Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial
|
|
|
- Juliet Dennis
- 9 years ago
- Views:
Transcription
1 Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial Bill Barth, Kent Milfeld, Dan Stanzione Tommy Minyard Texas Advanced Computing Center Jim Jeffers, Intel June 2013, Leipzig, Germany
2 Acknowledgements Thanks/kudos to: Sponsor: National Science Foundation NSF Grant #OCI Stampede Award, Enabling, Enhancing, and Extending Petascale Computing for Science and Engineering NSF Grant #OCI Topology-Aware MPI Collectives and Scheduling Many, many Dell, Intel, and Mellanox engineers Professor D.K. Panda at OSU (MVAPICH2) All my colleagues at TACC who saw way too much of each other during the last year 2
3 Thanks for Coming In this tutorial, we will teach you what you need to know to start running your code on the Intel Xeon Phi Co-Processor. For the hands-on portion, we will user the Stampede system at TACC in Austin, Texas,USA, which has 6,880 Xeon Phi cards 3
4 Today s Session Dan: (45 minutes) An overview of Intel s Many Core Architecture Overview of Stampede Programming Models for the Xeon Phi Bill: Understanding Vectorization (45 minutes) Break Kent: Threading models and Offload (45) Hands-on lab (Vectorization and OpenMP) 1 hour and whatever is left 4
5 Stampede - High Level Overview Base Cluster (Dell/Intel/Mellanox): Intel Sandy Bridge processors Dell dual-socket nodes w/32gb RAM (2GB/core) 6,400 nodes 56 Gb/s Mellanox FDR InfiniBand interconnect More than 100,000 cores, 2.2 PF peak performance Co-Processors: Intel Xeon Phi MIC Many Integrated Core processors Special release of Knight s Corner (61 cores) All MIC cards are on site at TACC more than 6000 installed final installation ongoing for formal summer acceptance 7+ PF peak performance Max Total Concurrency: exceeds 500,000 cores 1.8M threads Entered production operations on January 7,
6 Additional Integrated Subsystems Stampede includes 16 1TB Sandy Bridge shared memory nodes with dual GPUs 128 of the compute nodes are also equipped with NVIDIA Kepler K20 GPUs (and MICS for performance bake-offs) 16 login, data mover and management servers (batch, subnet manager, provisioning, etc) Software included for high throughput computing, remote visualization Storage subsystem driven by Dell storage nodes: Aggregate Bandwidth greater than 150GB/s More than 14PB of capacity Similar partitioning of disk space into multiple Lustre filesystems as previous TACC systems ($HOME, $WORK and $SCRATCH) 6
7 Power/Physical Stampede spans U cabinets. Power density (after upgrade in 2015) will exceed 40kW per rack. Estimated 2015 peak power is 6.2MW. 7
8 Stampede Datacenter Features Thermal energy storage to reduce peak power charges Hot aisle containment to boost efficiency (and simply provide enough cooling). Total IT power to 9.5MW, total power ~12MW. Expand experiments in mineral oil cooling. 8
9 New Construction in 2012 EXAS ADVANCED Required COMPUTING for Stampede FACILITY THE UNIVERSITY OF TEXAS Construction Started Nov DESIGN DEVELOPMENT / GMP PRICING SET 9
10 Stampede Footprint Ranger Stampede 8000 ft 2 ~10PF 6.5 MW 3000 ft2 0.6 PF 3 MW Machine Room Expansion Added 6.5MW of additional power 10
11 Stampede Datacenter February 20th 11
12 Stampede Datacenter March 22nd 12
13 Stampede Datacenter May 16th 13
14 Stampede Datacenter June 20th 14 14
15 Stampede Datacenter, ~September 10th 15
16 Stampede Datacenter, ~September 10th 16
17 Some utilities are involved 17
18 Actually, way more utility space than machine space Turns out the utilities for the datacenter costs more, takes more time and more space than the computing systems 18
19 Innovative Component One of the goals of the NSF solicitation was to introduce a major new innovative capability component to science and engineering research communities We proposed the Intel Xeon Phi coprocessor (many integrated core or MIC) one first generation Phi installed per host during initial deployment confirmed injection of 1600 future generation MICs in 2015 (5+ PF) 19
20 An Inflection point (or two) in High Performance Computing Relatively boring, but rapidly improving architectures for the last 15 years. Performance rising much faster than Moore s Law But power rising faster And concurrency rising faster than that, with serial performance decreasing. Something had to give 20
21 Consider this Example Homogeneous v. Heterogeneous Acquisition costs and power consumption Homogeneous system: K computer in Japan 10 PF unaccelerated Rumored $1.2 billion acquisition costs Large power bill and foot print Heterogeneous system: Stampede at TACC Near 10PF (2 SNB + up to 8 MIC) Modest footprint: 8,000 ft 2, 6.5MW $27.5 million 21 21
22 Accelerated Computing for Exascale Exascale systems, predicted for 2018, would have required 500MW on the old curves. Something new was clearly needed. The accelerated computing movement was reborn (this happens periodically, starting with 387 math coprocessors). 22
23 Key aspects of acceleration We have lots of transistors Moore s law is holding; this isn t necessarily the problem. We don t really need lower power per transistor, we need lower power per *operation*. How to do this? nvidia GPU -AMD Fusion FPGA -ARM Cores 23
24 Intel s MIC approach Since the days of RISC vs. CISC, Intel has mastered the art of figuring out what is important about a new processing technology, and saying why can t we do this in x86? The Intel Many Integrated Core (MIC) architecture is about large die, simpler circuit, much more parallelism, in the x86 line. 24
25 What is MIC? Basic Design Ideas: Leverage x86 architecture (a CPU with many cores) Use x86 cores that are simpler, but allow for more compute throughput Leverage existing x86 programming models Dedicate much of the silicon to floating point ops., keep some cache(s) Keep cache-coherency protocol Increase floating-point throughput per core Implement as a separate device Strip expensive features (out-of-order execution, branch prediction, etc.) Widened SIMD registers for more throughput (512 bit) Fast (GDDR5) memory on card 25
26 Xeon Phi MIC Xeon Phi = first product of Intel s Many Integrated Core (MIC) architecture Co-processor PCI Express card Stripped down Linux operating system But still a full host you can log in to the Phi directly and run stuff Lots of names Many Integrated Core architecture, aka MIC Knights Corner (code name) Intel Xeon Phi Co-processor SE10P (product name of the version for Stampede) I should have many more trademark symbols in my slides if you ask Intel 26
27 Intel Xeon Phi Chip 22 nm process Based on what Intel learned from Larrabee SCC TeraFlops Research Chip 27
28 MIC Architecture Many cores on the die L1 and L2 cache Bidirectional ring network for L2 Memory and PCIe connection 28 28
29 George Chrysos, Intel, Hot Chips 24 (2012): 29
30 George Chrysos, Intel, Hot Chips 24 (2012): 30
31 Speeds and Feeds Stampede SE10P version (Your mileage may vary) Processor ~1.1 GHz 61 cores 512-bit wide vector unit TF peak DP Data Cache L1 32KB/core L2 512KB/core, 30.5 MB/chip Memory 8GB GDDR5 DRAM 5.5 GT/s, 512-bit* PCIe 5.0 GT/s, 16-bit 31
32 What we at TACC like about MIC Intel s MIC is based on x86 technology x86 cores w/ caches and cache coherency SIMD instruction set Programming for MIC is similar to programming for CPUs Familiar languages: C/C++ and Fortran Familiar parallel programming models: OpenMP & MPI MPI on host and on the coprocessor Any code can run on MIC, not just kernels Optimizing for MIC is similar to optimizing for CPUs Optimize once, run anywhere Optimizing can be hard; but everything you do to your code should *also* improve performance on current and future regular Intel chips, AMD CPUs, etc. 32
33 The MIC Promise Competitive Performance: Peak and Sustained Familiar Programming Model HPC: C/C++, Fortran, and Intel s TBB Parallel Programming: OpenMP, MPI, Pthreads, Cilk Plus, OpenCL Intel s MKL library (later: third party libraries) Serial and Scripting, etc. (anything a CPU core can do) Easy transition for OpenMP code Pragmas/directives added to offload OMP parallel regions onto MIC See examples later Support for MPI ü MPI tasks on host, communication through offloading ü MPI tasks on MIC, communication through MPI 33 33
34 Programming the Xeon Phi Some universal truths of Xeon Phi coding: You need lots of threads. Really. Lots. At least 2 per core to have a chance 3 or 4 per core are often optimal. This is not like old school hyperthreading, if you don t have 2 threads per core, half your cycles will be wasted. You need to vectorize. This helps on regular processors too, but the effect is much more pronounced on the MIC chips. You can no longer ignore the vectorization report from the compiler If you can do these 2 things, good things will happen, in most any language. 34
35 MIC Programming Experiences at TACC Codes port easily Minutes to days depending mostly on library dependencies Performance requires real work While the silicon continues to evolve Getting codes to run *at all* is almost too easy; really need to put in the effort to get what you expect Scalability is pretty good Multiple threads per core *really important* Getting your code to vectorize *really important* 35
36 Stampede Programming Models Traditional Cluster, or Host Only Pure MPI and MPI+X (OpenMP, TBB, Cilk+, OpenCL ) Ignore the MIC Offload MPI on Host, Offload to Xeon Phi Targeted offload through OpenMP extensions Automatically offload some library routines with MKL Native Phi Use one Phi and run OpenMP or MPI programs directly Symmetric - MPI tasks on Host and Phi Treat the Phi (mostly) like another host Pure MPI and MPI+X (limited memory: using X is almost mandatory) 36
37 Programming)Intel )MIC1based)Systems) MPI+Offload+ MPI$ranks$on$Intel $ Xeon $ processors$(only)$ All$messages$into/out$of$ processors$ Offload$models$used$to$ accelerate$mpi$ranks$ Intel $Cilk TM $Plus,$OpenMP*,$ Intel $Threading$Building$ Blocks,$Pthreads*$within$Intel $ MIC$ Homogenous$network$of$hybrid$ nodes:$ Network MPI$$ Data Xeon Data Xeon Data Xeon Data Xeon Offload$ MIC MIC MIC MIC 11$ 37
38 38 Programming)Intel )MIC1based)Systems) Many%core*Hosted* MPI$ranks$on$Intel $MIC$ (only)$ All$messages$into/out$of$Intel $ MIC$ Intel $Cilk TM $Plus,$OpenMP*,$ Intel $Threading$Building$ Blocks,$Pthreads$used$directly$ within$mpi$processes$ Programmed$as$homogenous$ network$of$manydcore$cpus:$ 13$ Xeon MIC Xeon MIC Xeon MIC Xeon MIC Network Data Data Data Data MPI$$
39 39 Programming)Intel )MIC1based)Systems) Symmetric) MPI$ranks$on$Intel $MIC$and$ Intel $Xeon $processors$ Messages$to/from$any$core$ Intel $Cilk TM $Plus,$OpenMP*,$ Intel $Threading$Building$ Blocks,$Pthreads*$used$directly$ within$mpi$processes$ $ Programmed$as$heterogeneous$$ network$of$homogeneous$ nodes:$ 14$ Xeon MIC Xeon MIC Xeon MIC Xeon MIC Network Data Data Data Data MPI$$ Data Data Data Data MPI$$ MPI$$
40 Native Execution Build for Phi with mmic Execute on host (runtime will automatically detect an executable built for Phi) or ssh to mic0 and run on the Phi Can safely use all 61 cores Use at least 2 per core, really Offload programs should certainly stay away from the 61 st core since the offload daemon runs here 40
41 Symmetric MPI Host and Phi can operate symmetrically as MPI targets High code reuse MPI and hybrid MPI+X (X = OpenMP, Cilk+, TBB, pthreads) Careful to balance workload between big cores and little cores Careful to create locality between local host, local Phi, remote hosts, and remote Phis 41
42 Symmetric MPI Typical 1-2 GB per task on the host Targeting 1-10 MPI tasks per Phi on Stampede With 6+ threads per MPI task 42
43 MPI with Offload to Phi Existing codes using accelerators have already identified regions where offload works well Porting these to OpenMP offload should be straightforward Automatic offload where MKL kernel routines can be used xgemm, etc. 43
44 LBM Example Lattice Boltzmann Method CFD code Carlos Rosales, TACC MPI code with OpenMP Finding all the right routines to parallelize is critical 44
45 Hydrostatic ice sheet modeling MUMPS solver(called through PETSC) BLAS calls automatically offloaded behind the scenes PETSc/MUMPS with AO 45
46 Will My Code Run on Xeon Phi? Yes but that s the wrong question Will your code run *best* on Phi?, or Will you get great Phi performance without additional work? 46
47 Other options In this tutorial, we focus mainly on C/C++ and Fortran, with threading through OpenMP Other options are out there, notably: Intel s cilk extensions for C/C++ TBB (Threading Building Blocks) for C++ OpenCL support is available, but we have little experience so far. It s Linux, you can run whatever you want (ie., I have run a pthreads code on Phi). 47
48 Stampede: How Do Users Use It? 2+ PF Xeon-only system (MPI, OpenMP) Many users will use it as an extremely powerful Sandy Bridge cluster and that s OK They may also use the shared memory nodes, remote vis 7+ PF MIC-only system (MPI, OpenMP) Homogeneous codes can be run entirely on the MICs ~10PF heterogeneous system (MPI, OpenMP) Run separate MPI tasks on Xeon vs. MIC; use OpenMP extensions for offload for hybrid programs 48
49 Summary MIC experiences Early scaling looks good; application porting is fairly straight forward since it can run native C/C++, and Fortran code Some optimization work is still required to get at all the available raw performance for a wide variety of applications; but working well for some apps vectorization on these large many-core devices is key affinitization can have a strong impact (positive/negative) on performance algorithmic threading performance is also key; if the kernel of interest does not have high scaling efficiency on a standard x86_64 processor (8-16 cores), it will not scale on many-core MIC optimization efforts also yield fruit on normal Xeon (in fact, you may want to optimize there first. Questions? Then let s dive in deeper 49
GPU Hardware CS 380P. Paul A. Navrá7l Manager Scalable Visualiza7on Technologies Texas Advanced Compu7ng Center
GPU Hardware CS 380P Paul A. Navrá7l Manager Scalable Visualiza7on Technologies Texas Advanced Compu7ng Center with thanks to Don Fussell for slides 15-28 and Bill Barth for slides 36-55 CPU vs. GPU characteris7cs
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation
Exascale Challenges and General Purpose Processors Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Jun-93 Aug-94 Oct-95 Dec-96 Feb-98 Apr-99 Jun-00 Aug-01 Oct-02 Dec-03
Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca
Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca Carlo Cavazzoni CINECA Supercomputing Application & Innovation www.cineca.it 21 Aprile 2015 FERMI Name: Fermi Architecture: BlueGene/Q
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
A quick tutorial on Intel's Xeon Phi Coprocessor
A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be [email protected] Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed
The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC2013 - Denver
1 The PHI solution Fujitsu Industry Ready Intel XEON-PHI based solution SC2013 - Denver Industrial Application Challenges Most of existing scientific and technical applications Are written for legacy execution
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Pedraforca: ARM + GPU prototype
www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Keys to node-level performance analysis and threading in HPC applications
Keys to node-level performance analysis and threading in HPC applications Thomas GUILLET (Intel; Exascale Computing Research) IFERC seminar, 18 March 2015 Legal Disclaimer & Optimization Notice INFORMATION
Kriterien für ein PetaFlop System
Kriterien für ein PetaFlop System Rainer Keller, HLRS :: :: :: Context: Organizational HLRS is one of the three national supercomputing centers in Germany. The national supercomputing centers are working
Trends in High-Performance Computing for Power Grid Applications
Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance
Big Data Visualization on the MIC
Big Data Visualization on the MIC Tim Dykes School of Creative Technologies University of Portsmouth [email protected] Many-Core Seminar Series 26/02/14 Splotch Team Tim Dykes, University of Portsmouth
Intel Many Integrated Core Architecture: An Overview and Programming Models
Intel Many Integrated Core Architecture: An Overview and Programming Models Jim Jeffers SW Product Application Engineer Technical Computing Group Agenda An Overview of Intel Many Integrated Core Architecture
Building a Top500-class Supercomputing Cluster at LNS-BUAP
Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad
Sun Constellation System: The Open Petascale Computing Architecture
CAS2K7 13 September, 2007 Sun Constellation System: The Open Petascale Computing Architecture John Fragalla Senior HPC Technical Specialist Global Systems Practice Sun Microsystems, Inc. 25 Years of Technical
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Debugging in Heterogeneous Environments with TotalView. ECMWF HPC Workshop 30 th October 2014
Debugging in Heterogeneous Environments with TotalView ECMWF HPC Workshop 30 th October 2014 Agenda Introduction Challenges TotalView overview Advanced features Current work and future plans 2014 Rogue
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) (
TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 7 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx
JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert
Mitglied der Helmholtz-Gemeinschaft JUROPA Linux Cluster An Overview 19 May 2014 Ulrich Detert JuRoPA JuRoPA Jülich Research on Petaflop Architectures Bull, Sun, ParTec, Intel, Mellanox, Novell, FZJ JUROPA
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller [email protected] Rechen- und Kommunikationszentrum
Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
FLOW-3D Performance Benchmark and Profiling. September 2012
FLOW-3D Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: FLOW-3D, Dell, Intel, Mellanox Compute
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Data Center and Cloud Computing Market Landscape and Challenges
Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
Altix Usage and Application Programming. Welcome and Introduction
Zentrum für Informationsdienste und Hochleistungsrechnen Altix Usage and Application Programming Welcome and Introduction Zellescher Weg 12 Tel. +49 351-463 - 35450 Dresden, November 30th 2005 Wolfgang
SGI High Performance Computing
SGI High Performance Computing Accelerate time to discovery, innovation, and profitability 2014 SGI SGI Company Proprietary 1 Typical Use Cases for SGI HPC Products Large scale-out, distributed memory
New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC
New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC Alan Gara Intel Fellow Exascale Chief Architect Legal Disclaimer Today s presentations contain forward-looking
High Productivity Computing With Windows
High Productivity Computing With Windows Windows HPC Server 2008 Justin Alderson 16-April-2009 Agenda The purpose of computing is... The purpose of computing is insight not numbers. Richard Hamming Why
PRIMERGY server-based High Performance Computing solutions
PRIMERGY server-based High Performance Computing solutions PreSales - May 2010 - HPC Revenue OS & Processor Type Increasing standardization with shift in HPC to x86 with 70% in 2008.. HPC revenue by operating
Appro Supercomputer Solutions Best Practices Appro 2012 Deployment Successes. Anthony Kenisky, VP of North America Sales
Appro Supercomputer Solutions Best Practices Appro 2012 Deployment Successes Anthony Kenisky, VP of North America Sales About Appro Over 20 Years of Experience 1991 2000 OEM Server Manufacturer 2001-2007
Application and Micro-benchmark Performance using MVAPICH2-X on SDSC Gordon Cluster
Application and Micro-benchmark Performance using MVAPICH2-X on SDSC Gordon Cluster Mahidhar Tatineni ([email protected]) MVAPICH User Group Meeting August 27, 2014 NSF grants: OCI #0910847 Gordon: A Data
Introduction History Design Blue Gene/Q Job Scheduler Filesystem Power usage Performance Summary Sequoia is a petascale Blue Gene/Q supercomputer Being constructed by IBM for the National Nuclear Security
Large-Data Software Defined Visualization on CPUs
Large-Data Software Defined Visualization on CPUs Greg P. Johnson, Bruce Cherniak 2015 Rice Oil & Gas HPC Workshop Trend: Increasing Data Size Measuring / modeling increasingly complex phenomena Rendering
HPC Update: Engagement Model
HPC Update: Engagement Model MIKE VILDIBILL Director, Strategic Engagements Sun Microsystems [email protected] Our Strategy Building a Comprehensive HPC Portfolio that Delivers Differentiated Customer Value
ST810 Advanced Computing
ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview
Infrastructure Matters: POWER8 vs. Xeon x86
Advisory Infrastructure Matters: POWER8 vs. Xeon x86 Executive Summary This report compares IBM s new POWER8-based scale-out Power System to Intel E5 v2 x86- based scale-out systems. A follow-on report
FPGA Acceleration using OpenCL & PCIe Accelerators MEW 25
FPGA Acceleration using OpenCL & PCIe Accelerators MEW 25 December 2014 FPGAs in the news» Catapult» Accelerate BING» 2x search acceleration:» ½ the number of servers»
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION
DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION A DIABLO WHITE PAPER AUGUST 2014 Ricky Trigalo Director of Business Development Virtualization, Diablo Technologies
x64 Servers: Do you want 64 or 32 bit apps with that server?
TMurgent Technologies x64 Servers: Do you want 64 or 32 bit apps with that server? White Paper by Tim Mangan TMurgent Technologies February, 2006 Introduction New servers based on what is generally called
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
benchmarking Amazon EC2 for high-performance scientific computing
Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received
Hadoop on the Gordon Data Intensive Cluster
Hadoop on the Gordon Data Intensive Cluster Amit Majumdar, Scientific Computing Applications Mahidhar Tatineni, HPC User Services San Diego Supercomputer Center University of California San Diego Dec 18,
Intel Xeon Processor E5-2600
Intel Xeon Processor E5-2600 Best combination of performance, power efficiency, and cost. Platform Microarchitecture Processor Socket Chipset Intel Xeon E5 Series Processors and the Intel C600 Chipset
Running Native Lustre* Client inside Intel Xeon Phi coprocessor
Running Native Lustre* Client inside Intel Xeon Phi coprocessor Dmitry Eremin, Zhiqi Tao and Gabriele Paciucci 08 April 2014 * Some names and brands may be claimed as the property of others. What is the
Advancing Applications Performance With InfiniBand
Advancing Applications Performance With InfiniBand Pak Lui, Application Performance Manager September 12, 2013 Mellanox Overview Ticker: MLNX Leading provider of high-throughput, low-latency server and
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
ECLIPSE Performance Benchmarks and Profiling. January 2009
ECLIPSE Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox, Schlumberger HPC Advisory Council Cluster
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
Remote & Collaborative Visualization. Texas Advanced Compu1ng Center
Remote & Collaborative Visualization Texas Advanced Compu1ng Center So6ware Requirements SSH client VNC client Recommended: TigerVNC http://sourceforge.net/projects/tigervnc/files/ Web browser with Java
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
LS DYNA Performance Benchmarks and Profiling. January 2009
LS DYNA Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center The
How To Build A Cloud Computer
Introducing the Singlechip Cloud Computer Exploring the Future of Many-core Processors White Paper Intel Labs Jim Held Intel Fellow, Intel Labs Director, Tera-scale Computing Research Sean Koehl Technology
www.thinkparq.com www.beegfs.com
www.thinkparq.com www.beegfs.com KEY ASPECTS Maximum Flexibility Maximum Scalability BeeGFS supports a wide range of Linux distributions such as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as well as a
Multi-Threading Performance on Commodity Multi-Core Processors
Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
Clusters: Mainstream Technology for CAE
Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux
Improving Grid Processing Efficiency through Compute-Data Confluence
Solution Brief GemFire* Symphony* Intel Xeon processor Improving Grid Processing Efficiency through Compute-Data Confluence A benchmark report featuring GemStone Systems, Intel Corporation and Platform
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting Introduction Big Data Analytics needs: Low latency data access Fast computing Power efficiency Latest
Comparing SMB Direct 3.0 performance over RoCE, InfiniBand and Ethernet. September 2014
Comparing SMB Direct 3.0 performance over RoCE, InfiniBand and Ethernet Anand Rangaswamy September 2014 Storage Developer Conference Mellanox Overview Ticker: MLNX Leading provider of high-throughput,
An examination of the dual-core capability of the new HP xw4300 Workstation
An examination of the dual-core capability of the new HP xw4300 Workstation By employing single- and dual-core Intel Pentium processor technology, users have a choice of processing power options in a compact,
Using the Windows Cluster
Using the Windows Cluster Christian Terboven [email protected] aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster
Parallel Large-Scale Visualization
Parallel Large-Scale Visualization Aaron Birkland Cornell Center for Advanced Computing Data Analysis on Ranger January 2012 Parallel Visualization Why? Performance Processing may be too slow on one CPU
Modeling Big Data/HPC Storage Using Massively Parallel Simula:on
Modeling Big Data/HPC Storage Using Massively Parallel Simula:on Chris Carothers (CCNI) Misbah Mubarak (CS) Rensselaer Polytechnic Ins:tute [email protected] Rob Ross Phil Carns MCS/ANL [email protected]
Overview of HPC systems and software available within
Overview of HPC systems and software available within Overview Available HPC Systems Ba Cy-Tera Available Visualization Facilities Software Environments HPC System at Bibliotheca Alexandrina SUN cluster
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey
A Survey on ARM Cortex A Processors Wei Wang Tanima Dey 1 Overview of ARM Processors Focusing on Cortex A9 & Cortex A15 ARM ships no processors but only IP cores For SoC integration Targeting markets:
Kashif Iqbal - PhD [email protected]
HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD [email protected] ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo
LANL Computing Environment for PSAAP Partners
LANL Computing Environment for PSAAP Partners Robert Cunningham [email protected] HPC Systems Group (HPC-3) July 2011 LANL Resources Available To Alliance Users Mapache is new, has a Lobo-like allocation Linux
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
Stovepipes to Clouds. Rick Reid Principal Engineer SGI Federal. 2013 by SGI Federal. Published by The Aerospace Corporation with permission.
Stovepipes to Clouds Rick Reid Principal Engineer SGI Federal 2013 by SGI Federal. Published by The Aerospace Corporation with permission. Agenda Stovepipe Characteristics Why we Built Stovepipes Cluster
COMP/CS 605: Intro to Parallel Computing Lecture 01: Parallel Computing Overview (Part 1)
COMP/CS 605: Intro to Parallel Computing Lecture 01: Parallel Computing Overview (Part 1) Mary Thomas Department of Computer Science Computational Science Research Center (CSRC) San Diego State University
Interconnect Your Future Enabling the Best Datacenter Return on Investment. TOP500 Supercomputers, November 2015
Interconnect Your Future Enabling the Best Datacenter Return on Investment TOP500 Supercomputers, November 2015 InfiniBand FDR and EDR Continue Growth and Leadership The Most Used Interconnect On The TOP500
GPU Computing. The GPU Advantage. To ExaScale and Beyond. The GPU is the Computer
GU Computing 1 2 3 The GU Advantage To ExaScale and Beyond The GU is the Computer The GU Advantage The GU Advantage A Tale of Two Machines Tianhe-1A at NSC Tianjin Tianhe-1A at NSC Tianjin The World s
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Deep Learning GPU-Based Hardware Platform
Deep Learning GPU-Based Hardware Platform Hardware and Software Criteria and Selection Mourad Bouache Yahoo! Performance Engineering Group Sunnyvale, CA +1.408.784.1446 [email protected] John Glover
Cluster Implementation and Management; Scheduling
Cluster Implementation and Management; Scheduling CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Cluster Implementation and Management; Scheduling Spring 2013 1 /
