Chapter 7. Cluster Analysis
|
|
|
- Amos O’Connor’
- 10 years ago
- Views:
Transcription
1 Chapter 7. Cluster Analysis. What is Cluster Analysis?. A Categorization of Major Clustering Methods. Partitioning Methods. Hierarchical Methods 5. Density-Based Methods 6. Grid-Based Methods 7. Model-Based Methods 8. Clustering High-Dimensional Data 9. Constraint-Based Clustering 0. Link-based clustering. Outlier Analysis. Summary
2 What is Cluster Analysis? Cluster: A collection of data objects similar (or related) to one another within the same group dissimilar (or unrelated) to the objects in other groups Cluster analysis Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters Unsupervised learning: no predefined classes Typical applications As a stand-alone tool to get insight into data distribution As a preprocessing step for other algorithms
3 Clustering for Data Understanding and Applications Biology: taxonomy of living things: kindom, phylum, class, order, family, genus and species Information retrieval: document clustering Land use: Identification of areas of similar land use in an earth observation database Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs City-planning: Identifying groups of houses according to their house type, value, and geographical location Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults Climate: understanding earth climate, find patterns of atmospheric and ocean Economic Science: market resarch
4 Clustering as Preprocessing Tools (Utility) Summarization: Preprocessing for regression, PCA, classification, and association analysis Compression: Image processing: vector quantization Finding K-nearest Neighbors Localizing search to one or a small number of clusters
5 Quality: What Is Good Clustering? A good clustering method will produce high quality clusters high intra-class similarity: cohesive within clusters low inter-class similarity: distinctive between clusters The quality of a clustering result depends on both the similarity measure used by the method and its implementation The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns October 5, 0 Data Mining: Concepts and Techniques 5
6 Measure the Quality of Clustering Dissimilarity/Similarity metric Similarity is expressed in terms of a distance function, typically metric: d(i, j) The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables Weights should be associated with different variables based on applications and data semantics Quality of clustering: There is usually a separate quality function that measures the goodness of a cluster. It is hard to define similar enough or good enough The answer is typically highly subjective October 5, 0 Data Mining: Concepts and Techniques 6
7 Distance Measures for Different Kinds of Data Discussed in Chapter : Data Preprocessing Numerical (interval)-based: Minkowski Distance: Special cases: Euclidean (L -norm), Manhattan (L - norm) Binary variables: symmetric vs. asymmetric (Jaccard coeff.) Nominal variables: # of mismatches Ordinal variables: treated like interval-based Ratio-scaled variables: apply log-transformation first Vectors: cosine measure Mixed variables: weighted combinations October 5, 0 Data Mining: Concepts and Techniques 7
8 Requirements of Clustering in Data Mining Scalability Ability to deal with different types of attributes Ability to handle dynamic data Discovery of clusters with arbitrary shape Minimal requirements for domain knowledge to determine input parameters Able to deal with noise and outliers Insensitive to order of input records High dimensionality Incorporation of user-specified constraints Interpretability and usability October 5, 0 Data Mining: Concepts and Techniques 8
9 Major Clustering Approaches (I) Partitioning approach: Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors Typical methods: k-means, k-medoids, CLARANS Hierarchical approach: Create a hierarchical decomposition of the set of data (or objects) using some criterion Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON Density-based approach: Based on connectivity and density functions Typical methods: DBSACN, OPTICS, DenClue Grid-based approach: based on a multiple-level granularity structure Typical methods: STING, WaveCluster, CLIQUE October 5, 0 Data Mining: Concepts and Techniques 9
10 Major Clustering Approaches (II) Model-based: A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other Typical methods: EM, SOM, COBWEB Frequent pattern-based: Based on the analysis of frequent patterns Typical methods: p-cluster User-guided or constraint-based: Clustering by considering user-specified or application-specific constraints Typical methods: COD (obstacles), constrained clustering Link-based clustering: Objects are often linked together in various ways Massive links can be used to cluster objects: SimRank, LinkClus October 5, 0 Data Mining: Concepts and Techniques 0
11 Calculation of Distance between Clusters Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(k i, K j ) = min(t ip, t jq ) Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(k i, K j ) = max(t ip, t jq ) Average: avg distance between an element in one cluster and an element in the other, i.e., dist(k i, K j ) = avg(t ip, t jq ) Centroid: distance between the centroids of two clusters, i.e., dist(k i, K j ) = dist(c i, C j ) Medoid: distance between the medoids of two clusters, i.e., dist(k i, K j ) = dist(m i, M j ) Medoid: one chosen, centrally located object in the cluster October 5, 0 Data Mining: Concepts and Techniques
12 Centroid, Radius and Diameter of a Cluster (for numerical data sets) Centroid: the middle of a cluster Radius: square root of average distance from any point of the cluster to its centroid Σ C m = Σ N ( t c i ip m ) R = m = N N ( t i = N Diameter: square root of average mean squared distance between all pairs of points in the cluster Σ N Σ N ( t t ) D = i = i = ip iq m N( N ) ip ) October 5, 0 Data Mining: Concepts and Techniques
13 Partitioning Algorithms: Basic Concept Partitioning method: Construct a partition of a database D of n objects into a set of k clusters, s.t., min sum of squared distance E i k = Σi= Σ p C ( p mi ) Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion Global optimal: exhaustively enumerate all partitions Heuristic methods: k-means and k-medoids algorithms k-means (MacQueen 67): Each cluster is represented by the center of the cluster k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw 87): Each cluster is represented by one of the objects in the cluster October 5, 0 Data Mining: Concepts and Techniques
14 The K-Means Clustering Method Given k, the k-means algorithm is implemented in four steps: Partition objects into k nonempty subsets Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster) Assign each object to the cluster with the nearest seed point Go back to Step, stop when no more new assignment October 5, 0 Data Mining: Concepts and Techniques
15 Example The K-Means Clustering Method Assign each objects to most similar center reassign Update the cluster means reassign K= Arbitrarily choose K object as initial cluster center Update the cluster means October 5, 0 Data Mining: Concepts and Techniques 5
16 Comments on the K-Means Method Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n. Comparing: PAM: O(k(n-k) ), CLARA: O(ks + k(n-k)) Comment: Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms Weakness Applicable only when mean is defined, then what about categorical data? Need to specify k, the number of clusters, in advance Unable to handle noisy data and outliers Not suitable to discover clusters with non-convex shapes October 5, 0 Data Mining: Concepts and Techniques 6
17 Variations of the K-Means Method A few variants of the k-means which differ in Selection of the initial k means Dissimilarity calculations Strategies to calculate cluster means Handling categorical data: k-modes (Huang 98) Replacing means of clusters with modes Using new dissimilarity measures to deal with categorical objects Using a frequency-based method to update modes of clusters A mixture of categorical and numerical data: k-prototype method October 5, 0 Data Mining: Concepts and Techniques 7
18 What Is the Problem of the K-Means Method? The k-means algorithm is sensitive to outliers! Since an object with an extremely large value may substantially distort the distribution of the data. K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster October 5, 0 Data Mining: Concepts and Techniques 8
19 Hierarchical Clustering Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition Step 0 Step Step Step Step a b c d e a b d e c d e a b c d e Step Step Step Step Step 0 agglomerative (AGNES) divisive (DIANA) October 5, 0 Data Mining: Concepts and Techniques 9
20 AGNES (Agglomerative Nesting) Introduced in Kaufmann and Rousseeuw (990) Implemented in statistical packages, e.g., Splus Use the Single-Link method and the dissimilarity matrix Merge nodes that have the least dissimilarity Go on in a non-descending fashion Eventually all nodes belong to the same cluster October 5, 0 Data Mining: Concepts and Techniques 0
21 Dendrogram: Shows How the Clusters are Merged Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram. A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster. October 5, 0 Data Mining: Concepts and Techniques
Data Mining for Knowledge Management. Clustering
Data Mining for Knowledge Management Clustering Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management Thanks for slides to: Jiawei Han Eamonn Keogh Jeff
Data Mining Project Report. Document Clustering. Meryem Uzun-Per
Data Mining Project Report Document Clustering Meryem Uzun-Per 504112506 Table of Content Table of Content... 2 1. Project Definition... 3 2. Literature Survey... 3 3. Methods... 4 3.1. K-means algorithm...
Data Mining. Session 9 Main Theme Clustering. Dr. Jean-Claude Franchitti
Data Mining Session 9 Main Theme Clustering Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources
Cluster Analysis. Isabel M. Rodrigues. Lisboa, 2014. Instituto Superior Técnico
Instituto Superior Técnico Lisboa, 2014 Introduction: Cluster analysis What is? Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from
Cluster Analysis: Basic Concepts and Methods
10 Cluster Analysis: Basic Concepts and Methods Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five managers working for you. You would like to organize all
Clustering. Data Mining. Abraham Otero. Data Mining. Agenda
Clustering 1/46 Agenda Introduction Distance K-nearest neighbors Hierarchical clustering Quick reference 2/46 1 Introduction It seems logical that in a new situation we should act in a similar way as in
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
Data Clustering Techniques Qualifying Oral Examination Paper
Data Clustering Techniques Qualifying Oral Examination Paper Periklis Andritsos University of Toronto Department of Computer Science [email protected] March 11, 2002 1 Introduction During a cholera
Unsupervised learning: Clustering
Unsupervised learning: Clustering Salissou Moutari Centre for Statistical Science and Operational Research CenSSOR 17 th September 2013 Unsupervised learning: Clustering 1/52 Outline 1 Introduction What
Chapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained
Clustering. 15-381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is
Clustering 15-381 Artificial Intelligence Henry Lin Modified from excellent slides of Eamonn Keogh, Ziv Bar-Joseph, and Andrew Moore What is Clustering? Organizing data into clusters such that there is
Cluster Analysis: Basic Concepts and Algorithms
8 Cluster Analysis: Basic Concepts and Algorithms Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both. If meaningful groups are the goal, then the clusters should
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
An Introduction to Cluster Analysis for Data Mining
An Introduction to Cluster Analysis for Data Mining 10/02/2000 11:42 AM 1. INTRODUCTION... 4 1.1. Scope of This Paper... 4 1.2. What Cluster Analysis Is... 4 1.3. What Cluster Analysis Is Not... 5 2. OVERVIEW...
Data Mining. Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based
Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier
Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.
Cluster Analysis: Advanced Concepts
Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means
Clustering and Outlier Detection
Clustering and Outlier Detection Application Examples Customer segmentation How to partition customers into groups so that customers in each group are similar, while customers in different groups are dissimilar?
UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS
UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 [email protected] What is Learning? "Learning denotes changes in a system that enable
Cluster Analysis: Basic Concepts and Algorithms
Cluster Analsis: Basic Concepts and Algorithms What does it mean clustering? Applications Tpes of clustering K-means Intuition Algorithm Choosing initial centroids Bisecting K-means Post-processing Strengths
. Learn the number of classes and the structure of each class using similarity between unlabeled training patterns
Outline Part 1: of data clustering Non-Supervised Learning and Clustering : Problem formulation cluster analysis : Taxonomies of Clustering Techniques : Data types and Proximity Measures : Difficulties
Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
A comparison of various clustering methods and algorithms in data mining
Volume :2, Issue :5, 32-36 May 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 R.Tamilselvi B.Sivasakthi R.Kavitha Assistant Professor A comparison of various clustering
Clustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,
On Clustering Validation Techniques
Journal of Intelligent Information Systems, 17:2/3, 107 145, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques MARIA HALKIDI [email protected] YANNIS
Clustering methods for Big data analysis
Clustering methods for Big data analysis Keshav Sanse, Meena Sharma Abstract Today s age is the age of data. Nowadays the data is being produced at a tremendous rate. In order to make use of this large-scale
Neural Networks Lesson 5 - Cluster Analysis
Neural Networks Lesson 5 - Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm [email protected] Rome, 29
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
K-Means Cluster Analysis. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1
K-Means Cluster Analsis Chapter 3 PPDM Class Tan,Steinbach, Kumar Introduction to Data Mining 4/18/4 1 What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar
Data Mining Clustering (2) Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering (2) Toon Calders Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining Outline Partitional Clustering Distance-based K-means, K-medoids,
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
Clustering. Clustering. What is Clustering? What is Clustering? What is Clustering? Types of Data in Cluster Analysis
What is Clustering? Clustering Tpes of Data in Cluster Analsis Clustering A Categorization of Major Clustering Methods Partitioning Methods Hierarchical Methods What is Clustering? Clustering of data is
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/2004 Hierarchical
How To Cluster
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
CHAPTER 20. Cluster Analysis
CHAPTER 20 Cluster Analysis 20.1 Introduction 20.2 What Is Cluster Analysis? 20.3 Typical requirements 20.4 Types of Data in cluster Analysis 20.5 Interval-scaled Variables 20.6 Binary Variables 20.7 Nominal,Ordinal,
Comparison and Analysis of Various Clustering Methods in Data mining On Education data set Using the weak tool
Comparison and Analysis of Various Clustering Metho in Data mining On Education data set Using the weak tool Abstract:- Data mining is used to find the hidden information pattern and relationship between
Data Mining Process Using Clustering: A Survey
Data Mining Process Using Clustering: A Survey Mohamad Saraee Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan, 84156-83111 [email protected] Najmeh Ahmadian
Unsupervised Data Mining (Clustering)
Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster
Clustering Techniques: A Brief Survey of Different Clustering Algorithms
Clustering Techniques: A Brief Survey of Different Clustering Algorithms Deepti Sisodia Technocrates Institute of Technology, Bhopal, India Lokesh Singh Technocrates Institute of Technology, Bhopal, India
Cluster Analysis. Alison Merikangas Data Analysis Seminar 18 November 2009
Cluster Analysis Alison Merikangas Data Analysis Seminar 18 November 2009 Overview What is cluster analysis? Types of cluster Distance functions Clustering methods Agglomerative K-means Density-based Interpretation
Cluster analysis Cosmin Lazar. COMO Lab VUB
Cluster analysis Cosmin Lazar COMO Lab VUB Introduction Cluster analysis foundations rely on one of the most fundamental, simple and very often unnoticed ways (or methods) of understanding and learning,
A Survey of Clustering Techniques
A Survey of Clustering Techniques Pradeep Rai Asst. Prof., CSE Department, Kanpur Institute of Technology, Kanpur-0800 (India) Shubha Singh Asst. Prof., MCA Department, Kanpur Institute of Technology,
Data Mining 資 料 探 勘. 分 群 分 析 (Cluster Analysis)
Data Mining 資 料 探 勘 Tamkang University 分 群 分 析 (Cluster Analysis) DM MI Wed,, (:- :) (B) Min-Yuh Day 戴 敏 育 Assistant Professor 專 任 助 理 教 授 Dept. of Information Management, Tamkang University 淡 江 大 學 資
Medical Information Management & Mining. You Chen Jan,15, 2013 [email protected]
Medical Information Management & Mining You Chen Jan,15, 2013 [email protected] 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
A Survey of Clustering Algorithms for Big Data: Taxonomy & Empirical Analysis
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014 1 A Survey of Clustering Algorithms for Big Data: Taxonomy & Empirical Analysis A. Fahad, N. Alshatri, Z. Tari, Member, IEEE, A. Alamri, I. Khalil A.
Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering
Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? K-Means Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar
Chapter 4 Data Mining A Short Introduction. 2006/7, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis Data Mining - 1
Chapter 4 Data Mining A Short Introduction 2006/7, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis Data Mining - 1 1 Today's Question 1. Data Mining Overview 2. Association Rule Mining
USING THE AGGLOMERATIVE METHOD OF HIERARCHICAL CLUSTERING AS A DATA MINING TOOL IN CAPITAL MARKET 1. Vera Marinova Boncheva
382 [7] Reznik, A, Kussul, N., Sokolov, A.: Identification of user activity using neural networks. Cybernetics and computer techniques, vol. 123 (1999) 70 79. (in Russian) [8] Kussul, N., et al. : Multi-Agent
Data Clustering Using Data Mining Techniques
Data Clustering Using Data Mining Techniques S.R.Pande 1, Ms. S.S.Sambare 2, V.M.Thakre 3 Department of Computer Science, SSES Amti's Science College, Congressnagar, Nagpur, India 1 Department of Computer
Steven M. Ho!and. Department of Geology, University of Georgia, Athens, GA 30602-2501
CLUSTER ANALYSIS Steven M. Ho!and Department of Geology, University of Georgia, Athens, GA 30602-2501 January 2006 Introduction Cluster analysis includes a broad suite of techniques designed to find groups
Information Retrieval and Web Search Engines
Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 10 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig
A Comparative Study of clustering algorithms Using weka tools
A Comparative Study of clustering algorithms Using weka tools Bharat Chaudhari 1, Manan Parikh 2 1,2 MECSE, KITRC KALOL ABSTRACT Data clustering is a process of putting similar data into groups. A clustering
Distances, Clustering, and Classification. Heatmaps
Distances, Clustering, and Classification Heatmaps 1 Distance Clustering organizes things that are close into groups What does it mean for two genes to be close? What does it mean for two samples to be
Data Mining K-Clustering Problem
Data Mining K-Clustering Problem Elham Karoussi Supervisor Associate Professor Noureddine Bouhmala This Master s Thesis is carried out as a part of the education at the University of Agder and is therefore
Data Mining 5. Cluster Analysis
Data Mining 5. Cluster Analysis 5.2 Fall 2009 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables
Statistical Databases and Registers with some datamining
Unsupervised learning - Statistical Databases and Registers with some datamining a course in Survey Methodology and O cial Statistics Pages in the book: 501-528 Department of Statistics Stockholm University
How To Solve The Cluster Algorithm
Cluster Algorithms Adriano Cruz [email protected] 28 de outubro de 2013 Adriano Cruz [email protected] () Cluster Algorithms 28 de outubro de 2013 1 / 80 Summary 1 K-Means Adriano Cruz [email protected]
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Subhashree K 1, Prakash P S 2 1 Student, Kongu Engineering College, Perundurai, Erode 2 Assistant Professor,
A Comparative Analysis of Various Clustering Techniques used for Very Large Datasets
A Comparative Analysis of Various Clustering Techniques used for Very Large Datasets Preeti Baser, Assistant Professor, SJPIBMCA, Gandhinagar, Gujarat, India 382 007 Research Scholar, R. K. University,
Chapter 3: Cluster Analysis
Chapter 3: Cluster Analysis 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA 3..5
A Review on Clustering and Outlier Analysis Techniques in Datamining
American Journal of Applied Sciences 9 (2): 254-258, 2012 ISSN 1546-9239 2012 Science Publications A Review on Clustering and Outlier Analysis Techniques in Datamining 1 Koteeswaran, S., 2 P. Visu and
PERFORMANCE ANALYSIS OF CLUSTERING ALGORITHMS IN DATA MINING IN WEKA
PERFORMANCE ANALYSIS OF CLUSTERING ALGORITHMS IN DATA MINING IN WEKA Prakash Singh 1, Aarohi Surya 2 1 Department of Finance, IIM Lucknow, Lucknow, India 2 Department of Computer Science, LNMIIT, Jaipur,
Clustering. Chapter 7. 7.1 Introduction to Clustering Techniques. 7.1.1 Points, Spaces, and Distances
240 Chapter 7 Clustering Clustering is the process of examining a collection of points, and grouping the points into clusters according to some distance measure. The goal is that points in the same cluster
Cluster Analysis Overview. Data Mining Techniques: Cluster Analysis. What is Cluster Analysis? What is Cluster Analysis?
Cluster Analsis Overview Data Mining Techniques: Cluster Analsis Mirek Riedewald Man slides based on presentations b Han/Kamber, Tan/Steinbach/Kumar, and Andrew Moore Introduction Foundations: Measuring
Outlier Detection in Clustering
Outlier Detection in Clustering Svetlana Cherednichenko 24.01.2005 University of Joensuu Department of Computer Science Master s Thesis TABLE OF CONTENTS 1. INTRODUCTION...1 1.1. BASIC DEFINITIONS... 1
Machine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
Summary Data Mining & Process Mining (1BM46) Content. Made by S.P.T. Ariesen
Summary Data Mining & Process Mining (1BM46) Made by S.P.T. Ariesen Content Data Mining part... 2 Lecture 1... 2 Lecture 2:... 4 Lecture 3... 7 Lecture 4... 9 Process mining part... 13 Lecture 5... 13
The SPSS TwoStep Cluster Component
White paper technical report The SPSS TwoStep Cluster Component A scalable component enabling more efficient customer segmentation Introduction The SPSS TwoStep Clustering Component is a scalable cluster
A Two-Step Method for Clustering Mixed Categroical and Numeric Data
Tamkang Journal of Science and Engineering, Vol. 13, No. 1, pp. 11 19 (2010) 11 A Two-Step Method for Clustering Mixed Categroical and Numeric Data Ming-Yi Shih*, Jar-Wen Jheng and Lien-Fu Lai Department
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/4 What is
ANALYSIS OF CLUSTERING TECHNIQUE FOR CRM
ANALYSIS OF CLUSTERING TECHNIQUE FOR CRM Chopra Manu, Research Scholar, Singhania University, Pacheri Bari, Jhunjhunu, Rajasthan ABSTRACT The goal of this analysis is to provide a comprehensive review
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Clustering & Visualization
Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Concept of Cluster Analysis
RESEARCH PAPER ON CLUSTER TECHNIQUES OF DATA VARIATIONS Er. Arpit Gupta 1,Er.Ankit Gupta 2,Er. Amit Mishra 3 [email protected], [email protected],[email protected] Faculty Of Engineering
Hierarchical Cluster Analysis Some Basics and Algorithms
Hierarchical Cluster Analysis Some Basics and Algorithms Nethra Sambamoorthi CRMportals Inc., 11 Bartram Road, Englishtown, NJ 07726 (NOTE: Please use always the latest copy of the document. Click on this
Unsupervised Learning and Data Mining. Unsupervised Learning and Data Mining. Clustering. Supervised Learning. Supervised Learning
Unsupervised Learning and Data Mining Unsupervised Learning and Data Mining Clustering Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression...
SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
There are a number of different methods that can be used to carry out a cluster analysis; these methods can be classified as follows:
Statistics: Rosie Cornish. 2007. 3.1 Cluster Analysis 1 Introduction This handout is designed to provide only a brief introduction to cluster analysis and how it is done. Books giving further details are
Going Big in Data Dimensionality:
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für
Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values
Data Mining and Knowledge Discovery 2, 283 304 (1998) c 1998 Kluwer Academic Publishers. Manufactured in The Netherlands. Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical
CUP CLUSTERING USING PRIORITY: AN APPROXIMATE ALGORITHM FOR CLUSTERING BIG DATA
CUP CLUSTERING USING PRIORITY: AN APPROXIMATE ALGORITHM FOR CLUSTERING BIG DATA 1 SADAF KHAN, 2 ROHIT SINGH 1,2 Career Point University Abstract- Big data if used properly can bring huge benefits to the
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION CSE 537 Ar@ficial Intelligence Professor Anita Wasilewska GROUP 2 TEAM MEMBERS: SAEED BOOR BOOR - 110564337 SHIH- YU TSAI - 110385129 HAN LI 110168054 SOURCES
Chapter 15 CLUSTERING METHODS. 1. Introduction. Lior Rokach. Oded Maimon
Chapter 15 CLUSTERING METHODS Lior Rokach Department of Industrial Engineering Tel-Aviv University [email protected] Oded Maimon Department of Industrial Engineering Tel-Aviv University [email protected]
Territorial Analysis for Ratemaking. Philip Begher, Dario Biasini, Filip Branitchev, David Graham, Erik McCracken, Rachel Rogers and Alex Takacs
Territorial Analysis for Ratemaking by Philip Begher, Dario Biasini, Filip Branitchev, David Graham, Erik McCracken, Rachel Rogers and Alex Takacs Department of Statistics and Applied Probability University
Data Mining: Foundation, Techniques and Applications
Data Mining: Foundation, Techniques and Applications Lesson 1b :A Quick Overview of Data Mining Li Cuiping( 李 翠 平 ) School of Information Renmin University of China Anthony Tung( 鄧 锦 浩 ) School of Computing
Linköpings Universitet - ITN TNM033 2011-11-30 DBSCAN. A Density-Based Spatial Clustering of Application with Noise
DBSCAN A Density-Based Spatial Clustering of Application with Noise Henrik Bäcklund (henba892), Anders Hedblom (andh893), Niklas Neijman (nikne866) 1 1. Introduction Today data is received automatically
