Identifying erroneous data using outlier detection techniques
|
|
|
- Hollie Kory Chambers
- 9 years ago
- Views:
Transcription
1 Identifying erroneous data using outlier detection techniques Wei Zhuang 1, Yunqing Zhang 2 and J. Fred Grassle 2 1 Department of Computer Science, Rutgers, the State University of New Jersey, Piscataway, NJ , USA [email protected] 2 Institute of Marine and Coastal Sciences, Rutgers, the Brunswick, NJ 08901, USA State University of New Jersey, New Abstract Common data quality problems observed in OBIS data integration processes are described. DBSCAN, a density-based clustering algorithm for large spatial databases is employed to identify geographical outliers in federated data from a public Web service on the OBIS Portal. The algorithm is shown to be effective and efficient for this purpose. The relationship between outliers and erroneous data points are discussed and the future plan to develop an operational data quality checking tool based on this algorithm is discussed. Keywords: QA/QC; outliers; clustering; data quality solving. Introduction Federated scientific databases such as the Ocean Biogeographic Information System (OBIS, and the Global Biodiversity Information Facility (GBIF, have solved the data heterogeneity problem by employing open communication protocols and data exchange standards (Grassle and Stocks, 1999; Zhang and Grassle, 2003). For the first time in science history, tens of millions of records about our shared biodiversity heritage have been made publicly accessible on the World Wide Web. Although scientists and data managers have carefully performed quality checking over individual datasets and collections, data corruptions can still occur during data compilation, re-entry, conversion, and the transfer process. For example, default null database objects can turn into string null s; latitudes and longitudes are reversed; nonascii characters are mistakenly encoded, etc. These data quality concerns have been familiar to data warehousing communities and a great deal of research and development has been carried out in this area. Our problem, which is data quality checking over federated ocean biodiversity information, is unique in at least two aspects: DQ solving has to be efficient for large spatial datasets The domain knowledge is highly specialized and may not be translated into simple database constraints in many cases (this is indeed a common problem for scientific data management).
2 188 W. Zhuang et al. Outliers are commonly defined as rare or atypical data objects that do not behave like the rest of the data. Often, erroneous data points appear as outliers in a database. Scientists and data managers have used visualization tools to identify outliers in datasets. When the dimension of the feature space is more than two, visual identification becomes challenging. Moreover, when the database multiplies in content, manual identification by naked eyes becomes infeasible. Henceforth what is needed here is an automatic outlier detection tool that can efficiently handle large, high dimensional databases. It should be made clear that automatic tools are not to replace domain scientists opinion in data quality checking, rather, they are pre-processors to provide assistance to domain scientists. The question of how to integrate domain knowledge in automatic outlier identification tools will be discussed elsewhere. In this paper we will concentrate on the algorithm testing aspect of the development. Section II describes the method. In section III we report and analyze the results. We discuss the results and direction for future work in Section IV. Method There is a considerable body of research on outliers by statisticians (Barnett and Lewis, 1994; Hawkins, 1980). Fitting databases with parametric models requires prior knowledge of data distribution and using parametric models in the data processing stage may lead to circular arguments and produce spurious patterns when doing data analysis. Non-parametric clustering algorithms are attractive for grouping objects in a database into subclasses and, intuitively, small clusters, or classes with few members, are where outliers are. Computer scientists have been conducting extensive research to develop efficient clustering algorithms for large databases (Berkhin, 2002; Guha et al., 1998; Zhang et al., 1996; Ng and Han, 1994,). The well-known K-means algorithms partition a dataset into a set of k clusters in two steps: firstly it determines the k cluster centers by minimizing an object function; secondly it assigns a cluster membership based on the distance of the data object to the cluster centers. In these partition-based algorithms, the number of clusters, k, is an input parameter provided by the user while in many cases the user has no idea of the number of clusters. These algorithms are sensitive to noise. We then investigate a different, density-based family of clustering algorithms. In these algorithms, parts of the feature space with dense data points form clusters while outliers have a much lower density and are further away from the clusters. DBSCAN (Ester et al., 1996), DENCLUE (Hinneberg and Kleim, 1998) and WaveCluster (Sheikholeslami et al., 1999) are well known algorithms in this family. It has been demonstrated that DBSCAN requires minimal domain knowledge, can discover clusters with arbitrary shapes and is efficient on large databases. Most importantly, it can separate noise (i.e. outliers) while performing clustering. Details of the algorithm can be found in Ester et al. (1996). We obtained the software from the first author as a C++ package and adapted it for OBIS data. The clustering was run on a Sun Solaris 9 machine. The experimental data are provided by the OBIS portal as a Web service. We tested the algorithm by
3 Identifying erroneous data using outlier detection techniques 189 identifying geographical outliers and great circle distance is used to define the distance function between two data points. Results Here we report the results for three species: Euthynnus alletteratus, Albula vulpes and Balaenoptera borealis. The time complexity of DBSCAN is O (nlogn) where n is the number of data points. In table I we list the run time for these three experiments and the number is consistent with the O (nlogn) estimation. Table I: Runtime for clustering and identifying outliers using DBSCAN. Dataset Number of records Runtime (in milliseconds) Euthynnus alletteratus Albula vulpes Balaenoptera borealis In Fig. 1-3 we show clustering results for the three species where outliers are represented by round dots and non-outliers triangles. Examining the three figures together with the underlying datasets, we see that this algorithm correctly identifies all the single records far away from data clusters. Some non-outliers may appear to be outliers to the naked eye. For example, the triangle at (44.15 N, 6.03 E) in Fig. 2 is far away from the other clusters but in fact it represents 12 individual data records and thus is not an outlier in its common definition. One could visit the OBIS Portal to look up the interactive maps and download the datasets for further confirmation of our results Longitude Latitude Fig. 1. Result set for Euthynnus alletteratus.
4 190 W. Zhuang et al Longitude Latitude Fig. 2. Result set for Albula vulpes Longitude Latitude Fig. 3. Result set for Balaenoptera borealis.
5 Identifying erroneous data using outlier detection techniques 191 Discussion and Future Direction In this work we have demonstrated the usability of the density-based clustering algorithm DBSCAN in identifying geographical outliers. Because sampling is not complete yet, the outliers are not necessarily erroneous data points. Sometimes they are rare sightings or a single specimen in museum collections. Under these circumstances an expert has to examine the outliers and identify the actual erroneous data. On the other hand, the other features in the data space (temperature, salinity, etc ) may have been better sampled and outliers identified in those feature spaces may be more an indicator of data errors. In fact we have performed preliminary studies on temperature space and the results are promising. In the next step, we will develop an incremental learner where outlier detection results obtained from different feature spaces are combined. Domain sc ientists will play an active and critical role in this learner because: they will be prompted with candidate s produced by the outlier detection program and select the erroneous data from the candidates their decision will be fed back to the learner where the relative weights assigned to individual learners will be readjusted. Conclusion The clustering algorithm DBSCAN has been successfully applied to identifying geographical outliers in OBIS point data on a species-by-species basis. The algorithm is efficient enough to scan large spatial databases such as OBIS. With more samples coming into OBIS, the outlier detection technique can be used to identify erroneous data points and be part of an operational data quality checking tool where domain knowledge and automatic learners are integrated in a dynamic way. References Barnett V. and T. Lewis Outliers in Statistical Data. John Wiley & Sons, Chichester, New York. 608p. Berkhin P Survey of Clustering Data Mining Techniques. Accrue Software. Ester M., H.-P Kriegel., J. Sander and X. Xu A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. Portland, OR, Grassle J.F. and K.I. Stocks A Global Ocean Biogeographical Information System (OBIS) for the Census of Marine Life. Oceanography 12(3): Guha S., R. Rastogi and K. Shim Cure: An Efficient Clustering Algorithm for Large Databases. Proc. of ACM SIGMOD Int'l Conf. on Management of Data, ACM Press Hawkins D Identification of outliers. Chapman and Hall, London. 188p. Hinneburg A. and D.A. Kleim An Efficient Approach to Clustering in Large Multimedia Databases with Noise, KDD 98, New York, Aug
6 192 W. Zhuang et al. Ng R.T., J. Han Efficient and Effective Clustering Methods for Spatial Data Mining 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago, Chile, Proceedings Sheikholeslami G., S. Chatterjee, A. Zhang WaveCluster: A Wavelet Based Clustering Approach for Spatial Data in Very Large Databases Zhang T., R. Ramakrishnan, M. Livny BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM SIGMOD International conference on Management of Data, Montreal, Canada Zhang Y. and J.F. Grassle, A Portal for the Ocean Biogeographic Information System, Oceanologica Acta. 25(5):
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,
A Two-Step Method for Clustering Mixed Categroical and Numeric Data
Tamkang Journal of Science and Engineering, Vol. 13, No. 1, pp. 11 19 (2010) 11 A Two-Step Method for Clustering Mixed Categroical and Numeric Data Ming-Yi Shih*, Jar-Wen Jheng and Lien-Fu Lai Department
Robust Outlier Detection Technique in Data Mining: A Univariate Approach
Robust Outlier Detection Technique in Data Mining: A Univariate Approach Singh Vijendra and Pathak Shivani Faculty of Engineering and Technology Mody Institute of Technology and Science Lakshmangarh, Sikar,
ALGORITHM FOR SPATIAL CLUSTERING WITH OBSTACLES
ALGORITHM FOR SPATIAL CLUSTERING WITH OBSTACLES Mohamed E. El-Sharkawi Dept. of Information Systems Faculty of Computers & Information Cairo University Cairo, Egypt [email protected] Mohamed A.
Data Mining Process Using Clustering: A Survey
Data Mining Process Using Clustering: A Survey Mohamad Saraee Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan, 84156-83111 [email protected] Najmeh Ahmadian
A Grid-based Clustering Algorithm using Adaptive Mesh Refinement
Appears in the 7th Workshop on Mining Scientific and Engineering Datasets 2004 A Grid-based Clustering Algorithm using Adaptive Mesh Refinement Wei-keng Liao Ying Liu Alok Choudhary Abstract Clustering
A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases
Published in the Proceedings of 14th International Conference on Data Engineering (ICDE 98) A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases Xiaowei Xu, Martin Ester, Hans-Peter
Constrained Ant Colony Optimization for Data Clustering
Constrained Ant Colony Optimization for Data Clustering Shu-Chuan Chu 1,3,JohnF.Roddick 1, Che-Jen Su 2, and Jeng-Shyang Pan 2,4 1 School of Informatics and Engineering, Flinders University of South Australia,
MULTIDIMENSIONAL CLUSTERING DATA VISUALIZATION USING k-medoids ALGORITHM
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 22/2013, ISSN 1642-6037 cluster analysis, data mining, k-medoids, BUPA Jacek KOCYBA 1, Tomasz JACH 2, Agnieszka NOWAK-BRZEZIŃSKA 3 MULTIDIMENSIONAL CLUSTERING
GraphZip: A Fast and Automatic Compression Method for Spatial Data Clustering
GraphZip: A Fast and Automatic Compression Method for Spatial Data Clustering Yu Qian Kang Zhang Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688, USA {yxq012100,
Cluster Analysis: Advanced Concepts
Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means
Data Clustering Using Data Mining Techniques
Data Clustering Using Data Mining Techniques S.R.Pande 1, Ms. S.S.Sambare 2, V.M.Thakre 3 Department of Computer Science, SSES Amti's Science College, Congressnagar, Nagpur, India 1 Department of Computer
Clustering Data Streams
Clustering Data Streams Mohamed Elasmar Prashant Thiruvengadachari Javier Salinas Martin [email protected] [email protected] [email protected] Introduction: Data mining is the science of extracting
A Comparative Analysis of Various Clustering Techniques used for Very Large Datasets
A Comparative Analysis of Various Clustering Techniques used for Very Large Datasets Preeti Baser, Assistant Professor, SJPIBMCA, Gandhinagar, Gujarat, India 382 007 Research Scholar, R. K. University,
PhoCA: An extensible service-oriented tool for Photo Clustering Analysis
paper:5 PhoCA: An extensible service-oriented tool for Photo Clustering Analysis Yuri A. Lacerda 1,2, Johny M. da Silva 2, Leandro B. Marinho 1, Cláudio de S. Baptista 1 1 Laboratório de Sistemas de Informação
On Data Clustering Analysis: Scalability, Constraints and Validation
On Data Clustering Analysis: Scalability, Constraints and Validation Osmar R. Zaïane, Andrew Foss, Chi-Hoon Lee, and Weinan Wang University of Alberta, Edmonton, Alberta, Canada Summary. Clustering is
Context-aware taxi demand hotspots prediction
Int. J. Business Intelligence and Data Mining, Vol. 5, No. 1, 2010 3 Context-aware taxi demand hotspots prediction Han-wen Chang, Yu-chin Tai and Jane Yung-jen Hsu* Department of Computer Science and Information
Visual Data Mining with Pixel-oriented Visualization Techniques
Visual Data Mining with Pixel-oriented Visualization Techniques Mihael Ankerst The Boeing Company P.O. Box 3707 MC 7L-70, Seattle, WA 98124 [email protected] Abstract Pixel-oriented visualization
Public Transportation BigData Clustering
Public Transportation BigData Clustering Preliminary Communication Tomislav Galba J.J. Strossmayer University of Osijek Faculty of Electrical Engineering Cara Hadriana 10b, 31000 Osijek, Croatia [email protected]
Determining the Number of Clusters/Segments in. hierarchical clustering/segmentation algorithm.
Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms Stan Salvador and Philip Chan Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901
STOCK MARKET TRENDS USING CLUSTER ANALYSIS AND ARIMA MODEL
Stock Asian-African Market Trends Journal using of Economics Cluster Analysis and Econometrics, and ARIMA Model Vol. 13, No. 2, 2013: 303-308 303 STOCK MARKET TRENDS USING CLUSTER ANALYSIS AND ARIMA MODEL
On Clustering Validation Techniques
Journal of Intelligent Information Systems, 17:2/3, 107 145, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques MARIA HALKIDI [email protected] YANNIS
Knowledge Discovery in Data with FIT-Miner
Knowledge Discovery in Data with FIT-Miner Michal Šebek, Martin Hlosta and Jaroslav Zendulka Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno {isebek,ihlosta,zendulka}@fit.vutbr.cz
Linköpings Universitet - ITN TNM033 2011-11-30 DBSCAN. A Density-Based Spatial Clustering of Application with Noise
DBSCAN A Density-Based Spatial Clustering of Application with Noise Henrik Bäcklund (henba892), Anders Hedblom (andh893), Niklas Neijman (nikne866) 1 1. Introduction Today data is received automatically
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm
Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm Markus Goldstein and Andreas Dengel German Research Center for Artificial Intelligence (DFKI), Trippstadter Str. 122,
Clustering methods for Big data analysis
Clustering methods for Big data analysis Keshav Sanse, Meena Sharma Abstract Today s age is the age of data. Nowadays the data is being produced at a tremendous rate. In order to make use of this large-scale
Quality Assessment in Spatial Clustering of Data Mining
Quality Assessment in Spatial Clustering of Data Mining Azimi, A. and M.R. Delavar Centre of Excellence in Geomatics Engineering and Disaster Management, Dept. of Surveying and Geomatics Engineering, Engineering
Clustering Techniques: A Brief Survey of Different Clustering Algorithms
Clustering Techniques: A Brief Survey of Different Clustering Algorithms Deepti Sisodia Technocrates Institute of Technology, Bhopal, India Lokesh Singh Technocrates Institute of Technology, Bhopal, India
A Study on the Hierarchical Data Clustering Algorithm Based on Gravity Theory
A Study on the Hierarchical Data Clustering Algorithm Based on Gravity Theory Yen-Jen Oyang, Chien-Yu Chen, and Tsui-Wei Yang Department of Computer Science and Information Engineering National Taiwan
Scalable Cluster Analysis of Spatial Events
International Workshop on Visual Analytics (2012) K. Matkovic and G. Santucci (Editors) Scalable Cluster Analysis of Spatial Events I. Peca 1, G. Fuchs 1, K. Vrotsou 1,2, N. Andrienko 1 & G. Andrienko
Unsupervised Data Mining (Clustering)
Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in
. Learn the number of classes and the structure of each class using similarity between unlabeled training patterns
Outline Part 1: of data clustering Non-Supervised Learning and Clustering : Problem formulation cluster analysis : Taxonomies of Clustering Techniques : Data types and Proximity Measures : Difficulties
A Survey on Outlier Detection Techniques for Credit Card Fraud Detection
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VI (Mar-Apr. 2014), PP 44-48 A Survey on Outlier Detection Techniques for Credit Card Fraud
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
Grid Density Clustering Algorithm
Grid Density Clustering Algorithm Amandeep Kaur Mann 1, Navneet Kaur 2, Scholar, M.Tech (CSE), RIMT, Mandi Gobindgarh, Punjab, India 1 Assistant Professor (CSE), RIMT, Mandi Gobindgarh, Punjab, India 2
Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.
International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm
An Evaluation of Machine Learning Method for Intrusion Detection System Using LOF on Jubatus
An Evaluation of Machine Learning Method for Intrusion Detection System Using LOF on Jubatus Tadashi Ogino* Okinawa National College of Technology, Okinawa, Japan. * Corresponding author. Email: [email protected]
BIRCH: An Efficient Data Clustering Method For Very Large Databases
BIRCH: An Efficient Data Clustering Method For Very Large Databases Tian Zhang, Raghu Ramakrishnan, Miron Livny CPSC 504 Presenter: Discussion Leader: Sophia (Xueyao) Liang HelenJr, Birches. Online Image.
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
A Comparative Study of clustering algorithms Using weka tools
A Comparative Study of clustering algorithms Using weka tools Bharat Chaudhari 1, Manan Parikh 2 1,2 MECSE, KITRC KALOL ABSTRACT Data clustering is a process of putting similar data into groups. A clustering
Map-Reduce Algorithm for Mining Outliers in the Large Data Sets using Twister Programming Model
Map-Reduce Algorithm for Mining Outliers in the Large Data Sets using Twister Programming Model Subramanyam. RBV, Sonam. Gupta Abstract An important problem that appears often when analyzing data involves
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier
Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
Application of Clustering and Association Methods in Data Cleaning
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9 Computer Science and Information Technology, pp. 97 103 ISSN 1896-7094 Application of Clustering and Association Methods in Data
ANALYSIS OF VARIOUS CLUSTERING ALGORITHMS OF DATA MINING ON HEALTH INFORMATICS
ANALYSIS OF VARIOUS CLUSTERING ALGORITHMS OF DATA MINING ON HEALTH INFORMATICS 1 PANKAJ SAXENA & 2 SUSHMA LEHRI 1 Deptt. Of Computer Applications, RBS Management Techanical Campus, Agra 2 Institute of
Smart-Sample: An Efficient Algorithm for Clustering Large High-Dimensional Datasets
Smart-Sample: An Efficient Algorithm for Clustering Large High-Dimensional Datasets Dudu Lazarov, Gil David, Amir Averbuch School of Computer Science, Tel-Aviv University Tel-Aviv 69978, Israel Abstract
Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism
Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism Jianqiang Dong, Fei Wang and Bo Yuan Intelligent Computing Lab, Division of Informatics Graduate School at Shenzhen,
Cluster Analysis for Anomaly Detection in Accounting Data: An Audit Approach 1
The International Journal of Digital Accounting Research Vol. 11, 2011, pp. 69-84 ISSN: 1577-8517 Cluster Analysis for Anomaly Detection in Accounting Data: An Audit Approach 1 Sutapat Thiprungsri. Rutgers
Comparison and Analysis of Various Clustering Methods in Data mining On Education data set Using the weak tool
Comparison and Analysis of Various Clustering Metho in Data mining On Education data set Using the weak tool Abstract:- Data mining is used to find the hidden information pattern and relationship between
Data Clustering Analysis, from simple groupings to scalable clustering with constraints. Objectives. Data Clustering Outline. Data Clustering Outline
Data Clustering Analysis, from simple groupings to scalable clustering with constraints Objectives Learn basic techniques for data clustering. Understand the issues and the major challenges in clustering
Local Anomaly Detection for Network System Log Monitoring
Local Anomaly Detection for Network System Log Monitoring Pekka Kumpulainen Kimmo Hätönen Tampere University of Technology Nokia Siemens Networks [email protected] [email protected] Abstract
Data Mining. Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based
A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images
A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images Małgorzata Charytanowicz, Jerzy Niewczas, Piotr A. Kowalski, Piotr Kulczycki, Szymon Łukasik, and Sławomir Żak Abstract Methods
Chapter 7. Cluster Analysis
Chapter 7. Cluster Analysis. What is Cluster Analysis?. A Categorization of Major Clustering Methods. Partitioning Methods. Hierarchical Methods 5. Density-Based Methods 6. Grid-Based Methods 7. Model-Based
The application of cluster analysis in geophysical data interpretation
Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title The application of cluster analysis in geophysical
High-dimensional labeled data analysis with Gabriel graphs
High-dimensional labeled data analysis with Gabriel graphs Michaël Aupetit CEA - DAM Département Analyse Surveillance Environnement BP 12-91680 - Bruyères-Le-Châtel, France Abstract. We propose the use
IMPROVISATION OF STUDYING COMPUTER BY CLUSTER STRATEGIES
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE IMPROVISATION OF STUDYING COMPUTER BY CLUSTER STRATEGIES C.Priyanka 1, T.Giri Babu 2 1 M.Tech Student, Dept of CSE, Malla Reddy Engineering
[EN-024]Clustering radar tracks to evaluate efficiency indicators
ENRI Int. Workshop on ATM/CNS. Tokyo, Japan (EIWAC2010) [EN-024]Clustering radar tracks to evaluate efficiency indicators + R. Winkler A. Temme C. Bösel R. Kruse German Aerospace Center (DLR) Braunschweig
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH Kalinka Mihaylova Kaloyanova St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics Sofia 1164, Bulgaria
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
Density-Based Clustering over an Evolving Data Stream with Noise
Density-Based Clustering over an Evolving Data Stream with Noise Feng Cao Martin Ester Weining Qian Aoying Zhou Abstract Clustering is an important task in mining evolving data streams. Beside the limited
CUP CLUSTERING USING PRIORITY: AN APPROXIMATE ALGORITHM FOR CLUSTERING BIG DATA
CUP CLUSTERING USING PRIORITY: AN APPROXIMATE ALGORITHM FOR CLUSTERING BIG DATA 1 SADAF KHAN, 2 ROHIT SINGH 1,2 Career Point University Abstract- Big data if used properly can bring huge benefits to the
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD Paulo Gottgtroy Auckland University of Technology [email protected] Abstract This paper is
Interactive Information Visualization in the Digital Flora of Texas
Interactive Information Visualization in the Digital Flora of Texas Teong Joo Ong 1, John J. Leggett 1, Hugh D. Wilson 2, Stephan L. Hatch 3, Monique D. Reed 2 1 Center for the Study of Digital Libraries,
Categorical Data Visualization and Clustering Using Subjective Factors
Categorical Data Visualization and Clustering Using Subjective Factors Chia-Hui Chang and Zhi-Kai Ding Department of Computer Science and Information Engineering, National Central University, Chung-Li,
A Way to Understand Various Patterns of Data Mining Techniques for Selected Domains
A Way to Understand Various Patterns of Data Mining Techniques for Selected Domains Dr. Kanak Saxena Professor & Head, Computer Application SATI, Vidisha, [email protected] D.S. Rajpoot Registrar,
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du [email protected] University of British Columbia
A Survey on Outliers Detection in Distributed Data Mining for Big Data
J. Basic. Appl. Sci. Res., 5(2)31-38, 2015 2015, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com A Survey on Outliers Detection in Distributed Data
Data Mining System, Functionalities and Applications: A Radical Review
Data Mining System, Functionalities and Applications: A Radical Review Dr. Poonam Chaudhary System Programmer, Kurukshetra University, Kurukshetra Abstract: Data Mining is the process of locating potentially
Data Clustering Techniques Qualifying Oral Examination Paper
Data Clustering Techniques Qualifying Oral Examination Paper Periklis Andritsos University of Toronto Department of Computer Science [email protected] March 11, 2002 1 Introduction During a cholera
Preparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL
Preparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL Jasna S MTech Student TKM College of engineering Kollam Manu J Pillai Assistant Professor
Research on Business Intelligence in Enterprise Computing Environment
Research on Business Intelligence in Enterprise Computing Environment Lida Xu, Li Zeng, Zhongzhi Shi, Qing He, Maoguang Wang Abstract Business intelligence (BI) is the process of gathering enough of the
Standardization and Its Effects on K-Means Clustering Algorithm
Research Journal of Applied Sciences, Engineering and Technology 6(7): 399-3303, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 03 Submitted: January 3, 03 Accepted: February 5, 03
The STC for Event Analysis: Scalability Issues
The STC for Event Analysis: Scalability Issues Georg Fuchs Gennady Andrienko http://geoanalytics.net Events Something [significant] happened somewhere, sometime Analysis goal and domain dependent, e.g.
KNOWLEDGE DISCOVERY and SAMPLING TECHNIQUES with DATA MINING for IDENTIFYING TRENDS in DATA SETS
KNOWLEDGE DISCOVERY and SAMPLING TECHNIQUES with DATA MINING for IDENTIFYING TRENDS in DATA SETS Prof. Punam V. Khandar, *2 Prof. Sugandha V. Dani Dept. of M.C.A., Priyadarshini College of Engg., Nagpur,
Crime Hotspots Analysis in South Korea: A User-Oriented Approach
, pp.81-85 http://dx.doi.org/10.14257/astl.2014.52.14 Crime Hotspots Analysis in South Korea: A User-Oriented Approach Aziz Nasridinov 1 and Young-Ho Park 2 * 1 School of Computer Engineering, Dongguk
USING THE AGGLOMERATIVE METHOD OF HIERARCHICAL CLUSTERING AS A DATA MINING TOOL IN CAPITAL MARKET 1. Vera Marinova Boncheva
382 [7] Reznik, A, Kussul, N., Sokolov, A.: Identification of user activity using neural networks. Cybernetics and computer techniques, vol. 123 (1999) 70 79. (in Russian) [8] Kussul, N., et al. : Multi-Agent
Authors. Data Clustering: Algorithms and Applications
Authors Data Clustering: Algorithms and Applications 2 Contents 1 Grid-based Clustering 1 Wei Cheng, Wei Wang, and Sandra Batista 1.1 Introduction................................... 1 1.2 The Classical
