crashes

28 You Got Everything for Analytics Applications! Or Not? Client side processing of Solr documents does not scale No possibility to run parallel business logic inside Solr with a strong separation of concerns between Solr and your code The Solr index is not a general purpose store for huge data Images Videos Binaries / large text documents No Interface to machine learning or typical statistics libraries (R)...

29 Reduce Map Map Map Spark Filter Filter Filter Search Search Search Data flow Search / NoSQL Distributed In-Memory Computing mit Apache Spark

30 READ THIS: Distributed computing (100x faster than Hadoop (M/R) Distributed Map/Reduce on distributed data can be done in-memory Written in Scala (JVM) Java/Scala/Python APIs Processes data from distributed and non-distributed sources Textfiles (accessible from all nodes) Hadoop File System (HDFS) Databases (JDBC) Solr per Lucidworks API...

31 Driver Node Cluster JVM Driver Application JVM Master Host Master / Yarn / Mesos creates Spark Context Resilient Distributed Dataset RDD uses MasterURL Task Slave Slave JVM Worker JVM Worker start start JVM Executor JVM Partition Task(s) Executor Partition Task(s) Application JVM JVM Slave Worker start Executor Partition Task(s)

32 A Very First Spark Application

33 Spark Pattern 1: Distributed Task with Params

34 Spark Pattern 2: Distributed Read from External Sources

35 Spark Pattern 3: Caching and Further Processing with RDDs

36 DEMO

37 Reduce Map Map Map Spark Filter Filter Filter Search Search Search Datenfluss Search / NoSQL Putting All Together Solr & Spark in Action

38 How to Implement readfromshard()? There are several possibilities: SolrJ: SolrCloudStream /export Handler can stream mass data (with limitations) Supports only JSON (No binary or xml) Or: SolrJ cursor marks Or: Build your own custom export handler

39 LucidWorks has released a Spark/Solr Integration Library.

40 1 Lucidworks Solr-Spark Adapter V

41 Logfile Analytics with Solr and Spark Histogram of exceptions from hosts A,B,C during time interval D Step 1: Search with Solr Solr Query q=*exception AND (server: A OR server:b OR server:c) AND timestamp between [ , ] Step 2: Create a map key = << exception name >>, value = count

42

43 + DEMO

44 Specifications Intel NUC6i5SYK CPU 6th generation Intel Core i5-6260u processor with Intel Iris graphics (1.9 GHz up to 2.8 GHz Turbo, Dual Core, 4 MB Cache, 15W TDP) RAM 32 GB Dual-channel DDR4 SODIMMs 1.2V, 2133 MHz DISK 256 GB Samsung M.2 internal SSD Total 8 Cores, 16 HT Units, 128 GB RAM, 1 TB Disk! This case is as powerful like four notebooks Apache Big Data North America Vancouver Johannes Weigend QAware GmbH

45 Technical Cluster Architecture Zeppelin Zookeeper #1 Spark Spark Master JVM #4 Slave JVM #4 Master JVM Slave JVM Executor JVM #4 Solr Cloud 4 1 Executor JVM #1 Solr Cloud s13 s14 s15 s16 s1 s2 s3 s4 Ubuntu Linux Ubuntu Linux hdfs Spark Zookeeper #3 Zeppelin Spark Zookeeper #2 Master JVM #3 Slave JVM #3 Master JVM #2 Slave JVM #2 Executor JVM #3 Solr Cloud 3 2 Executor JVM #2 Solr Cloud s9 s10 s11 s12 s5 s6 s7 s8 Ubuntu Linux Ubuntu Linux

46 You Can Build a Solr/Spark Cloud on Odroid 70$ Computers ODROID XU4: 8 Cores, 2GB RAM, 64 GB emmc Disk ~1/10 CPU performance in comparison to Intel NUC 6 / Core i5 Apache Big Data North America Vancouver Johannes Weigend QAware GmbH

47 40 Cores 10 GB RAM 320 GB emmc Disk SPARK Worker SOLR 5.3 SPARK Worker SOLR 5.3 Odroid XU4 2 GB RAM 64 GB emmc Disk Ubuntu Linux 70$ SPARK Master SPARK Worker SOLR 5.3 ZOOKEEPER SPARK Worker SOLR 5.3 SPARK Worker SOLR

48

49 Summary Solr Cloud / Spark are a powerful combination for interactive analytics and data intense applications Writing distributed software stays hard. Only distribute if you have to. 100% Open Source A simple integration of Solr and Spark is easy. For high performance applications things could be challenging. If professional product support is needed, customers can switch to Lucidworks Fusion to get a pre integrated and supported Solr/Spark platform

50 slideshare.net/qaware blog.qaware.de

51 51

Leveraging the Power of SOLR with SPARK. Johannes Weigend QAware GmbH Germany pache Big Data Europe September 2015

Leveraging the Power of SOLR with SPARK. Johannes Weigend QAware GmbH Germany pache Big Data Europe September 2015 Leveraging the Power of SOLR with SPARK Johannes Weigend QAware GmbH Germany pache Big Data Europe September 2015 Welcome Johannes Weigend - CTO QAware GmbH - Software architect / developer - 25 years

More information

Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya

Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services

More information

A Performance Analysis of Distributed Indexing using Terrier

A Performance Analysis of Distributed Indexing using Terrier A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search

More information

Hadoop Ecosystem B Y R A H I M A.

Hadoop Ecosystem B Y R A H I M A. Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5

How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5 Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark

More information

Search and Real-Time Analytics on Big Data

Search and Real-Time Analytics on Big Data Search and Real-Time Analytics on Big Data Sewook Wee, Ryan Tabora, Jason Rutherglen Accenture & Think Big Analytics Strata New York October, 2012 Big Data: data becomes your core asset. It realizes its

More information

Moving From Hadoop to Spark

Moving From Hadoop to Spark + Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee

More information

NoSQL and Hadoop Technologies On Oracle Cloud

NoSQL and Hadoop Technologies On Oracle Cloud NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath

More information

Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf

Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant

More information

How Companies are! Using Spark

How Companies are! Using Spark How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made

More information

Apache HBase. Crazy dances on the elephant back

Apache HBase. Crazy dances on the elephant back Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage

More information

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview

Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce

More information

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia

Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop

More information

Apache Spark : Fast and Easy Data Processing Sujee Maniyam Elephant Scale LLC [email protected] http://elephantscale.com

Apache Spark : Fast and Easy Data Processing Sujee Maniyam Elephant Scale LLC sujee@elephantscale.com http://elephantscale.com Apache Spark : Fast and Easy Data Processing Sujee Maniyam Elephant Scale LLC [email protected] http://elephantscale.com Spark Fast & Expressive Cluster computing engine Compatible with Hadoop Came

More information

Big Systems, Big Data

Big Systems, Big Data Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,

More information

CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving

More information

Big Data With Hadoop

Big Data With Hadoop With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials

More information

Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected]

Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam sastry.vedantam@oracle.com Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected] Agenda The rise of Big Data & Hadoop MySQL in the Big Data Lifecycle MySQL Solutions for Big Data Q&A

More information

Architectures for massive data management

Architectures for massive data management Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache

More information

Spark ΕΡΓΑΣΤΗΡΙΟ 10. Prepared by George Nikolaides 4/19/2015 1

Spark ΕΡΓΑΣΤΗΡΙΟ 10. Prepared by George Nikolaides 4/19/2015 1 Spark ΕΡΓΑΣΤΗΡΙΟ 10 Prepared by George Nikolaides 4/19/2015 1 Introduction to Apache Spark Another cluster computing framework Developed in the AMPLab at UC Berkeley Started in 2009 Open-sourced in 2010

More information

Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software

Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications

More information

Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems

Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File

More information

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH

Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH Real-time Data Analytics mit Elasticsearch Bernhard Pflugfelder inovex GmbH Bernhard Pflugfelder Big Data Engineer @ inovex Fields of interest: search analytics big data bi Working with: Lucene Solr Elasticsearch

More information

Use of Hadoop File System for Nuclear Physics Analyses in STAR

Use of Hadoop File System for Nuclear Physics Analyses in STAR 1 Use of Hadoop File System for Nuclear Physics Analyses in STAR EVAN SANGALINE UC DAVIS Motivations 2 Data storage a key component of analysis requirements Transmission and storage across diverse resources

More information

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University

More information

Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016

Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016 Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible

More information

Introduction to Big Data Training

Introduction to Big Data Training Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB

More information

Spark. Fast, Interactive, Language- Integrated Cluster Computing

Spark. Fast, Interactive, Language- Integrated Cluster Computing Spark Fast, Interactive, Language- Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

Spark: Cluster Computing with Working Sets

Spark: Cluster Computing with Working Sets Spark: Cluster Computing with Working Sets Outline Why? Mesos Resilient Distributed Dataset Spark & Scala Examples Uses Why? MapReduce deficiencies: Standard Dataflows are Acyclic Prevents Iterative Jobs

More information

Integrate Master Data with Big Data using Oracle Table Access for Hadoop

Integrate Master Data with Big Data using Oracle Table Access for Hadoop Integrate Master Data with Big Data using Oracle Table Access for Hadoop Kuassi Mensah Oracle Corporation Redwood Shores, CA, USA Keywords: Hadoop, BigData, Hive SQL, Spark SQL, HCatalog, StorageHandler

More information

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney

Introduction to Hadoop. New York Oracle User Group Vikas Sawhney Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop

More information

Copyright 2012, Oracle and/or its affiliates. All rights reserved.

Copyright 2012, Oracle and/or its affiliates. All rights reserved. 1 Oracle Big Data Appliance Releases 2.5 and 3.0 Ralf Lange Global ISV & OEM Sales Agenda Quick Overview on BDA and its Positioning Product Details and Updates Security and Encryption New Hadoop Versions

More information

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia

Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing

More information

In Memory Accelerator for MongoDB

In Memory Accelerator for MongoDB In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000

More information

How To Scale Out Of A Nosql Database

How To Scale Out Of A Nosql Database Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI

More information

Hadoop & Spark Using Amazon EMR

Hadoop & Spark Using Amazon EMR Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?

More information

MongoDB and Couchbase

MongoDB and Couchbase Benchmarking MongoDB and Couchbase No-SQL Databases Alex Voss Chris Choi University of St Andrews TOP 2 Questions Should a social scientist buy MORE or UPGRADE computers? Which DATABASE(s)? Document Oriented

More information

Chapter 7. Using Hadoop Cluster and MapReduce

Chapter 7. Using Hadoop Cluster and MapReduce Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in

More information

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN

Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY

Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person

More information

Apache Spark 11/10/15. Context. Reminder. Context. What is Spark? A GrowingStack

Apache Spark 11/10/15. Context. Reminder. Context. What is Spark? A GrowingStack Apache Spark Document Analysis Course (Fall 2015 - Scott Sanner) Zahra Iman Some slides from (Matei Zaharia, UC Berkeley / MIT& Harold Liu) Reminder SparkConf JavaSpark RDD: Resilient Distributed Datasets

More information

Architectures for massive data management

Architectures for massive data management Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE

INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe

More information

In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet

In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta [email protected] Radu Chilom [email protected] Buzzwords Berlin - 2015 Big data analytics / machine

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

Introduction to Cassandra

Introduction to Cassandra Introduction to Cassandra DuyHai DOAN, Technical Advocate Agenda! Architecture cluster replication Data model last write win (LWW), CQL basics (CRUD, DDL, collections, clustering column) lightweight transactions

More information

Hybrid Software Architectures for Big Data. [email protected] @hurence http://www.hurence.com

Hybrid Software Architectures for Big Data. Laurence.Hubert@hurence.com @hurence http://www.hurence.com Hybrid Software Architectures for Big Data [email protected] @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line

More information

Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing

Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti

More information

Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov

Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA by Christian Tzolov @christzolov Whoami Christian Tzolov Technical Architect at Pivotal, BigData, Hadoop, SpringXD,

More information

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics

More information

Large Scale Text Analysis Using the Map/Reduce

Large Scale Text Analysis Using the Map/Reduce Large Scale Text Analysis Using the Map/Reduce Hierarchy David Buttler This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract

More information

NoSQL for SQL Professionals William McKnight

NoSQL for SQL Professionals William McKnight NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here> s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline

More information

Upcoming Announcements

Upcoming Announcements Enterprise Hadoop Enterprise Hadoop Jeff Markham Technical Director, APAC [email protected] Page 1 Upcoming Announcements April 2 Hortonworks Platform 2.1 A continued focus on innovation within

More information

In-Memory Databases MemSQL

In-Memory Databases MemSQL IT4BI - Université Libre de Bruxelles In-Memory Databases MemSQL Gabby Nikolova Thao Ha Contents I. In-memory Databases...4 1. Concept:...4 2. Indexing:...4 a. b. c. d. AVL Tree:...4 B-Tree and B+ Tree:...5

More information

Finding the Needle in a Big Data Haystack. Wolfgang Hoschek (@whoschek) JAX 2014

Finding the Needle in a Big Data Haystack. Wolfgang Hoschek (@whoschek) JAX 2014 Finding the Needle in a Big Data Haystack Wolfgang Hoschek (@whoschek) JAX 2014 1 About Wolfgang Software Engineer @ Cloudera Search Platform Team Previously CERN, Lawrence Berkeley National Laboratory,

More information

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com

Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...

More information

GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION

GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION Syed Rasheed Solution Manager Red Hat Corp. Kenny Peeples Technical Manager Red Hat Corp. Kimberly Palko Product Manager Red Hat Corp.

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Performance and Scalability Overview

Performance and Scalability Overview Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and

More information

Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics

Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning

More information

The Hadoop Eco System Shanghai Data Science Meetup

The Hadoop Eco System Shanghai Data Science Meetup The Hadoop Eco System Shanghai Data Science Meetup Karthik Rajasethupathy, Christian Kuka 03.11.2015 @Agora Space Overview What is this talk about? Giving an overview of the Hadoop Ecosystem and related

More information

BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic

BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop

More information

Brave New World: Hadoop vs. Spark

Brave New World: Hadoop vs. Spark Brave New World: Hadoop vs. Spark Dr. Kurt Stockinger Associate Professor of Computer Science Director of Studies in Data Science Zurich University of Applied Sciences Datalab Seminar, Zurich, Oct. 7,

More information

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,

More information

Certified Big Data and Apache Hadoop Developer VS-1221

Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification

More information

www.basho.com Technical Overview Simple, Scalable, Object Storage Software

www.basho.com Technical Overview Simple, Scalable, Object Storage Software www.basho.com Technical Overview Simple, Scalable, Object Storage Software Table of Contents Table of Contents... 1 Introduction & Overview... 1 Architecture... 2 How it Works... 2 APIs and Interfaces...

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers

More information

Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00

Practical Cassandra. Vitalii Tymchyshyn tivv00@gmail.com @tivv00 Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn

More information

Unified Big Data Analytics Pipeline. 连 城 [email protected]

Unified Big Data Analytics Pipeline. 连 城 lian@databricks.com Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an

More information

Real Time Data Processing using Spark Streaming

Real Time Data Processing using Spark Streaming Real Time Data Processing using Spark Streaming Hari Shreedharan, Software Engineer @ Cloudera Committer/PMC Member, Apache Flume Committer, Apache Sqoop Contributor, Apache Spark Author, Using Flume (O

More information

HDFS. Hadoop Distributed File System

HDFS. Hadoop Distributed File System HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files

More information

Evaluation of NoSQL databases for large-scale decentralized microblogging

Evaluation of NoSQL databases for large-scale decentralized microblogging Evaluation of NoSQL databases for large-scale decentralized microblogging Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Decentralized Systems - 2nd semester 2012/2013 Universitat Politècnica

More information

Dominik Wagenknecht Accenture

Dominik Wagenknecht Accenture Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna

More information

Big Data and Scripting Systems build on top of Hadoop

Big Data and Scripting Systems build on top of Hadoop Big Data and Scripting Systems build on top of Hadoop 1, 2, Pig/Latin high-level map reduce programming platform Pig is the name of the system Pig Latin is the provided programming language Pig Latin is

More information

Big Data Analytics with Cassandra, Spark & MLLib

Big Data Analytics with Cassandra, Spark & MLLib Big Data Analytics with Cassandra, Spark & MLLib Matthias Niehoff AGENDA Spark Basics In A Cluster Cassandra Spark Connector Use Cases Spark Streaming Spark SQL Spark MLLib Live Demo CQL QUERYING LANGUAGE

More information

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2

Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2 Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue

More information

Database Performance with In-Memory Solutions

Database Performance with In-Memory Solutions Database Performance with In-Memory Solutions ABS Developer Days January 17th and 18 th, 2013 Unterföhring metafinanz / Carsten Herbe The goal of this presentation is to give you an understanding of in-memory

More information

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg

HDB++: HIGH AVAILABILITY WITH. l TANGO Meeting l 20 May 2015 l Reynald Bourtembourg HDB++: HIGH AVAILABILITY WITH Page 1 OVERVIEW What is Cassandra (C*)? Who is using C*? CQL C* architecture Request Coordination Consistency Monitoring tool HDB++ Page 2 OVERVIEW What is Cassandra (C*)?

More information

Deploying and Managing SolrCloud in the Cloud ApacheCon, April 8, 2014 Timothy Potter. Search Discover Analyze

Deploying and Managing SolrCloud in the Cloud ApacheCon, April 8, 2014 Timothy Potter. Search Discover Analyze Deploying and Managing SolrCloud in the Cloud ApacheCon, April 8, 2014 Timothy Potter Search Discover Analyze My SolrCloud Experience Currently, working on scaling up to a 200+ node deployment at LucidWorks

More information

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic

Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the

More information

NoSQL: Going Beyond Structured Data and RDBMS

NoSQL: Going Beyond Structured Data and RDBMS NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine

More information

JVM Performance Study Comparing Oracle HotSpot and Azul Zing Using Apache Cassandra

JVM Performance Study Comparing Oracle HotSpot and Azul Zing Using Apache Cassandra JVM Performance Study Comparing Oracle HotSpot and Azul Zing Using Apache Cassandra January 2014 Legal Notices Apache Cassandra, Spark and Solr and their respective logos are trademarks or registered trademarks

More information

Parallel Replication for MySQL in 5 Minutes or Less

Parallel Replication for MySQL in 5 Minutes or Less Parallel Replication for MySQL in 5 Minutes or Less Featuring Tungsten Replicator Robert Hodges, CEO, Continuent About Continuent / Continuent is the leading provider of data replication and clustering

More information

Search-based business intelligence and reverse data engineering with Apache Solr

Search-based business intelligence and reverse data engineering with Apache Solr Search-based business intelligence and reverse data engineering with Apache Solr M a r i o - L e a n d e r R e i m e r C h i e f T e c h n o l o g i s t This talk will o Give a brief overview of the AIR

More information

Katta & Hadoop. Katta - Distributed Lucene Index in Production. Stefan Groschupf Scale Unlimited, 101tec. sg{at}101tec.com

Katta & Hadoop. Katta - Distributed Lucene Index in Production. Stefan Groschupf Scale Unlimited, 101tec. sg{at}101tec.com 1 Katta & Hadoop Katta - Distributed Lucene Index in Production Stefan Groschupf Scale Unlimited, 101tec. sg{at}101tec.com foto by: [email protected] 2 Intro Business intelligence reports from

More information

THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES

THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB

More information

Liferay Portal s Document Library: Architectural Overview, Performance and Scalability

Liferay Portal s Document Library: Architectural Overview, Performance and Scalability Liferay Portal s Document Library: Architectural Overview, Performance and Scalability Table of Contents EXECUTIVE SUMMARY... 1 HIGH LEVEL ARCHITECTURE... 2 User Interface Layer... 2 Service Layer....

More information

Constructing a Data Lake: Hadoop and Oracle Database United!

Constructing a Data Lake: Hadoop and Oracle Database United! Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.

More information

HiBench Introduction. Carson Wang ([email protected]) Software & Services Group

HiBench Introduction. Carson Wang (carson.wang@intel.com) Software & Services Group HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is

More information

Cloud Computing at Google. Architecture

Cloud Computing at Google. Architecture Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale

More information

Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source

Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source DMITRIY SETRAKYAN Founder, PPMC http://www.ignite.incubator.apache.org @apacheignite @dsetrakyan Agenda About In- Memory

More information

BIG DATA TRENDS AND TECHNOLOGIES

BIG DATA TRENDS AND TECHNOLOGIES BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.

More information