A Decision-Support System for New Product Sales Forecasting
|
|
|
- Annice Norton
- 9 years ago
- Views:
Transcription
1 A Decision-Support System for New Product Sales Forecasting Ching-Chin Chern, Ka Ieng Ao Ieong, Ling-Ling Wu, and Ling-Chieh Kung Department of Information Management, NTU, Taipei, Taiwan and ABSTRACT This study proposes the New Product Sales Forecasting Procedure (NPSFP) and the New Product Forecasting System (NPFS) for solving the new product sales forecasting problem. The NPSFP standardizes the steps involved in sales forecasting, guiding data acquisition and analysis, choice of the forecasting model, calculation of the actual forecasts, and subjective manual adjustment of the forecasting results. The NPFS decision-support system includes four modules: one that guides data acquisition and analysis, one that contains forecasting model templates, one that helps the users choose the best model for the available data, and one that calculates and adjusts the actual forecasts. Keywords: Demand Management, Demand Forecasting, New Product Sales Forecasts, New Product Forecast Procedure, New Product Forecast System, Heuristic Algorithm INTRODUCTION Introducing new products can provide a competitive advantage as well as a long-term financial return on investment [9]. New product development is thus vitally linked to a company s competitive strategy and consequently to the new product sales forecasting that provides quantitative information on the expected return from development efforts. Sales forecasting attempts to decrease uncertainty, providing input for the decisions made about introducing of new products and offering feedback for the new product development process [9]. The significant correlation between new product development and new product sales forecasts makes new product forecasting extremely important. Many companies cite new product forecasting as one of the most difficult forecasting problems they encounter. Such forecasting involves taking a blind leap into the future because there is little or no historical data to provide guidance [6]. The high degree of uncertainty involved when introducing new products just adds to the difficulty of new product forecasting. Inaccurate forecasts could lead to erroneous business decisions, which could in turn result in excess inventory or significant inventory shortages. More importantly, new products have a longer lead time than existing products because, given no knowledge of the future, most supply chain partners maintain low inventory levels, or even no inventory, despite the fact that a rapid reaction to the market is essential for the successful introduction of new products. In light of the above discussion, a complete system for new product forecasting is urgently needed. Numerous forecasting techniques are available to sales forecasting managers [1, 4, 6, 8]. Based on these characteristics, there are three broad categories of sales forecasting methods: Qualitative, Time Series, and Correlation [4, 6]. Qualitative forecasting methods are primarily subjective and rely on forecaster experience [1, 4, 6, 8]. Time Series forecasting methods Moving Average and Exponential Smoothing are the most popular use historical demand information to make forecasts, assuming that past demand patterns will be a good indicator of future sales [1, 4, 6, 8]. Correlation forecasting methods Regression analysis is the most commonly used find the correlation between demands and environmental factors, for example, the correlation between economic conditions and demands [4, 8]. Several studies have focused on the data shortage issue for a completely new-to-the-market product by 481
2 incorporating market information, market research data, and subjective assessments into their forecasting models. Morrison [7] studied the implementation of diffusion models to forecast sales of a completely new-to-the-market product. He projected future sales with a non-linear symmetric logistic curve, using three parameters: the long-run saturation level, the inflection point of the diffusion curve, and the delay factor. He produced good results with his model; nevertheless, the assumption of continuous growth before inflection and the symmetric shape of the logistic curve should be examined further because not all new-to-the-market products have these characteristics. Goldfisher et al. [] proposed a method for determining the success or failure of a new product, which allowed weekly forecasts to be performed using only three weeks of data. They defined a Sales Index (SI) as a percentage of the difference in sales between two consecutive periods. Their study used Sales Forecast Ratios to predict future sales using SI. However, their approach relied heavily on sales data for only a few time periods, which may not be appropriate for new product sales forecasts, which involve a high degree of uncertainty. McLean et al. [5] also presented a method for dealing with limited data using truncated Taylor Series. The authors assumed that the forecasting function could be represented by a Taylor Series and that the most important components of the expansion were the first few derivatives. Hence, the prediction for the future sales was formulated as a weighted sum of historical sales. More weight was assigned to more recent data, while less weight was assigned to older data. There are several ways to measure forecast performance, including evaluating the forecast results in terms of accuracy, error, cost, efficiency, profit, and/or customer satisfaction. Common measurements (e.g., Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared Error (MSE)) have all been used by companies to assess the forecasting function [3, 4]. Kahn [3] reported that, according to an industry survey, 48% of the respondents used MAPE to measure forecast accuracy, while 13% used MAD and % used MSE. Based on his survey, Kahn concluded that the average acceptable forecast accuracy for necessary SKU (stock keeping unit) levels was 77% (MAPE) across all industries and 76% (MAPE) for the consumer product industry specifically. This study will also apply the modified MAPE to the Evaluation module for evaluating the performance of this system. The rest of the paper is organized as follows. Section describes the procedure for the new product forecast and proposes a decision support system, called New Product Forecast System (NPFS), to help this task. Section 3 shows the results of NPFS on a real-world case. Finally, Section 4 offers our conclusions and our suggestions for future research. NEW PRODUCT FORECASTING SYSTEM (NPFS) This study aims to solve the new product sales forecasting problem. However, no standard procedure for new product sales forecasting currently exists. Therefore, we propose a procedure that standardizes the steps from data collection to the final subjective adjustments of the forecast results. Step 1: Collect and Analyze Data Different types of data related to new product forecasts are required and must be collected in step 1. Forecasts are usually based on past product sales patterns; however, with new products, it is difficult to observe any pattern since very little historical sales data is available. In this first step, forecasters should focus on increasing the quantity of the input data so that at least three sales data periods are available. In addition to increasing the data quantity, in this step, the data quality should also be improved by attempting to reduce the variation and identifying the leading indicators. 48
3 Step : Determine Parameters for Forecasting Methods and Select the Best Forecasting Method In step, the parameters for each forecast method must be determined. Different forecasting methods require different parameters, which have a direct impact on the forecast results. In the procedure proposed in this study, we use the Mean Absolute Percentage Error (MAPE) as the evaluation standard for selecting a method. Experienced forecasters who know the market well can later help to decide whether or not to adjust the results subjectively. Companies can also define rules or indices for altering the results. The evaluation rules for forecast accuracy are based not only on the historic sales data, but also on the weighted average heuristic. Step 3: Calculate Sales Forecast Once the parameters and the forecasting method have been determined, the forecast is calculated according to the desired planning horizon short-term, mid-term, and/or long-term. For instance, when managers make long-term strategic decisions, such as picking the location for a new factory site, they need a rough idea of the future sales trends and thus sales forecasts for the next year could be appreciated. On the other hand, short-term decisions are facilitated by daily and weekly sales forecasts. Step 4: Adjust Results Subjectively Experienced managers or forecasters often adjust the forecast results manually. The survey results of Sanders et al. [8] showed that more than 80% of the respondents adjust quantitative forecast results based on their subjective judgment. Professional managers often have their own perceptions of future trends based on the events occurring on the market and their industry experience. Consequently, step 4 allows managers to make adjustments, with the final results being used for future planning for a variety of purposes at the end of forecast procedure. The tasks in steps 1, and 3 of the above procedure are facilitated by a decision-support system called New Product Forecast System (NPFS). This decision-support system comprises four modules that provide functions for the forecasting tasks so that users don t have to be experts in business forecasting techniques. There are three major difficulties inherent to new product sales forecasts: dealing with limited data, using the forecasting methods, and selecting the best method to use. The four modules of decision-support system shown in Figure 1 Data Handling, Forecasting Model, Learning Platform and Forecasting can tackle these three problems. Data Handling Module The data handling module is responsible for dealing with the limited data problem. Because new products have been recently introduced on the market, little or no sales data are available for analysis. It is thus necessary to find substitute data in order to calculate the sales forecast. There are many external factors that can affect sales, including special events and promotional events. For this reason, in addition to finding substitute data, this module focuses on improving the quality of input data by identifying these external factors and prepares the input data for processing by the forecasting model module. The data handling module produces at least three periods of sales data, either from its own historic data or from the historic data of items in the same class. This data, together with all the parameters needed for each forecast method, are send on to the forecasting model module. Forecasting Model Module Unlike sales forecasts for mature products with a stable demand, the most difficult problem with new product sales forecasting is the lack of historical data. Because newly introduced products have no historic behavior to be traced, Regression is not appropriate for new product forecasting [11] and thus was not included in the NPFS decision-support system. N-period Moving Average, Exponential Smoothing, and Exponential Smoothing With Trends (an extension of Exponential Smoothing), though 483
4 predicting the future sales based on a product s historic patterns, require only a few data points and thus were included in our system [11]. In addition, the NPFS decision-support system includes all three of the new product forecasting methods presented in our literature review: Sales Index, Diffusion Model, and truncated Taylor Series. Each of these methods have their own limitations, and thus we have modified them for use in our NPFS system. By the end of processing in the forecasting module, for each new product, there is a choice of at least six methods, each with multiple parameter selections. Learning Platform The learning platform module provides an automatic learning platform that uses input from data handling module and forecasting model module. It determines the best parameters for each method and then chooses the most appropriate method for future sales forecasting according to most current available data. When sales occur and new historical data are input into NPFS, the learning platform module is activated again and selects the most appropriate method for the current situation. The final method selected, together with its best parameters, is used for future forecasts Figure 1: The Architecture of New Product Forecast System (NPFS) Step 1: Collect and Analyze Data Step : Determine Parameters for Forecasting Methods and Select the Best Forecasting Method Data Handling 1. Category Structure. Sales Data for Items in the Same Category 3. Replacement Relationship 4. Pretest Sales Data 5. Historical Sales Data 6. Promotion and Special Event Information 7. Market Information NPFS Forecasting Models 1. Classic Methods Moving Average, Exponential Smoothing, Exponential Smoothing with Trends. Heuristic Methods Sales Index, Taylor Series Diffusion model Step 3: Calculate Sales Forecast Learning Platform Step 4: Adjust Results Subjectively Forecasting Forecasting Once the learning platform module has selected the best forecasting method and the best parameters for each new product, the forecasting module then computes the future sales forecast. The resulting forecast will become the basis for future planning [9], which can be long-term, mid-term and short-term. Future sales forecasts may focus on different geographical levels (e.g., country, region, city, and store) or different time dimensions (e.g., yearly, quarterly, monthly, weekly, and daily). In order to meet different planning objectives, the forecasting module predicts future sales for different combinations of these two dimensions. TESTING NPFS ON REAL-WORLD CASES This section demonstrates the applicability of NPFS using two real-world problems, involving two retail company selling different kinds of products: tea and cosmetics. The first case deals with new tea products. The data used was provided by a leading tea company in Taiwan, whose business encompasses the planting, producing, and retailing of tea. In addition, this leading tea company has started serving tea meals in their shops in recent years. As of April of 007, the company had 133 chain stores all over Taiwan. The date for introducing new tea products depends on the tea leaf picking 484
5 season winter or spring. A successful tea product can be sold for years. Three successful new tea products that had good initial sales periods in 006 were used to compare the NPFS forecast results with the results of the commonly-used Moving Average method. The information about these three new products from different classes is given in Table 1. Two of the new products have an appropriate number of actual data points, while one has data points for only periods. Table 1 shows the NPFS result and Moving Average (MA) result. Judging by the future MAPE, the NPFS forecast is better than the MA forecast. NPFS chose the ES method for two of the new products and the SI method for the last new product because the sales of the item 450XX followed a pattern similar to other products in the same class. The result for the new tea products also agrees with the scenario analysis conclusion that the number of actual data points affects the forecast accuracy. Table 1: Forecast Results using NPFS and MA for the New Tea Products Item No Classification Number of Actual Data Points Method* Parameter Future MAPE Difference 336XX Oolong Tea (Intense Scent) 448XX Special Tea 4 5 ES % MA % ES % MA % % % Oolong Tea (Light SI % 450XX % Scent) MA % *The forecasting method is represented by the following abbreviations: DF = Diffusion Model; ES = Exponential Smoothing; EST = Exponential Smoothing with Trend; MA = Moving Average; SI = Sales Index; TY = Taylor Series. The second case deals with new cosmetic products. The data used was provided by a leading chain drugstore with more than 100 stores across Taiwan. Five successful new cosmetic products from different classes were selected to test the applicability of NPFS (Table ). These products had been sold in the leading chain drugstore in 006. Table : NPFS and MA Forecasts for the New Cosmetic Products Number of Actual Item No Classification Method* Parameter Future MAPE Difference Data Points Special Skin SI % 66XX % Care MA % MA % 9935XX Lipstick % MA % 637XX Basic Skin Care ES % MA % % 6356XX Basic Skin ES % Care MA % -6.3% 6314XX Facial SI % Foundation MA % -3.07% *The forecasting method is represented by the following abbreviations: DF = Diffusion Model; ES = Exponential Smoothing; EST = Exponential Smoothing with Trend; MA = Moving Average; SI = Sales Index; TY = Taylor Series. Cosmetics are such a competitive business that hundreds of new products are launched every year to satisfy customer needs. The lifecycle of a cosmetic product is short, and the demand is usually unstable. As shown in Table, most of the new products used in this test had only a few actual data points. Table reports the NPFS results and the MA results. Because the demand was unstable, ES was selected for three of the products and SI for the other two. The forecast produced by NPFS is obviously better than 485
6 the one produced by the MA method based on the future MAPE. The results for these two real-world cases show that NPFS forecasts are better than those of the commonly used MA method. CONCLUSION New product sales forecast usually depends on the decisions of experienced managers, such as decisions about the selection of the forecasting model when only limited data is available. Instead of relying on human judgments, this study introduces a standard forecast procedure offering a general work flow to perform forecast. In addition, New Product Forecast System (NPFS) is proposed to help executing the standard forecast procedure for new product sales forecast. A prototype of NPFS is constructed to evaluate the performance. NPFS is applied to a real-world case of cosmetics. In this case, several successful products in different classes were tested and the forecast result showed that NPFS had better performance than the commonly used methods. It can be concluded that the commonly used methods that widely adopted in practice is not suitable one to be used in new product forecast. More real-world cases such as consumer electronics and fashion products should be tried because they introduce different types of new products every seasons. Furthermore, this study only include quantitative models in NPFS. The qualitative model which considers consumer behavior should also be included in NPFS in the future to boost the forecast accuracy. Some product characteristics color, style, or special design affect the sales of products significantly and thus should be identified and quantified in NPFS in the future to help product classification or future sales forecast. Acknowledgements This research was sponsored by the National Science Committee of Taiwan, under the project number NSC H Reference [1] Fader, S. P. and B. G. S. Hardie, The value of simple models in new product forecasting and customer-base analysis, Applied Stochastic Models in Business and Industry, 005, pp [] Goldfisther, K. and C. Chan, New Product Reactive Forecasting, The Journal of Business Forecasting Methods & Systems, Vol. 13, No. 4, Winter 1994/1995, pp [3] Kahn, B. K., Benchmarking Sales Forecasting Performance Measures, The Journal of Business Forecasting, Vol. 17, No. 4, Winter , pp [4] Madsen, H., Time Series Analysis, Chapman & Hall.CRC Co., 008. [5] McLean, B. L. and A. W. Wortham, Methodology Aids Forecasting With Limited Amounts Of Data, Methodology Aids Forecasting With Limited Amounts Of Data, Vol. 0, No., Feb 1988, pp. 18. [6] Mentzer, T. J. and M. A. Moon, Sales Forecasting Management: A Demand Management Approach, Sage Publications, Inc., 005. [7] Morrison, J., How to use diffusion models in new product forecasting, The Journal of Business Forecasting Methods & Systems, Vol. 15, No., Summer 1996, pp [8] Sanders, N.R. and K. B. Manrodt, Forecasting Practices in US Corporations: Survey Results, Interfaces, Vol. 4, No., Mar-Apr 1994, pp [9] Thomas, R. J., New Product Development: Managing and Forecasting for Strategic Success, Wiley,
2 Day In House Demand Planning & Forecasting Training Outline
2 Day In House Demand Planning & Forecasting Training Outline On-site Corporate Training at Your Company's Convenience! For further information or to schedule IBF s corporate training at your company,
Industry Environment and Concepts for Forecasting 1
Table of Contents Industry Environment and Concepts for Forecasting 1 Forecasting Methods Overview...2 Multilevel Forecasting...3 Demand Forecasting...4 Integrating Information...5 Simplifying the Forecast...6
Models for Product Demand Forecasting with the Use of Judgmental Adjustments to Statistical Forecasts
Page 1 of 20 ISF 2008 Models for Product Demand Forecasting with the Use of Judgmental Adjustments to Statistical Forecasts Andrey Davydenko, Professor Robert Fildes [email protected] Lancaster
CHAPTER 11 FORECASTING AND DEMAND PLANNING
OM CHAPTER 11 FORECASTING AND DEMAND PLANNING DAVID A. COLLIER AND JAMES R. EVANS 1 Chapter 11 Learning Outcomes l e a r n i n g o u t c o m e s LO1 Describe the importance of forecasting to the value
Theory at a Glance (For IES, GATE, PSU)
1. Forecasting Theory at a Glance (For IES, GATE, PSU) Forecasting means estimation of type, quantity and quality of future works e.g. sales etc. It is a calculated economic analysis. 1. Basic elements
Production Planning. Chapter 4 Forecasting. Overview. Overview. Chapter 04 Forecasting 1. 7 Steps to a Forecast. What is forecasting?
Chapter 4 Forecasting Production Planning MRP Purchasing Sales Forecast Aggregate Planning Master Production Schedule Production Scheduling Production What is forecasting? Types of forecasts 7 steps of
Ch.3 Demand Forecasting.
Part 3 : Acquisition & Production Support. Ch.3 Demand Forecasting. Edited by Dr. Seung Hyun Lee (Ph.D., CPL) IEMS Research Center, E-mail : [email protected] Demand Forecasting. Definition. An estimate
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt
Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I
Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA - Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting
Demand Management Where Practice Meets Theory
Demand Management Where Practice Meets Theory Elliott S. Mandelman 1 Agenda What is Demand Management? Components of Demand Management (Not just statistics) Best Practices Demand Management Performance
Objectives of Chapters 7,8
Objectives of Chapters 7,8 Planning Demand and Supply in a SC: (Ch7, 8, 9) Ch7 Describes methodologies that can be used to forecast future demand based on historical data. Ch8 Describes the aggregate planning
Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
PRODUCTION PLANNING AND CONTROL CHAPTER 2: FORECASTING Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT
58 INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT Sudipa Sarker 1 * and Mahbub Hossain 2 1 Department of Industrial and Production Engineering Bangladesh
A COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE
A COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE Joanne S. Utley, School of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411, (336)-334-7656 (ext.
Agenda. TPPE37 Manufacturing Control. A typical production process. The Planning Hierarchy. Primary material flow
TPPE37 Manufacturing Control Agenda Lecture 2 Inventory Management 1. Inventory System Defined 2. Inventory Costs 3. Inventory classification 4. Economic order quantity model 5. Newsboy problem 6. Reorder
How To Plan A Pressure Container Factory
ScienceAsia 27 (2) : 27-278 Demand Forecasting and Production Planning for Highly Seasonal Demand Situations: Case Study of a Pressure Container Factory Pisal Yenradee a,*, Anulark Pinnoi b and Amnaj Charoenthavornying
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless the volume of the demand known. The success of the business
A Forecasting Decision Support System
A Forecasting Decision Support System Hanaa E.Sayed a, *, Hossam A.Gabbar b, Soheir A. Fouad c, Khalil M. Ahmed c, Shigeji Miyazaki a a Department of Systems Engineering, Division of Industrial Innovation
Demand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish
Demand forecasting & Aggregate planning in a Supply chain Session Speaker Prof.P.S.Satish 1 Introduction PEMP-EMM2506 Forecasting provides an estimate of future demand Factors that influence demand and
Outline. Role of Forecasting. Characteristics of Forecasts. Logistics and Supply Chain Management. Demand Forecasting
Logistics and Supply Chain Management Demand Forecasting 1 Outline The role of forecasting in a supply chain Characteristics ti of forecasts Components of forecasts and forecasting methods Basic approach
COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES
COMBINING THE METHODS OF FORECASTING AND DECISION-MAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES JULIA IGOREVNA LARIONOVA 1 ANNA NIKOLAEVNA TIKHOMIROVA 2 1, 2 The National Nuclear Research
Forecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
Sales and Operations Planning in Company Supply Chain Based on Heuristics and Data Warehousing Technology
Sales and Operations Planning in Company Supply Chain Based on Heuristics and Data Warehousing Technology Jun-Zhong Wang 1 and Ping-Yu Hsu 2 1 Department of Business Administration, National Central University,
Module 6: Introduction to Time Series Forecasting
Using Statistical Data to Make Decisions Module 6: Introduction to Time Series Forecasting Titus Awokuse and Tom Ilvento, University of Delaware, College of Agriculture and Natural Resources, Food and
Demand Forecasting LEARNING OBJECTIVES IEEM 517. 1. Understand commonly used forecasting techniques. 2. Learn to evaluate forecasts
IEEM 57 Demand Forecasting LEARNING OBJECTIVES. Understand commonly used forecasting techniques. Learn to evaluate forecasts 3. Learn to choose appropriate forecasting techniques CONTENTS Motivation Forecast
THE INTEGRATION OF SUPPLY CHAIN MANAGEMENT AND SIMULATION SYSTEM WITH APPLICATION TO RETAILING MODEL. Pei-Chann Chang, Chen-Hao Liu and Chih-Yuan Wang
THE INTEGRATION OF SUPPLY CHAIN MANAGEMENT AND SIMULATION SYSTEM WITH APPLICATION TO RETAILING MODEL Pei-Chann Chang, Chen-Hao Liu and Chih-Yuan Wang Institute of Industrial Engineering and Management,
Introduction to Financial Models for Management and Planning
CHAPMAN &HALL/CRC FINANCE SERIES Introduction to Financial Models for Management and Planning James R. Morris University of Colorado, Denver U. S. A. John P. Daley University of Colorado, Denver U. S.
Time series Forecasting using Holt-Winters Exponential Smoothing
Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
Slides Prepared by JOHN S. LOUCKS St. Edward s University
s Prepared by JOHN S. LOUCKS St. Edward s University 2002 South-Western/Thomson Learning 1 Chapter 18 Forecasting Time Series and Time Series Methods Components of a Time Series Smoothing Methods Trend
INFLUENCE OF DEMAND FORECASTS ACCURACY ON SUPPLY CHAINS DISTRIBUTION SYSTEMS DEPENDABILITY.
INFLUENCE OF DEMAND FORECASTS ACCURACY ON SUPPLY CHAINS DISTRIBUTION SYSTEMS DEPENDABILITY. Natalia SZOZDA 1, Sylwia WERBIŃSKA-WOJCIECHOWSKA 2 1 Wroclaw University of Economics, Wroclaw, Poland, e-mail:
Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
Sales Forecast for Pickup Truck Parts:
Sales Forecast for Pickup Truck Parts: A Case Study on Brake Rubber Mojtaba Kamranfard University of Semnan Semnan, Iran [email protected] Kourosh Kiani Amirkabir University of Technology Tehran,
Outline: Demand Forecasting
Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of
Quantitative Inventory Uncertainty
Quantitative Inventory Uncertainty It is a requirement in the Product Standard and a recommendation in the Value Chain (Scope 3) Standard that companies perform and report qualitative uncertainty. This
Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
Optimization of the physical distribution of furniture. Sergey Victorovich Noskov
Optimization of the physical distribution of furniture Sergey Victorovich Noskov Samara State University of Economics, Soviet Army Street, 141, Samara, 443090, Russian Federation Abstract. Revealed a significant
Use of Statistical Forecasting Methods to Improve Demand Planning
Use of Statistical Forecasting Methods to Improve Demand Planning Talk given at the Swiss Days of Statistics 2004 Aarau, November 18th, 2004 Marcel Baumgartner [email protected] Nestec 1800
Collaborative Forecasting
Collaborative Forecasting By Harpal Singh What is Collaborative Forecasting? Collaborative forecasting is the process for collecting and reconciling the information from diverse sources inside and outside
Sample of Best Practices
Sample of Best Practices For a Copy of the Complete Set Call Katral Consulting Group 954-349-1281 Section 1 Planning & Forecasting Retail Best Practice Katral Consulting Group 1 of 7 Last printed 2005-06-10
INFORMATION TECHNOLOGIES AND MATERIAL REQUIREMENT PLANNING (MRP) IN SUPPLY CHAIN MANAGEMENT (SCM) AS A BASIS FOR A NEW MODEL
Bulgarian Journal of Science and Education Policy (BJSEP), Volume 4, Number 2, 2010 INFORMATION TECHNOLOGIES AND MATERIAL REQUIREMENT PLANNING (MRP) IN SUPPLY CHAIN MANAGEMENT (SCM) AS A BASIS FOR A NEW
A FUZZY LOGIC APPROACH FOR SALES FORECASTING
A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for
FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA
www.sjm06.com Serbian Journal of Management 10 (1) (2015) 3-17 Serbian Journal of Management FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA Abstract Zoran
Best Practices for Managing Seasonal Items Vermont Information Processing, Inc.
Best Practices for Managing Seasonal Items Vermont Information Processing, Inc. 402 Watertower Circle Colchester, VT 05446 802 655 9400 Fax: 802 655 1313 www.vtinfo.com Best Practices for Managing Seasonal
MERGING BUSINESS KPIs WITH PREDICTIVE MODEL KPIs FOR BINARY CLASSIFICATION MODEL SELECTION
MERGING BUSINESS KPIs WITH PREDICTIVE MODEL KPIs FOR BINARY CLASSIFICATION MODEL SELECTION Matthew A. Lanham & Ralph D. Badinelli Virginia Polytechnic Institute and State University Department of Business
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS Sushanta Sengupta 1, Ruma Datta 2 1 Tata Consultancy Services Limited, Kolkata 2 Netaji Subhash
Forecast Accuracy and Safety Stock Strategies
10G Roessler Rd. Suite 508, Woburn, MA 01801 Email: [email protected] www.demandplanning.net By Mark Chockalingam Ph.D. Forecast Accuracy and Safety Stock Strategies White Paper 03/25/2009 2007-2009
Glossary of Inventory Management Terms
Glossary of Inventory Management Terms ABC analysis also called Pareto analysis or the rule of 80/20, is a way of categorizing inventory items into different types depending on value and use Aggregate
QAD Enterprise Applications 2012 Enterprise Edition. Training Guide Demand Management 6.1 Domain Knowledge
QAD Enterprise Applications 2012 Enterprise Edition Training Guide Demand Management 6.1 Domain Knowledge 70-3250-6.1 QAD Enterprise Applications 2012 February 2012 This document contains proprietary information
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
8 given situation. 5. Students will discuss performance management and determine appropriate performance measures for an
PRESCRIPTION: 632 OPERATIONS MANAGEMENT This prescription replaces 232 Operations Management. ELECTIVE PRESCRIPTION LEVEL 6 CREDIT 20 VERSION 1 INTRODUCED 2007 AIM PREREQUISITES Students will understand
PERFORMANCE ANALYSIS OF A CONTRACT MANUFACTURING SYSTEM
PERFORMANCE ANALYSIS OF A CONTRACT MANUFACTURING SYSTEM Viswanadham.N 1, Vaidyanathan.G 2 The Logistics Institute- Asia Pacific National University of Singapore Singapore 11926 [email protected] 1 [email protected]
Exponential Smoothing with Trend. As we move toward medium-range forecasts, trend becomes more important.
Exponential Smoothing with Trend As we move toward medium-range forecasts, trend becomes more important. Incorporating a trend component into exponentially smoothed forecasts is called double exponential
CHAPTER 6 FINANCIAL FORECASTING
TUTORIAL NOTES CHAPTER 6 FINANCIAL FORECASTING 6.1 INTRODUCTION Forecasting represents an integral part of any planning process that is undertaken by all firms. Firms must make decisions today that will
Smoothing methods. Marzena Narodzonek-Karpowska. Prof. Dr. W. Toporowski Institut für Marketing & Handel Abteilung Handel
Smoothing methods Marzena Narodzonek-Karpowska Prof. Dr. W. Toporowski Institut für Marketing & Handel Abteilung Handel What Is Forecasting? Process of predicting a future event Underlying basis of all
Promotional Forecasting Based on Promotional Indexes in Yoghurt Production
Promotional Forecasting Based on Promotional Indexes in Yoghurt Production MICHAL PATAK, VLADIMIRA VLCKOVA Faculty of Chemical Technology, Department of Economy and Man. of Chemical and Food Industry University
Forecasting Analytics. Group members: - Arpita - Kapil - Kaushik - Ridhima - Ushhan
Forecasting Analytics Group members: - Arpita - Kapil - Kaushik - Ridhima - Ushhan Business Problem Forecast daily sales of dairy products (excluding milk) to make a good prediction of future demand, and
2) The three categories of forecasting models are time series, quantitative, and qualitative. 2)
Exam Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Regression is always a superior forecasting method to exponential smoothing, so regression should be used
Forecasting DISCUSSION QUESTIONS
4 C H A P T E R Forecasting DISCUSSION QUESTIONS 1. Qualitative models incorporate subjective factors into the forecasting model. Qualitative models are useful when subjective factors are important. When
Indian School of Business Forecasting Sales for Dairy Products
Indian School of Business Forecasting Sales for Dairy Products Contents EXECUTIVE SUMMARY... 3 Data Analysis... 3 Forecast Horizon:... 4 Forecasting Models:... 4 Fresh milk - AmulTaaza (500 ml)... 4 Dahi/
MATERIAL PURCHASING MANAGEMENT IN DISTRIBUTION NETWORK BUSINESS
MATERIAL PURCHASING MANAGEMENT IN DISTRIBUTION NETWORK BUSINESS Turkka Kalliorinne Finland [email protected] ABSTRACT This paper is based on the Master of Science Thesis made in first half of
Studying Material Inventory Management for Sock Production Factory
Studying Inventory Management for Sock Production Factory Pattanapong Ariyasit*, Nattaphon Supawatcharaphorn** Industrial Engineering Department, Faculty of Engineering, Sripatum University E-mail: [email protected]*,
A Regional Demand Forecasting Study for Transportation Fuels in Turkey
A al Demand Forecasting Study for Transportation Fuels in Turkey by Özlem Atalay a, Gürkan Kumbaroğlu Bogazici University, Department of Industrial Engineering, 34342, Bebek, Istanbul, Turkey, Phone :
Planning Demand For Profit-Driven Supply Chains
Demand Planning for Profit-Driven Supply Chains epaper / Adexa Common epaper Series Pitfalls in Supply Chain System Implementations Author: William H. Green Planning Demand For Profit-Driven Supply Chains
Sales Forecasting System for Chemicals Supplying Enterprises
Sales Forecasting System for Chemicals Supplying Enterprises Ma. Del Rocio Castillo E. 1, Ma. Magdalena Chain Palavicini 1, Roberto Del Rio Soto 1 & M. Javier Cruz Gómez 2 1 Facultad de Contaduría y Administración,
BEST PRACTICES IN DEMAND AND INVENTORY PLANNING
WHITEPAPER BEST PRACTICES IN DEMAND AND INVENTORY PLANNING for Food & Beverage Companies WHITEPAPER BEST PRACTICES IN DEMAND AND INVENTORY PLANNING 2 ABOUT In support of its present and future customers,
Package SCperf. February 19, 2015
Package SCperf February 19, 2015 Type Package Title Supply Chain Perform Version 1.0 Date 2012-01-22 Author Marlene Silva Marchena Maintainer The package implements different inventory models, the bullwhip
Sales Forecasting & Production Planning
Sales Forecasting & Production Planning Presented by Dr. K. Lai Excel spreadsheet templates are available: Several templates will be provided: Historical Data Worksheet Sales Forecast Worksheet Shipment
REGRESSION MODEL OF SALES VOLUME FROM WHOLESALE WAREHOUSE
REGRESSION MODEL OF SALES VOLUME FROM WHOLESALE WAREHOUSE Diana Santalova Faculty of Transport and Mechanical Engineering Riga Technical University 1 Kalku Str., LV-1658, Riga, Latvia E-mail: [email protected]
Demand management activities in any global supply chain consist of three. Demand Management
05-Mentzer-45000.qxd 6/12/2006 2:52 PM Page 65 5 Demand Management John T. Mentzer Mark A. Moon Dominique Estampe Glen Margolis Demand management activities in any global supply chain consist of three
Forecasting method selection in a global supply chain
Forecasting method selection in a global supply chain Everette S. Gardner, Jr. * Department of Decision and Information Sciences C.T. Bauer College of Business 334 Melcher Hall, Houston, Texas USA 77204-6021
Integrated Resource Plan
Integrated Resource Plan March 19, 2004 PREPARED FOR KAUA I ISLAND UTILITY COOPERATIVE LCG Consulting 4962 El Camino Real, Suite 112 Los Altos, CA 94022 650-962-9670 1 IRP 1 ELECTRIC LOAD FORECASTING 1.1
FORECASTING MODEL FOR THE PRODUCTION AND CONSUMPTION OF COTTON FIBER VERSUS POLYESTER
1 FORECASTING MODEL FOR THE PRODUCTION AND CONSUMPTION OF COTTON FIBER VERSUS POLYESTER Elisa Mauro Gomes Otávio Lemos de Melo Celidonio Daniel Latorraca Ferreira Leandro Gustavo Alves Johnnattann Pimenta
APPLICATION OF SIMULATION IN INVENTORY MANAGEMENT OF EOL PRODUCTS IN A DISASSEMBLY LINE
APPLICATION OF SIMULATION IN INVENTORY MANAGEMENT OF EOL PRODUCTS IN A DISASSEMBLY LINE Badr O. Johar, Northeastern University, (617) 3737635, [email protected] Surendra M. Gupta, Northeastern University,
Students will become familiar with the Brandeis Datastream installation as the primary source of pricing, financial and economic data.
BUS 211f (1) Information Management: Financial Data in a Quantitative Investment Framework Spring 2004 Fridays 9:10am noon Lemberg Academic Center, Room 54 Prof. Hugh Lagan Crowther C (781) 640-3354 [email protected]
Aligning Supply Chain Strategies with Product Uncertainties. Lee, Hau L. California Management Review, Vol. 44, No. 3, (2002) pp.
Aligning Supply Chain Strategies with Product Uncertainties 1 Lee, Hau L. California Management Review, Vol. 44, No. 3, (2002) pp. 105-119 April 1 3, 2013 Overview 2 Issue addressed Fit into broader field
Research of Female Consumer Behavior in Cosmetics Market Case Study of Female Consumers in Hsinchu Area Taiwan
usiness, 2010, 2, 348-353 doi:10.4236/ib.2010.24045 Published Online December 2010 (http://www.scirp.org/journal/ib) Research of Female Consumer Behavior in Cosmetics Market Case Study of Female Consumers
DETERMINANTS OF GROCERY STORE SALES: A MULTIPLE REGRESSION APPROACH
ABSTRACT DETERMINANTS OF GROCERY STORE SALES: A MULTIPLE REGRESSION APPROACH by Larry R. Woodward University of Mary Hardin-Baylor 900 College St. Belton, Texas 76513 [email protected] 254-295-4648 Grocery
THINK DEVISE CALCULATE ENVISION INVENT INSPIRE THINK DEVISE CALCULATE ENVISION INV
Issue 4 June 2006 FORESIGHT The International Journal of Applied Forecasting THINK DEVISE CALCULATE ENVISION INVENT INSPIRE THINK DEVISE CALCULATE ENVISION INV SPECIAL FEATURES Forecasting for Call Centers
Operations Research in BASF's Supply Chain Operations. IFORS, 17 July 2014
Operations Research in BASF's Supply Chain Operations IFORS, 17 July 2014 Information Services & Supply Chain Operations is the business solutions provider for BASF Group Competence Center Information
RELEVANT TO ACCA QUALIFICATION PAPER P3. Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam
RELEVANT TO ACCA QUALIFICATION PAPER P3 Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam Business forecasting and strategic planning Quantitative data has always been supplied
INDUSTRIAL STATISTICS AND OPERATIONAL MANAGEMENT
INDUSTRIAL STATISTICS AND OPERATIONAL MANAGEMENT 6 : FORECASTING TECHNIQUES Dr. Ravi Mahendra Gor Associate Dean ICFAI Business School ICFAI HOuse, Nr. GNFC INFO Tower S. G. Road Bodakdev Ahmedabad-380054
Improvement of Demand Forecasting Accuracy: A Method Based on Region-Division
The 7th International Symposium on Operations Research and Its Applications (ISORA 08) Liiang, China, October 31 Novemver 3, 2008 Copyright 2008 ORSC & APORC, pp. 440 446 Improvement of Demand Forecasting
Development of the Adaptive Forecasting Model for Retail Commodities by Using Leading Indicator: Retailing Rule Based Forecasting Model (RRBF)
WCECS 9, October 2022, 9, San Francisco, USA Development of the Adaptive Forecasting Model for Retail Commodities by Using Leading Indicator: Retailing Rule Based Forecasting Model (RRBF) Monrudee Lertuthai,
Contents. Chapter 1 Introduction to Sales Management 3-16. Chapter 2 The Sales Organization 17-40. Chapter 3 Sales Functions and Policies 41-54
Contents Part- I: The Sales Perspective Chapter 1 Introduction to Sales Management 3-16 Chapter 2 The Sales Organization 17-40 Chapter 3 Sales Functions and Policies 41-54 Chapter 4 Personal Selling 55-80
A-LEVEL BUSINESS Paper 3 Specimen Assessment Material. Mark scheme
A-LEVEL BUSINESS Paper 3 Specimen Assessment Material Mark scheme Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers.
Forecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron Szász-Gábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
Analysis of Various Forecasting Approaches for Linear Supply Chains based on Different Demand Data Transformations
Institute of Information Systems University of Bern Working Paper No 196 source: https://doi.org/10.7892/boris.58047 downloaded: 16.11.2015 Analysis of Various Forecasting Approaches for Linear Supply
A LOT-SIZING PROBLEM WITH TIME VARIATION IMPACT IN CLOSED-LOOP SUPPLY CHAINS
A LOT-SIZING PROBLEM WITH TIME VARIATION IMPACT IN CLOSED-LOOP SUPPLY CHAINS Aya Ishigaki*, [email protected]; Tokyo University of Science, Japan Tetsuo Yamada, [email protected]; The University
FY16 1Q Performance Summary (As detailed on this page.)
1 2 FY16 1Q Performance Summary (As detailed on this page.) 3 Consolidated / Non-Consolidated 1Q P/L Overview While revenue was up and earnings were down for the 1Q (April 1, 2015 to June 30, 2015) of
Fundamentals Level Skills Module, Paper F9
Answers Fundamentals Level Skills Module, Paper F9 Financial Management June 2008 Answers 1 (a) Calculation of weighted average cost of capital (WACC) Cost of equity Cost of equity using capital asset
Forecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
Factors Influencing Price/Earnings Multiple
Learning Objectives Foundation of Research Forecasting Methods Factors Influencing Price/Earnings Multiple Passive & Active Asset Management Investment in Foreign Markets Introduction In the investment
The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
15. How would you show your understanding of the term system perspective? BTL 3
Year and Semester FIRST YEAR II SEMESTER (EVEN) Subject Code and Name BA7201 OPERATIONS MANAGEMENT Faculty Name 1) Mrs.L.SUJATHA ASST.PROF (S.G) 2) Mr. K.GURU ASST.PROF (OG) Q.No Unit I Part A BT Level
Agenda. Managing Uncertainty in the Supply Chain. The Economic Order Quantity. Classic inventory theory
Agenda Managing Uncertainty in the Supply Chain TIØ485 Produkjons- og nettverksøkonomi Lecture 3 Classic Inventory models Economic Order Quantity (aka Economic Lot Size) The (s,s) Inventory Policy Managing
Comparative Study of Demand Forecast Accuracy for Healthcare Products Using Linear and Non Linear Regression
International Journal of Business and Management Invention ISSN (Online): 2319 8028, ISSN (Print): 2319 801X Volume 3 Issue 5ǁ May. 2014 ǁ PP.01-10 Comparative Study of Demand Forecast Accuracy for Healthcare
Case Study on Forecasting, Bull-Whip Effect in A Supply Chain
International Journal of ISSN 0974-2107 Systems and Technologies Vol.4, No.1, pp 83-93 IJST KLEF 2010 Case Study on Forecasting, Bull-Whip Effect in A Supply Chain T.V.S. Raghavendra 1, Prof. A. Rama Krishna
