Harnessing Big Data with KNIME
|
|
|
- Bartholomew Lawson
- 10 years ago
- Views:
Transcription
1 Harnessing Big Data with KNIME Tobias Kötter KNIME.com
2 Agenda The three V s of Big Data Big Data Extension and Databases Nodes Demo 2
3 Variety, Volume, Velocity Variety: integrating heterogeneous data (and tools) Volume: from small files......to distributed data repositories (Hadoop) bring the tools to the data Velocity: from distributing computationally heavy computations......to real time scoring of millions of records/sec. 3
4 Variety 4
5 Variety Data Integration Small (Ascii) Proprietary (XLS, SAS...) Medium (Databases) Large (Hive, Impala, ParStream, HP Vertica...) Diverse (Numbers, Texts, Images, Networks, Sequences...) Tool Integration Native Legacy, Inhouse R, Python, Matlab,...
6 Volume 6
7 Every Minute 7
8 IoT 8
9 Big Data Support KNIME Database Nodes in database processing preconfigured connectors KNIME Big Data Extension package required drivers/libraries for specific HDFS, Hive, Impala access Spark MLlib integration (coming soon)
10 Velocity 10
11 Velocity Computationally Heavy Analytics: Distributed Execution of one workflow branch Parallel Execution of workflow branches Hosted Analytics/Prediction Web service Deployment of Workflows High Demand Scoring/Prediction: Continuous Execution of Workflow parts High Performance Scoring using generic Workflows High Performance Scoring of Predictive Models
12 KNIME Cluster Execution: Distributed Data
13 KNIME Cluster Execution: Distributed Analytics
14 Deployed Workflows Application Access Custom API WSDL/SOAP based
15 Continuous Scoring using Workflows Exposes workflow fragment as RESTful web service Deployed on KNIME Server (v4.0 1H2015)
16 High Performance Scoring via Workflows Streaming Executor Deployed via KNIME Server (v4.1 2H2015/2016) Record (or small batch) based processing Exposed as RESTful web service
17 High Performance Scoring using Models Deployed on KNIME Server (v4.0 1H2015) KNIME PMML Scoring via compiled PMML Exposed as RESTful web service Partnership with Zementis ADAPA Real Time Scoring UPPI Big Data Scoring Engine
18 Big Data, IoT, and the three V Variety: KNIME inherently well-suited: open platform broad data source/type support extensive tool integration Volume: Big Data Extensions cover Hadoop based data integration and aggregation Big Data Executors will address model building and streaming execution Velocity: Distributed Execution of heavy workflows to... High Performance Scoring of predictive models.
19 Big Data Extension and Database Nodes 19
20 Database Port Types Database Connection Port (dark red) Connection information SQL statement Database JDBC Connection Port (light red) Connection information Database Connection Ports can be connected to Database JDBC Connection Ports but not vice versa 20
21 Database JDBC Connection Port View 21
22 Database Connection Port View Copy SQL statement 22
23 Database Connectors Nodes to connect to specific Databases Bundling necessary JDBC drivers Easy to use DB specific behavior/capability Hive and Impala connector part of the commercial Big Data Extension General Database Connector Can connect to any JDBC source Register new JDBC driver via preferences page 23
24 Register JDBC Driver Increase connection timeout for long running database operations Open KNIME and go to File -> Preferences 24
25 Reader/Writer Table selection Load data into KNIME Create table as select Insert/append data Delete rows from table Update values in table 25
26 Hive/Impala Loader Upload a KNIME data table to Hive/Impala Part of the commercial Big Data Extension 26
27 Hive/Impala Loader Partitioning influences performance 27
28 Manipulation Filter rows and columns Join tables/queries Sort your data Write your own query Aggregate your data 28
29 Database GroupBy DB Specific Aggregation Methods SQLite 7 aggregation functions PostgreSQL 25 aggregation functions 29
30 Database GroupBy Aggregation Method Description 30
31 Database GroupBy Manual Aggregation Returns number of rows per group 31
32 Database GroupBy Pattern Based Aggregation Tick this option if the search pattern is a regular expression otherwise it is treated as string with wildcards ('*' and '?') 32
33 Database GroupBy Type Based Aggregation Matches all cells Matches all numeric cells 33
34 Database GroupBy Custom Aggregation Function 34
35 Utility Drop table missing table handling cascade option Execute any SQL statement e.g. DDL Manipulate existing queries Executes several queries separated by ; and new line 35
36 In-Database Processing Loads your pre-processed data into KNIME 36
37 HDFS File Handling KNIME & Extensions -> KNIME File Handling Nodes HDFS Connection and HDFS File Permission nodes part of the commercial Big Data Extension 37
38 HDFS File Handling 38
39 Virtual Machines Hortonworks: Cloudera: ms.html Virtual Box VMWare Player 39
40 Demo 40
41 Resources KNIME ( BLOG for news, tips and tricks( FORUM for questions and answers (tech.knime.org/forum) EXAMPLE SERVER for example workflows LEARNING HUB ( KNIME TV channel on KNIME KNIME on 41
KNIME opens the Doors to Big Data. A Practical example of Integrating any Big Data Platform into KNIME
KNIME opens the Doors to Big Data A Practical example of Integrating any Big Data Platform into KNIME Tobias Koetter Rosaria Silipo [email protected] [email protected] 1 Table of Contents
What s Cooking in KNIME
What s Cooking in KNIME Thomas Gabriel Copyright 2015 KNIME.com AG Agenda Querying NoSQL Databases Database Improvements & Big Data Copyright 2015 KNIME.com AG 2 Querying NoSQL Databases MongoDB & CouchDB
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Hadoop & SAS Data Loader for Hadoop
Turning Data into Value Hadoop & SAS Data Loader for Hadoop Sebastiaan Schaap Frederik Vandenberghe Agenda What s Hadoop SAS Data management: Traditional In-Database In-Memory The Hadoop analytics lifecycle
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta [email protected] Radu Chilom [email protected] Buzzwords Berlin - 2015 Big data analytics / machine
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Hadoop s Advantages for! Machine! Learning and. Predictive! Analytics. Webinar will begin shortly. Presented by Hortonworks & Zementis
Webinar will begin shortly Hadoop s Advantages for Machine Learning and Predictive Analytics Presented by Hortonworks & Zementis September 10, 2014 Copyright 2014 Zementis, Inc. All rights reserved. 2
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
MySQL and Hadoop: Big Data Integration. Shubhangi Garg & Neha Kumari MySQL Engineering
MySQL and Hadoop: Big Data Integration Shubhangi Garg & Neha Kumari MySQL Engineering 1Copyright 2013, Oracle and/or its affiliates. All rights reserved. Agenda Design rationale Implementation Installation
http://glennengstrand.info/analytics/fp
Functional Programming and Big Data by Glenn Engstrand (September 2014) http://glennengstrand.info/analytics/fp What is Functional Programming? It is a style of programming that emphasizes immutable state,
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
HPE Vertica & Hadoop. Tapping Innovation to Turbocharge Your Big Data. #SeizeTheData
HPE Vertica & Hadoop Tapping Innovation to Turbocharge Your Big Data #SeizeTheData The HPE Vertica portfolio One Vertica Engine running on Cloud, Bare Metal, or Hadoop Data Nodes HPE Vertica OnDemand &
Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA
Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Open Source Big Data Eco System Query (NOSQL) : Cassandra,
Lofan Abrams Data Services for Big Data Session # 2987
Lofan Abrams Data Services for Big Data Session # 2987 Big Data Are you ready for blast-off? Big Data, for better or worse: 90% of world s data generated over last two years. ScienceDaily, ScienceDaily
Big Data and Market Surveillance. April 28, 2014
Big Data and Market Surveillance April 28, 2014 Copyright 2014 Scila AB. All rights reserved. Scila AB reserves the right to make changes to the information contained herein without prior notice. No part
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
Data and Machine Architecture for the Data Science Lab Workflow Development, Testing, and Production for Model Training, Evaluation, and Deployment
Data and Machine Architecture for the Data Science Lab Workflow Development, Testing, and Production for Model Training, Evaluation, and Deployment Rosaria Silipo Marco A. Zimmer [email protected]
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
Best Practices for Hadoop Data Analysis with Tableau
Best Practices for Hadoop Data Analysis with Tableau September 2013 2013 Hortonworks Inc. http:// Tableau 6.1.4 introduced the ability to visualize large, complex data stored in Apache Hadoop with Hortonworks
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Creating a universe on Hive with Hortonworks HDP 2.0
Creating a universe on Hive with Hortonworks HDP 2.0 Learn how to create an SAP BusinessObjects Universe on top of Apache Hive 2 using the Hortonworks HDP 2.0 distribution Author(s): Company: Ajay Singh
EMC Federation Big Data Solutions. Copyright 2015 EMC Corporation. All rights reserved.
EMC Federation Big Data Solutions 1 Introduction to data analytics Federation offering 2 Traditional Analytics! Traditional type of data analysis, sometimes called Business Intelligence! Type of analytics
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA by Christian Tzolov @christzolov Whoami Christian Tzolov Technical Architect at Pivotal, BigData, Hadoop, SpringXD,
What's New in SAS Data Management
Paper SAS034-2014 What's New in SAS Data Management Nancy Rausch, SAS Institute Inc., Cary, NC; Mike Frost, SAS Institute Inc., Cary, NC, Mike Ames, SAS Institute Inc., Cary ABSTRACT The latest releases
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane. SparkR 2
SparkR 1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane SparkR 2 Lecture slides and/or video will be made available within one week Live Demonstration
An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov
An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Bringing the Power of SAS to Hadoop. White Paper
White Paper Bringing the Power of SAS to Hadoop Combine SAS World-Class Analytic Strength with Hadoop s Low-Cost, Distributed Data Storage to Uncover Hidden Opportunities Contents Introduction... 1 What
Ensembles and PMML in KNIME
Ensembles and PMML in KNIME Alexander Fillbrunn 1, Iris Adä 1, Thomas R. Gabriel 2 and Michael R. Berthold 1,2 1 Department of Computer and Information Science Universität Konstanz Konstanz, Germany [email protected]
OLH: Oracle Loader for Hadoop OSCH: Oracle SQL Connector for Hadoop Distributed File System (HDFS)
Use Data from a Hadoop Cluster with Oracle Database Hands-On Lab Lab Structure Acronyms: OLH: Oracle Loader for Hadoop OSCH: Oracle SQL Connector for Hadoop Distributed File System (HDFS) All files are
GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION
GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION Syed Rasheed Solution Manager Red Hat Corp. Kenny Peeples Technical Manager Red Hat Corp. Kimberly Palko Product Manager Red Hat Corp.
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
#TalendSandbox for Big Data
Evalua&on von Apache Hadoop mit der #TalendSandbox for Big Data Julien Clarysse @whatdoesdatado @talend 2015 Talend Inc. 1 Connecting the Data-Driven Enterprise 2 Talend Overview Founded in 2006 BRAND
Predictive Analytics: Seeing the Whole Picture
Webinar will begin shortly Predictive Analytics: Seeing the Whole Picture Presented by Caserta Concepts, Zementis, FICO June 18, 2015 Copyright 2015 Zementis, Inc. All rights reserved. 2 Predictive Analytics:
Why Big Data in the Cloud?
Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data
Connecting Hadoop with Oracle Database
Connecting Hadoop with Oracle Database Sharon Stephen Senior Curriculum Developer Server Technologies Curriculum The following is intended to outline our general product direction.
IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look
IBM BigInsights Has Potential If It Lives Up To Its Promise By Prakash Sukumar, Principal Consultant at iolap, Inc. IBM released Hadoop-based InfoSphere BigInsights in May 2013. There are already Hadoop-based
Supported Platforms. HP Vertica Analytic Database. Software Version: 7.0.x
HP Vertica Analytic Database Software Version: 7.0.x Document Release Date: 5/7/2014 Legal Notices Warranty The only warranties for HP products and services are set forth in the express warranty statements
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Big Data Too Big To Ignore
Big Data Too Big To Ignore Geert! Big Data Consultant and Manager! Currently finishing a 3 rd Big Data project! IBM & Cloudera Certified! IBM & Microsoft Big Data Partner 2 Agenda! Defining Big Data! Introduction
Trafodion Operational SQL-on-Hadoop
Trafodion Operational SQL-on-Hadoop SophiaConf 2015 Pierre Baudelle, HP EMEA TSC July 6 th, 2015 Hadoop workload profiles Operational Interactive Non-interactive Batch Real-time analytics Operational SQL
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.
Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Big Data Analytics with Cassandra, Spark & MLLib
Big Data Analytics with Cassandra, Spark & MLLib Matthias Niehoff AGENDA Spark Basics In A Cluster Cassandra Spark Connector Use Cases Spark Streaming Spark SQL Spark MLLib Live Demo CQL QUERYING LANGUAGE
Agenda. ! Strengths of PostgreSQL. ! Strengths of Hadoop. ! Hadoop Community. ! Use Cases
Postgres & Hadoop Agenda! Strengths of PostgreSQL! Strengths of Hadoop! Hadoop Community! Use Cases Best of Both World Postgres Hadoop World s most advanced open source database solution Enterprise class
Integrating Apache Spark with an Enterprise Data Warehouse
Integrating Apache Spark with an Enterprise Warehouse Dr. Michael Wurst, IBM Corporation Architect Spark/R/Python base Integration, In-base Analytics Dr. Toni Bollinger, IBM Corporation Senior Software
Actian Vortex Express 3.0
Actian Vortex Express 3.0 Quick Start Guide AH-3-QS-09 This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal by Actian Corporation ("Actian") at
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
Actian Analytics Platform Express Hadoop SQL Edition 2.0
Actian Analytics Platform Express Hadoop SQL Edition 2.0 Tutorial AH-2-TU-05 This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal by Actian Corporation
Fast Innovation requires Fast IT
Fast Innovation requires Fast IT 2014 Cisco and/or its affiliates. All rights reserved. 2 2014 Cisco and/or its affiliates. All rights reserved. 3 IoT World Forum Architecture Committee 2013 Cisco and/or
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected]
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected] Agenda The rise of Big Data & Hadoop MySQL in the Big Data Lifecycle MySQL Solutions for Big Data Q&A
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica [email protected] Big
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15
Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15 2014 Amazon.com, Inc. and its affiliates. All rights
Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic
Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Integrate Master Data with Big Data using Oracle Table Access for Hadoop
Integrate Master Data with Big Data using Oracle Table Access for Hadoop Kuassi Mensah Oracle Corporation Redwood Shores, CA, USA Keywords: Hadoop, BigData, Hive SQL, Spark SQL, HCatalog, StorageHandler
Big Data Open Source Stack vs. Traditional Stack for BI and Analytics
Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Part I By Sam Poozhikala, Vice President Customer Solutions at StratApps Inc. 4/4/2014 You may contact Sam Poozhikala at [email protected].
HADOOP. Revised 10/19/2015
HADOOP Revised 10/19/2015 This Page Intentionally Left Blank Table of Contents Hortonworks HDP Developer: Java... 1 Hortonworks HDP Developer: Apache Pig and Hive... 2 Hortonworks HDP Developer: Windows...
Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013
Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device
The Inside Scoop on Hadoop
The Inside Scoop on Hadoop Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. [email protected] [email protected] @OrionGM The Inside Scoop
Plug-In for Informatica Guide
HP Vertica Analytic Database Software Version: 7.0.x Document Release Date: 2/20/2015 Legal Notices Warranty The only warranties for HP products and services are set forth in the express warranty statements
Creating Big Data Applications with Spring XD
Creating Big Data Applications with Spring XD Thomas Darimont @thomasdarimont THE FASTEST PATH TO NEW BUSINESS VALUE Journey Introduction Concepts Applications Outlook 3 Unless otherwise indicated, these
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf Rong Gu,Qianhao Dong 2014/09/05 0. Introduction As we want to have a performance framework for Tachyon, we need to consider two aspects
and Hadoop Technology
SAS and Hadoop Technology Overview SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS and Hadoop Technology: Overview. Cary, NC: SAS Institute
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
Easy Execution of Data Mining Models through PMML
Easy Execution of Data Mining Models through PMML Zementis, Inc. UseR! 2009 Zementis Development, Deployment, and Execution of Predictive Models Development R allows for reliable data manipulation and
Information Architecture
The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
From Dolphins to Elephants: Real-Time MySQL to Hadoop Replication with Tungsten
From Dolphins to Elephants: Real-Time MySQL to Hadoop Replication with Tungsten MC Brown, Director of Documentation Linas Virbalas, Senior Software Engineer. About Tungsten Replicator Open source drop-in
APPROACHABLE ANALYTICS MAKING SENSE OF DATA
APPROACHABLE ANALYTICS MAKING SENSE OF DATA AGENDA SAS DELIVERS PROVEN SOLUTIONS THAT DRIVE INNOVATION AND IMPROVE PERFORMANCE. About SAS SAS Business Analytics Framework Approachable Analytics SAS for
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc.
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc. 2015 The MathWorks, Inc. 1 Challenges of Big Data Any collection of data sets so large and complex that it becomes difficult
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
Oracle Big Data Essentials
Oracle University Contact Us: Local: 1800 103 4775 Intl: +91 80 40291196 Oracle Big Data Essentials Duration: 3 Days What you will learn This Oracle Big Data Essentials training deep dives into using the
Cloudera Manager Training: Hands-On Exercises
201408 Cloudera Manager Training: Hands-On Exercises General Notes... 2 In- Class Preparation: Accessing Your Cluster... 3 Self- Study Preparation: Creating Your Cluster... 4 Hands- On Exercise: Working
Tungsten Replicator, more open than ever!
Tungsten Replicator, more open than ever! MC Brown, Senior Product Line Manager September, 2015 2014 VMware Inc. All rights reserved. We Face An Age Old Problem BRS/Search 2 It s Gotten Worse 3 Much Worse
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
BIG DATA SOLUTION DATA SHEET
BIG DATA SOLUTION DATA SHEET Highlight. DATA SHEET HGrid247 BIG DATA SOLUTION Exploring your BIG DATA, get some deeper insight. It is possible! Another approach to access your BIG DATA with the latest
