Discrete-Time Scheduling under Real-Time Constraints

Size: px
Start display at page:

Download "Discrete-Time Scheduling under Real-Time Constraints"

Transcription

1 Dcr- chdulng undr Ral- onran Eduard rny Yuk Wang Moapha Aboulhad aboraor AO Dép d IRO Unvré d Monréal Dp EE oncorda Unvry Monréal Québc anada Abrac W nroduc a n hod for chdulng undr ral- conran ha uabl for ynchronou y plnaon h npu pcfcaon n h for of ng dagra n hch h occurrnc of gnal ranon or acon ar rlad by lnar conran xprng h aupon on h npu acon h nvronn and h con on h oupu acon Provdd ha h pcfcaon caual gv an algorh for drvng AAP and AAP rlav chdul for h oupu acon W hn prn a n algorh for drnng hhr a gvn clock prod corrc Bad on a chdul and a vald clock prod ranfor h pcfcaon no a dcr rlav chdul uch a chdul rv a h ba for plnng a ynchronou a-achn conrollr Kyord: ng dagra rlav chdulng ral- conran ynchronou a achn Inroducon Hgh-lvl ynh of dgal hardar for ral- applcaon 0 a ll a h ynh of nrfac randucr and conrollr 4 rqur o prfor chdulng of acon and opraon undr xplc ral- conran In opraon h unknon duraon r odld ung unboundd dlay fro h ar of uch an opraon o h ar of any uccor opraon ha dpndd on nar ng conran r ud o rrc h occurrnc of opraon rlav o ach ohr nc lnar conran ay po rrcon on h paraon of h anchor opraon hu akng h pcfcaon unralzabl for all pobl duraon of h anchor opraon h auhor of dfnd h o-calld ll-podn condon of h ng conran of h pcfcaon In nrfac randucr ynh h uaon o o xn lar n ha vn ar conrand by ng onran lnar la and arl 4 7 Hr vn uually rprn gnal ranon or nablng uaon for daa o appar on bu h ynh ha hovr uch n coon h h probl of chdulng undr ral- conran ud n hgh-lvl ynh In h papr dcrb a rlav chdulng hod for pcfcaon nprd by ng dagra a foralzd n In uary h an dnguhng characrc of our approach ar a follo: - Inad of dalng h opraon ha hav duraon and gnal ranon vn condr only nananou acon h hn can b ud n par o dl h ar and h nd of an opraon or o odl ndvdually o pcfc vn or gnal ranon n h y h approach ha bn qu ffcv n odlng y ung ral- proc algbra - W xplcly dnguh oupu or nrnal acon ho occurrnc undr h conrol of h ynhzd dvc and npu acon ho occurrnc conrolld by h nvronn In boh ca h occurrnc of an acon ay b rrcd by h occurrnc of o prcdng acon npu or oupu W allo lnar la and arl yp of ng conran hovr n h papr condr only lnar conran nc h ar h ourc of noncaualy n D pcfcaon and rqur pcal chnqu for drvng chdul - o provd an for dcrbng ng aupon ha can b ad on h occurrnc of npu acon and h l on h racon of h oupu acon dnguh o knd of ng conran au and co rpcvly h allo o a ha aupon ar ad on h nvronn and hn ak h nforaon no accoun durng ynh aupon-bad raonng; h or ralc han aung ha any duraon of ay an npu opraon pobl - Allong fn aupon conran rqur a gnralzaon of h ll-podn condon of h y of conran W hav rcognzd h n h conx of nrfac pcfcaon and hr copably vrfcaon 5 a a probl of caualy aualy condon allo u o u a or coplx rucur of a pcfcaon han n uch ha h npu and oupu acon can b nrxd a n ng dagra h conrbuon of h prn papr ar: - A hod prnd for drvng a rlav chdul for oupu and nrnal acon rlav o h o-calld rggr acon 5 W can guaran h xnc of h chdul only f h pcfcaon caual

2 - h ng conran can b gvn n dn h ral hovr hardar plnaon ofn carrd ou ung ynchronou dgn chnqu hr all opraon ar ynchronzd o a coon clock of prod W prn a hod for vrfyng ha a prod vald and hn produc a dcr- rlav chdul for h oupu acon n hch h un h clock ck uch a chdul can b ud n xng ynh hod g 0 h hodology cnrd around h o calld Hrarchcal Annoad Acon Dagra HAAD 7 8 af dagra corrpond o h ng dagra ud a h ba for ynh n h papr h hrarchcal dagra for or coplx bhavor ung copoon opraor ovr laf and ohr hrarchcal dagra h opraor ar nprd by proc algbra paralll h caual rndz-vou councaon concanaon loop dlayd choc and xcpon handlng All dagra can alo b annoad by VHD procdur varabl and prdca For a uful ub of h pcfcaon languag hav dfnd h foral anc and provdd axoazaon 9 ncludng convron o a noral for ha can b ud o ranfor h pcfcaon o a nork of d Auoaa for vrfcaon ung xng ool Furhror h vrfcaon of caualy and copably on laf-lvl dagra can b ffcnly carrd ou ung onran ogc Prograng bad on Rlaonal Inrval Arhc 0 h papr organzd a follo: con nroduc bac concp abou ng dagra caualy and chdulng con 3 dcrb h drnaon of a vald clock prod and h drvaon of a dcr- rlav chdul; alo conan a copl xapl con 4 conclud h prnaon Background Inforaon ng dagra and h caualy propry In h con nroduc o background concp abou ng dagra vn graph of ng dagra and h caualy propry 5 7 Dfnon : hr a global varabl ha ncra onooncally h currn h valu of h varabl Inally h global varabl r o o ral valu τ E { n }b a of vn A -ap varabl aocad h ach vn ; x an ha occur hn h valu of h varabl bco x urrn and ap ak on fn pobly unboundd ral valu Dfnon : E { n } b a of vn c l u rprn h conran l - u on h paraon bn h occurrnc of E W call h ourc and h nk of h conran A conran c l u a prcdnc conran f u l > 0 and a concurrncy conran f u 0 l E n E h of all npu vn and E ou E h of all oupu vn E n E ou E E n E ou Dfnon 3: A ng dagra D E drnd by of vn E and h of conran ovr E A conran c l u uch ha and ar of dffrn drcon u b a prcdnc conran h conran n hav on of o pobl nn I an au conran f h nk an npu vn; ohr a co conran Au conran dl h xpcd or aud bhavor of h nvronn hl h co conran dfn h l on h occurrnc of h oupu vn In ohr ord h dvc plnaon u afy h co conran provdd ha h nvronn af h aupon Dfnon 4: ondr a ng dagra D E h c l u h vn graph EG V Eg of D a drcd ghd graph hr h vrx V E and for ach conran c l u n D hr ar o dg n E g labld by u and labld by -l ; h labl calld h gh of h dg An dg n EG labld by gh rprn h conran ha a o-dd conran n D rprnd by o on-dd conran n EG Exapl : Fgur a ho a D hr E ou { 3 } E n { 4 } h conran l u and 3 l 3 u 3 ar au conran h ohr o ar co conran I corrpondng EG gvn by Fgur b Au o n l u l 4 u 4 -l -l 4 u ou 4 ou u 4 u 34 4 l 3 u 3 -l 3 u 3 -l 34 3 n a Fgur : a apl ng Dagra D 3 b b corrpondng Evn graph

3 A pah p n EG fro o a qunc of dg k- k k A cycl a pah p h gh of a pah h u of h gh of all dg along h pah h hor pah fro o h pah ho gh h all fro aong all h pah fro o h conran y conn f hr no cycl h ngav gh n EG ohr nconn 3 An vn graph can b chckd alon for conncy hch a nal for of ralzably I aur ha h conran y ha a oluon and hu an occurrnc can b agnd o vry vn A pond ou n h noon of conncy of h vn graph of a D nuffcn for conrucng corrc plnaon In fac nconncy a pcal ca of non-caualy W no nroduc caual D 5 7: Dfnon 5: In an EG h axu paraon fro vn o vn dfnd a ax - hr and afy h D conran 9 If ax - < 0 hn vn rcly prcd vn I ll knon ha h axu paraon fro o h hor danc fro o n EG 3 W dcrb nx h xcuon anc of h odl undrlyng a D pcfcaon hy ar bad on h noon of a block of vn Dfnon 6: ondr h vn graph EG of a ng dagra D E {EB } b a paron ovr h vn E EB EB EB EB E n or EB E ou Each EB calld an vn block E { k EB l EB uch ha hr an dg fro k o l or fro l o k } E conan all vn fro EB rlad by a conran o o vn n EB h block EB h prdcor of h block EB dnod by EB prdeb f vn E rcly prcd all vn EB ax - < 0 In h ca h vn n E ar calld h rggr of EB n EB h local conran of EB ar ho conran of ha rla par of vn n EB or rla vn n EB o rggr h paron { EB }u alo afy h follong propry: Propry : For all par of block EB EB { EB } f E hn hr EB prdeb or EB prdeb In a conn h rlaon prd nduc a paral ordr < ovr block An vn block EB nabld hn all rggr vn hav occurrd EB bco nabld a f h la rggr occurrd a An nabld vn block EB fxd hn h occurrnc of all vn ar agnd a valu uch ha h local conran of h block ar afd gvn h occurrnc of h rggr If no uch agnn x hn h block canno b fxd Dfnon 7: A paron { EB }of EG caual ff af Propry and vry vn block can b nabld and fxd A D caual f EG ha a caual paron hor 5 7: A D caual ff for ach par of rggr of ach block h axu paraon bn h rggr a copud ung h local conran of h block rcly grar han h axu paraon of ha par copud ovr h nr EG In h r of h papr au ha all D ar caual h a paron { EB } chdulng of vn undr D conran In h prcdng con nroducd o knd of conran n D: au and co W can chdul only h oupu vn conrolld by h co conran nc h npu vn rlad by h au conran ar conrolld by h nvronn In h con prn chdulng algorh for oupu vn of a caual D o of h concp nroducd hr ar lar a n 0 Dfnon 8: A chdul of a D a funcon ha agn an occurrnc o ach oupu vn uch ha all co conran n h ng dagra ar afd gvn any occurrnc of h npu vn afyng h au conran and h occurrnc of prcdng oupu vn uch an agnn of occurrnc calld a vald agnn W fr dcrb a hod o fx an oupu block aung ha all rggr hav occurrd h copl chdul for a caual D can hn b oband block by block follong any oal ordr drvd fro h paral ordr bn block con ondr a block EB { } h rggr r {r } and l h occurrnc of rggr r b h occurrnc of vn EB a funcon of gvn by h local conran of EB: k k k and k b h hor danc fro r o k and h hor danc fro o r k k a : For any vn EB and a rggr r of EB h follong rlaon hold: - and - hr and ar h gh bn and r For any o vn and n EB and an dg fro o h gh h rlaon and hold 3

4 Proof: h follo drcly fro h dfnon of h hor pah nc a pah gh and n a conn conran graph u hav 0 no ngav cycl larly for uppo ha < hrfor h hor danc fro r o no bcau h pah undrlyng and h dg fro o for a horr pah - conradcon QED a : In a caual D for all vn EB rggr and h local conran of EB h follong hold: ax { } n{ } hr h occurrnc of rggr r r r r r Proof: r and r b any o rggr of EB and EB h danc of h hor pah fro r o r ung local conran of EB and pang hrough nc h y caual by hor hav - < hch nduc h condon - < h hold for any par r r ; hrfor ax { } n{ } QED r r r r Propoon : For all vn EB and all rggr r r of EB h follong hold: ax { } n{ } r r r r Proof: For any rggr r and vn - r r hnc n{ } W can r r prov h ohr half of h nqualy n a lar fahon Q E D orollary : For all EB n{ } a vald occurrnc agnn o ax{ } r r hr n or ax ud for all bu no xd hn on block n gnral Proof: W nd o prov ha for any rggr r and any par of vn and h follong condon ar afd - and - and - W fr prov nc n{ } hr x rggr r a and R b uch ha r r r r a n{ } a and b b n{ } Bad on h dfnon of and hav r r r r a a b b b b a a and hn - a a - a a a - a and - b b - b b b - b boh by a Hnc provn Nx prov r b an arbrary rggr of EB nc a a n{ } hav r By a ax { } rr r r Hnc - I follo ha - - and - Q E D Dfnon 9: Dno h hor danc fro k o r a - k r k and b h hor danc fro r o a k k r k h nrval ax{ r } n{ r } calld h fabl nrval of dnod by Morovr and ar calld h a-oon-a-pobl AAP and h a-la-a-pobl AAP yp of rlav chdul of h oupu vn rpcvly 3 Dcr- chdul W dcu hr h convron of h dn- D pcfcaon no a of dcr- rlav chdul ha can b plnd ung apld npu ynchronou fn a achn ynchronzd by a clock of prod uch a achn can b ud a h nrfac conrollr bn h nvronn and a ynchronou dvc ha run fro h a clock a h conrollr or a a conrollr n hgh-lvl ynh undr ral- conran f h vn of a D rprn h acvaon and dacvaon of o hgh-lvl opraon Fgur llura a apld npu ynchronou FM W ll gv an algorh o drn hhr a clock prod of h FM vald for plnng h conrollr hn hall prn an algorh for ranlang h ng dagra pcfcaon no chduld vron n dcr hr h un a clock ck 4

5 ynchronzr Prary npu P I prn a P clock obnaonal crcu clock nx a N Prary oupu P O clock Fgur : A apld npu Moor FM nc n gnral h npu ar no ynchronou h h FM clock hy u b fr ynchronzd W au ha h pl ynchronzr ud conng of a ynchronou aplng rgr ha nroduc a on-cycl dlay h propod oluon can b adapd o h ca hr a or coplx ynchronzr ha nroduc a dlay of k > cycl ud In ordr no o any npu gnal ranon u ak ur ha h clock ha a uffcnly hor prod o apl h npu gnal bn any o concuv chang a dfnd by h au conran of h D For conrollng h oupu gnal n a pcfd by h D alo plac a rgr a h oupu o a o hav br conrol ovr h cobnaonal oupu dlay Du o h rgr any oupu chang u b chduld a la on clock cycl afr dcng h la rggr vn h npu o h FM ar h apld npu valu I an ha npu vn u b drnd by xanng h dffrnc bn concuv apld npu valu Evn hough can hu dc h occurrnc of npu vn canno drn hr xac occurrnc ; hn o nrval drnd by h D and h clock prod In h nx con ho ho o fnd h nrval and ho o drn hhr a gvn clock prod vald 3 lock Prod Drnaon In h hod nroducd n h clock prod pcfd by h dgnr and h ool o vrfy ha h prod conn h h conran Hovr hr no algorh gvn o do ha A lar probl x n 3 hr h ynh of d VHD proc dcud In 8 o drn f vald h a achn of h conrollr u b conrucd fr h coplx ynh ak hu u b carrd ou o fnd ou ha h oluon nfabl In addon h hod canno handl lnar au and co ng conran In our approach h valdy of drnd by analyzng h ng conran only Rcall ha an vn block EB { n } ha a rggr r {r r r } An occurrnc agnn o vn of an vn block a funcon ha drn h valu of ach uch ha all h local conran of h ng dagra ar afd gvn h occurrnc of h rggr of h block o drn ha a nubr a vald clock prod hav o chck hhr hr an occurrnc agnn ha af all h conran h rpc o W hu condr h follong o quon: Drn f a vald clock prod and fnd a dcr- chdul n hch h un of Bad on h oluon o can u a bnary arch o fnd h larg vald Evry ru rggr occurrnc ha an aocad aplng a hch dcd b h aplng of r ho ral occurrnc h ru rggr and h aocad aplng u afy h follong of conran hr r and r ar arbrary rggr > 0 an ngr 0 < 3 Rlaon an ha h aplng of rggr can only happn a ulpl of h clock prod Rlaon a ha h dffrnc bn h aplng and h ral of a rggr n h nrval 0 and Rlaon 3 conran h dffrnc bn o dffrn rggr occurrnc o b n h nrval a gvn n h vn graph Dfnon 0: h of pobl ru rggr aocad h ach aplng { 0 ; } < ax b h la valu uch ha for any 5

6 ax n b h gra valu afyng n Exapl : ondr h vn graph hon n Fgur 3 and au ha ach vn on a dffrn por r and r b npu vn and O an oupu vn Whou lo of gnraly can au ha h aplng of h npu r 0 3 h aplng of r can b 3 6 or 9 rlav o 0 r - -5 r Fgur 3: Evn Graph of Exapl For 0 and 3 h ru rggr and afy 5 7 fro 3 and 3 < 0 and 0 < 3 fro h aocad ru rggr 03 { < 0 0 < 3} h ax 03 3 n 03 ax03 - n 03-3 larly for 0 and 6 h ru rggr 06 { < 0 3 < 6} hrfor ax 06 6 and n 06 3 ax03 0 n03-3 Fnally for 0 and 9 h ru rggr 09 { < 06 < 9 } yldng ax 09 7 and n 09 6 a hon by h rangl GFE ax03 0 n03 - nc chdulng h occurrnc of any oupu vn EB { n } can b don only n ulpl of rlav o h aplng rggr u o rprn h ynchronzd occurrnc of h oupu h follong u hold for any rggr r { r r r} : k 4 h a ha all h pobl rggr n har h a chdul for h oupu vn; orovr h dffrnc bn h oupu vn and h aplng of h rggr a ulpl of h clock prod I follo fro 4 ha for any o oupu vn and dvbl by h conran can hu b odfd a h gh can b changd o O Fnally h local conran of h block u b afd For any oupu vn and and any rggr r h follong rlaon u b afd: 5 6 Bad on h rul of oupu chdulng Propoon for ach rggr uch ha h pobl occurrnc agnn o an oupu vn u hu b n h nrval ax { r } n{ r } hrfor f o b a vald clock prod hn for ach oupu vn hav ax{ r } n{ r } hr h nrcon of nrval dfnd a ab cd axac nbd If axac > nbd hn ab cd I follo ha hr ax{ r } n{ r } df n n 6

7 7 } } { ax ax{ }} {ax{ ax r r n } {ax ax r for any ax and } } { n n{ }} {n{ n r r n } {n n r for any n Propoon : Gvn a of aplng }} { { r r r r f for all oupu vn h rlaon 7 afd hn h } { EB a vald AAP occurrnc agnn for h vn n h oupu vn block If 7 do no hold hn hr no occurrnc ha af all h conran Proof: If > hn no valu n h nrval dvbl by hrfor n h ca hr no vald occurrnc agnn for a a ulpl of rlav o h apld occurrnc of h rggr No ha h AAP chdul xprd n clock cycl u b grar or qual o on o ak no accoun h dlay nroducd by h oupu rgr uppo no ha 7 hold W nd o prov ha h } } { { n EB a vald occurrnc agnn for h vn n EB for any rggr r and any par of vn and h follong condon u b afd: ; and Hovr r } {ax ax and hu hr x rggr r uch ha } {ax r and r uch ha ax r hr and ar o non-ngav nubr l han uch ha and can b dvdd by I follo ha : ax ax r r ax ax r r hrfor for an arbrary rggr r n ax ax r r r n Bad on and h follong dducon ay o follo ax ax r r r r On h ohr hand and ar dvbl by < hu W no prov Bad on h follong nqual hold r r ax n r r QED orollary : For o b a vald clock prod condon 7 u b afd for all pobl aplng of h rggr

8 Exapl 3: ondr agan h vn graph n Fgur 3 W h o drn hhr 3 vald h pobl rggr aplng ar 0; 3 6 and 9 For ach pobl vrfy 7 ung Propoon : 03 o ax{ ax03 ax03 5} ax{- 35}9 03 o o n{n03 4 n03 8 n o ax{ ax06 ax06 5} ax{0 65} 06 o o n{n06 4 n06 8 n nc 3 * 06 o3 > 06 o3 hr no fabl agnn for o: hn h aplng rggr ar 0 6 h ru rggr could b 0 6; hrfor o afy h o conran h oupu ha o b grar han and dvbl by 3 hch Furhror h ru rggr could alo b -5 3 If h oupu h dffrnc bn r and o 45 >4 volang h axu bound of 4 on h paraon bn o and r If chang h conran by rplacng o r - by o r -; r o 8 by r o 0 r o 4 by r o 5 can hn vrfy ha 3 bco a vald clock prod 03 o ax{ ax03 ax03 5} ax{- 35}0 03 o o n{n03 5 n03 0 n o ax{ ax06 ax06 5} ax{0 65} 06 o3 4 o n{n 5 n 0 n o ax{ax ax 5 ax{0 7 5} 09 o o n{n 5 n 0 ax{ 56 0} r - -5 r Fgur 4: Modfd vn graph hrfor h agnn o af all h pobl npu aplng O o drn h occurrnc of h vn n an oupu block gvn a vald only nd o kno h axu paraon r and r bn h oupu vn and h rggr hr h axu paraon ar copud ovr h co conran h gh adud o ulpl of h clock prod a Onc h axu and nu paraon ar copud hr no nd o kp h conran bn h oupu vn bcau h occurrnc agnn bad on h axu and nu paraon af all h orgnal ng conran bn h oupu vn provdd ha h npu afy all h aupon and h D caual I follo ha can odfy h vn graph o ha h conran bn h rggr and h oupu vn ar of h for r and r h rulng D hu ha no oupu o oupu conran n h a vn block bu all h vn u b chduld a AAP or a AAP h abov proc uarzd n h follong algorh ha copu h occurrnc chdul for oupu vn n a caual D gvn a vald clock prod Algorh Gvn a vald odfy h conran bn oupu vn and fro o For ach oupu block copu h axu paraon r and r of ach vn h rpc o h rggr a dfnd by h local conran of h block Rplac h conran bn vn and hr rggr by h axu paraon rlav o h rggr Rov all conran bn oupu vn n h a block 8

9 3 For ach oluon of quaon and 3 vrfy ha condon 7 hold If 7 do hold for all ca can chdul AAP h occurrnc a { EB} Exapl 4: Nx ho a or coplx xapl h D and block rucur hon n fgur 5 W apply h abov algorh o drn f 0 a vald clock prod and f y hn copu h dcr- rlav AAP chdul for h oupu vn o o o3 o o o o Fgur 5: Block rucur of xapl 4 Fgur 6: Modfd graph oupu parad by ulpl of clock prod Accordng o p odfy h conran bn oupu vn o h ulpl of 0 and oban h vn graph of Fgur 6 In h nx p calcula h hor danc bn h oupu vn and h rggr and hn odfy h conran o h oupu vn Fgur 7 gv h n odfd D h block rucur no hon n h D hovr h a a n Fgur o 5 60 o o 0 60 o o4 Fgur 7: Modfd D afr p of h algorh Whn 0 hav o pobl aplng for h npu vn and hch ar 0 0 and 0 hrfor hav ax00 0 n00-0 ax00 0 n00-0 ax00 0 n00-5 ax00 5 and n00 0 h chdul of h oupu vn o o and o 3 ar drnd a follo No ha h conran for o and o ar xacly h a hrfor only nd o calcula on of chdul o ax{ax o ax o } ax{0 50 5} o n{n00 o n00 o } n{ } 0 W can fnd h ohr valu n a lar ay: 00 o o o 0 00 o 5 00 o o 3 55 hrfor h AAP chdul : or 3 W nx condr h 0 block h only on vn 3 Gvn 0 or h aplng of or 6 Ung AAP chdulng hav 4 oncluon In h papr a n ay for chdulng vn undr ral- conran and for h ynh of nrfac conrollr bad on ng dagra pcfcaon a dcrbd h hod allo o drn a vald clock prod and uabl for ynchronou y plnaon An algorh for drvng AAP and AAP rlav chdul 9

10 for h oupu acon a prnd for caual pcfcaon Expcd applcaon of h hod rang fro hgh-lvl ynh o h ynh of apld-npu ynchronou nrfac conrollr Rfrnc M McFarland A Parkr R apoano "h hgh-lvl ynh of dgal y" Proc of h IEEE No Fbruary 990 G Borrllo R H Kaz "ynhzng randucr fro nrfac pcfcaon" VI 87 Norh Holland J Brzozok Gahlngr and F Mavadda "onncy and afably of Wavfor ng pcfcaon" Nork Vol pp G Borrllo "Foralzd ng Dagra" Proc Euro-DA 9 pp nk "Exndd ng Dagra a a pcfcaon languag" Proc Euro-DA 94 pp R chlor "A provr for VHD-bad hardar dgn" Proc IFIP HD K McMllan and D Dll "Algorh for nrfac ng vrfcaon" Proc IEEE ID 99 8 E Walkup G Borrllo "Inrfac ng Vrfcaon h Applcaon o ynh" Proc DA Yn A Ih A aavan W Wolf "Effcn Algorh for nrfac ng vrfcaon" Euro-DA G D Mchl ynh and Opzaon of Dgal rcu McGra-Hll Inc N York 994 W Gra Grob nk and W dann "ng dagra a a pcfcaon languag for nrfac crcu and hr ranforaon no ynchronou FM" BENEFI-DMM 95 pp80-35 p 995 W dann "An approach o ul-paradg conrollr ynh fro ng dagra pcfcaon" Euro- DA P Gubrl W Ronl "Inrfac pcfcaon and ynh for VHD Proc" Euro-DA K Khordoc E rny "Modlng cll procng hardar h acon dagra" Proc IA K Khordoc E rny anc and Vrfcaon of ng Dagra h nar ng onran accpd o AM ranacon on Dgn Auoaon of Elcronc y ODAE May p 6 P Mochlr H Aann F Pllandn "Hgh-vl Modlng ung Exndd ng Dagra" Proc Euro- VHD '93 Haburg FRG p 993 pp K Khordoc Acon Dagra: A Mhodology for h pcfcaon and Vrfcaon of Ral- y PhD h Dp of Elcrcal and opur Engnrng McGll Unvry March W-D dann "Inroducng lock ycl" Rpor OPRODEUPA995 Unvry of Paau Nov995 9 B Brkan Gandrabur E rny Algbra of ouncang ng har for Dcrbng and Vrfyng Hardar Inrfac Proc IFIP onf on opur Hardar Dcr anguag HD P Groda E rny WJ Oldr olvng nar Mn and Max onran y Ung P bad on Rlaonal Inrval Arhc J on hor op cnc 73 Fb97 P Groda E rny Inrfac ng Vrfcaon h Dlay orrlaon Ung onran ogc Prograng ED& 97 D Ku G D Mchl Rlav chdulng undr ng onran: Algorh for Hgh-vl ynh of Dgal rcu IEEE ran AD I 6 Jun 99 pp Acknoldgn: h ork a parally uppord by an Mcron Gran No 4M 0

Term Structure of Interest Rates: The Theories

Term Structure of Interest Rates: The Theories Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor

More information

DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND

DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND DATA INING TECHNOLOGY IN REDICTING THE CULTIVATED LAND DEAND Lu Yaoln a, *, ao Zuohua a a School of Rsourc and Envronn Scnc, Wuhan Unvrsy, Chna, Wuhan - [email protected] KEY WORDS: Daa nng, Fuzzy Logc Thory,

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics EuroFGI Workhop on IP QoS n Trff Conrol TITOLO A Rvr S Approh for Rl-T Monorng of IP Prforn Mr TESI R. G. Grroppo, S. Gorno, F. Oppno, G. Pro Dp. of Inforon Engnrng Unvry of P 1 Lbon, Porugl, Dbr 6-7,

More information

Pricing Freight Rate Options

Pricing Freight Rate Options Prcng rgh Ra Opon n Kokbakkr a Roar Adland b* gbørn ødal c a Agdr Unvry Collg rvcbox 4 4604 Kranand orway. Emal: [email protected] b Clarkon und anagmn Ld. 3 Lowr ham r London EC3R 6HE Und Kngdom. Emal:

More information

Chapter 4: Thinking Like a Programmer

Chapter 4: Thinking Like a Programmer Cha 4: Thnkng Lk a Pga Pag 53 Cha 4: Thnkng Lk a Pga On f h had hng lan hw hnk lk a ga. A ga n cad by l bk cla b gw f whn an ndvdal. T bc a "gd" ga ak an f chnlgy, lf lanng, bac nllgnc, and a dv ca and

More information

Jesus Performed Miracles

Jesus Performed Miracles F Jonl P Ju Pr Mircl ch f lo Al n fri r b f Li blo n of ick li on Po k r u yi li br o n o y o on y r v y o r b f ch rfriror n -ll cr r p r o y k li Tor n of o ll y r u o kn on r ch n L ch p Ju Hl Officil

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

A Place to Choose Quality, Affordable Health Insurance

A Place to Choose Quality, Affordable Health Insurance MI O A ʼ H A L HI U R A C X C H A G mp w n gm n n af a m ma k a h a b u h a m a M nn ha h n u an x hangw mp v mp nbyn u ag ng n u andha h a p v d p a g a unqua yanda dab y M nn a am w avv $1b nbyu ng hx

More information

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks SRK oaz Poltcha Pozaa Ittut Mcha Stooa ul. Potroo 3, 6-965 Poza EGIEERIG COMPUAIO BY ARIFICIA EURA EWORKS Eplag ural tor ural tor ar copod o pl lt opratg paralll. h lt ar prd b bologcal rvou t. A atur,

More information

Taxes and the present value assessment of economic losses in personal injury litigation: Comment 1

Taxes and the present value assessment of economic losses in personal injury litigation: Comment 1 Taxs and h prsn valu assssmn of conomc losss n prsonal njury lgaon: Commn 1 Sco Glbr Economcs Dparmn Souhrn Illnos Unvrsy Carbondal Carbondal, IL 62901 -mal: [email protected], offc phon: (618) 453-5095 cll

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

An Efficient Load Balancing Algorithm for P2P Systems

An Efficient Load Balancing Algorithm for P2P Systems 648 JOURNA OF OMMUNIATIONS VO 6 NO 8 NOVEMBER An Effcn oad Balancng Algorm for PP Sym Kald Ragab ompur Scnc Dp ollg of ompur Scnc and Informaon Tcnology ofuf Saud Araba abdulawab@fudua Abrac Pr-o-Pr (PP

More information

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB

PSTN. Gateway. Switch. Supervisor PC. Ethernet LAN. IPCC Express SERVER. CallManager. IP Phone. IP Phone. Cust- DB M IPCC EXPRESS Product Solution (IPCC - IP Co n t a c t Ce n t e r ) E i n f ü h r u n g Ü b e r h u nd e r t M il l io ne n N u t ze r - P r o g no s e n zu f o l g e w e r d e n e s in d ie s e m J ah

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Service Capacity Competition with Peak Arrivals and Delay Sensitive Customers

Service Capacity Competition with Peak Arrivals and Delay Sensitive Customers Submd o Managmn Scnc manuscrp Srvc Capacy Compon wh Pak Arrvals and Dlay Snsv Cusomrs Hayan Wang Oln Busnss School, Washngon Unvrsy n S. Lous, S. Lous, MO 6330,USA [email protected] Tava Lnnon Olsn Oln

More information

How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P

More information

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS 1 BASIC DEFINITIONS AND TERMINOLOGY OF SOILS Soil i a thr pha atrial hich coit of olid particl hich ak up th oil klto ad void hich ay b full of atr if th oil i aturatd, ay b full of air if th oil i dry,

More information

CHAPTER 4c. ROOTS OF EQUATIONS

CHAPTER 4c. ROOTS OF EQUATIONS CHAPTER c. ROOTS OF EQUATIONS A. J. Clark School o Enginring Dpartmnt o Civil and Environmntal Enginring by Dr. Ibrahim A. Aakka Spring 00 ENCE 03 - Computation Mthod in Civil Enginring II Dpartmnt o Civil

More information

Future Trends in Airline Pricing, Yield. March 13, 2013

Future Trends in Airline Pricing, Yield. March 13, 2013 Future Trends in Airline Pricing, Yield Management, &AncillaryFees March 13, 2013 THE OPPORTUNITY IS NOW FOR CORPORATE TRAVEL MANAGEMENT BUT FIRST: YOU HAVE TO KNOCK DOWN BARRIERS! but it won t hurt much!

More information

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform Appl Mhmcl Scnc Vol 7 3 no 33-4 HIKARI L wwwm-hrcom Opron rnorm ormul or h nrl Hl Cnoncl Sn rnorm A S uh # n A V Joh * # ov Vrh Inu o Scnc n Humn Amrv M S In * Shnrll Khnlwl Coll Aol - 444 M S In luh@mlcom

More information

The Beer-Bouguer-Lambert law. Concepts of extinction (scattering plus absorption) and emission. Schwarzschild s equation.

The Beer-Bouguer-Lambert law. Concepts of extinction (scattering plus absorption) and emission. Schwarzschild s equation. Lctur. Th Br-Bougur-Lambrt law. Concpt of xtncton cattrng plu aborpton and mon. Schwarzchld quaton. Objctv:. Th Br-Bougur-Lambrt law. Concpt of xtncton cattrng aborpton and mon. Optcal dpth.. A dffrntal

More information

First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a

More information

Lecture 15 Isolated DC-DC converters

Lecture 15 Isolated DC-DC converters ELEC440/940 Lecure 15 olae C-C converer Ofen, he oupu C volage fro a C-C converer u be iolae fro he inpu AC upply. C power upplie for appliance an equipen are goo exaple. i avanageou o have he iolaion

More information

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni: Ognann 4 000g v an udn p v n n da70pa v ngna a B S c hp ud a I ng Ec c 8bun ag np c g B L c annab amacc 70d v naz na ànn c,chdannunapp un àd a nuvam c z da u mnddu an c vabb am magg num d a unz dgnnaz

More information

High Availability Cluster System for Local Disaster Recovery with Markov Modeling Approach

High Availability Cluster System for Local Disaster Recovery with Markov Modeling Approach IJCSI Inrnaonal Journal of Compur Sn Iu Vol. No. 9 ISSN (Onln): 9-78 ISSN (rn): 9-8 g Aalably Clur Sym for Loal Dar Rory w Marko Modlng Approa..Lwn and.n Unry of Compur Sud Yangon Myanmar Abra nd for g

More information

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very

More information

Director s Statement

Director s Statement " b f u gh Th ngb h f h h y ung h h n f h n y p h ChGu m nwh nh d' T u n b nd n ' " A W k, h, ThC Pu p O F F C A L S E L E C T O N S u F mf 2 9 P C n : m z @m y b f nk m m 415 5 48 6 4 MAY BE FRANK Fnk

More information

New Basis Functions. Section 8. Complex Fourier Series

New Basis Functions. Section 8. Complex Fourier Series Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting

More information

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15 Acceptance Page 2 Revision History 3 Introduction 14 Control Categories 15 Scope 15 General Requirements 15 Control Category: 0.0 Information Security Management Program 17 Objective Name: 0.01 Information

More information

Algebra (Expansion and Factorisation)

Algebra (Expansion and Factorisation) Chapter10 Algebra (Expansion and Factorisation) Contents: A B C D E F The distributive law Siplifying algebraic expressions Brackets with negative coefficients The product (a + b)(c + d) Geoetric applications

More information

Web Content Management System: Page Type Reference Guide

Web Content Management System: Page Type Reference Guide Wb Cnn Mnn : P T Rnc Gu Auu 2012 CM P T Rnc Gu CM P T Rnc Gu...3 W D I Cnc F H?...3 Gnc P...3 Nw H P...7 T Nw R H C P...7 Nw R P...8 Evn H P...10 Invu Evn P...11 H...13 I D P...14 D P...18 Qun n Anw H

More information

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu - 1 B Ihsu dulcs cuncts [Supr 1] [Supr 2] Tnr B B B B - B - B - Ih - Ih - Ih - su su su cs cs cs cunc - cunc - cunc - Amns, Bblthèqu Cntl L Agn, ms 162 D, ff 2v-10 ts, ts, ts, E-tr - E-tr - E-tr - n p n

More information

Yuriy Alyeksyeyenkov 1

Yuriy Alyeksyeyenkov 1 Çanaa Ünvrss Fn-Eba Faüs Journa of Ars an Sns Sa : 9 / a s 8 Cauaon of Sgna Sours Coornas In D An D Spa ur Asnov Absra hos of auaons of oorna of sgna sours whh ar nassb an r masurmn of hr proprs s mpossb

More information

Vehicle Identification Numbering System 00.03

Vehicle Identification Numbering System 00.03 Vehicle Identification Numbering System 00.03 IMPORTANT: See Subject 050 for the vehicle identification numbering system for vehicles built before May 1, 2000. Federal Motor Vehicle Safety Standard 115

More information

Practice Writing the Letter A

Practice Writing the Letter A Aa Practice Writing the Letter A A a A a Write a in the blank to finish each word. c t re h d Write A in the blank to finish each word. nn US ndy Bb Practice Writing the Letter B B b B l P b Write b in

More information

OPENBARE ZITTING 1. U ni f o r m e a l g e m e ne p o l i t i e v e r o r d e ni ng e n p u nc t u e l e i m p l e m e nt a t i e GAS ( g e m e e nt e l i j k e a d m i ni s t r a t i e v e s a nc t i

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

PC Problems HelpDesk Service Agreement

PC Problems HelpDesk Service Agreement Enn SS 7 b aw f Un Sa & anaa an b nnana a I IS ILLEGL ND SRILY ROHIIED O DISRIUE, ULISH, OFFER FOR SLE, LIENSE OR SULIENSE, GIVE OR DISLOSE O NY OHER RY, HIS RODU IN HRD OY OR DIGIL FORM LL OFFENDERS WILL

More information

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

More information

Finite Dimensional Vector Spaces.

Finite Dimensional Vector Spaces. Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar

More information

A SOFTWARE RELIABILITY MODEL FOR CLOUD-BASED SOFTWARE REJUVENATION USING DYNAMIC FAULT TREES

A SOFTWARE RELIABILITY MODEL FOR CLOUD-BASED SOFTWARE REJUVENATION USING DYNAMIC FAULT TREES Inrnaional Journal of Sofwar Enginring and Knowldg Enginring World Scinific ublihing Company A SOTWARE RELIABILITY MODEL OR CLOUD-BASED SOTWARE REJUVENATION USING DYNAMIC AULT TREES JEAN RAME and AIING

More information

Move on! aki a. customers. refer your brand. abildiniz. Would you like be in an interactive communicationrtawith your customers?

Move on! aki a. customers. refer your brand. abildiniz. Would you like be in an interactive communicationrtawith your customers? Mv! ö l z A. l uuz p uuz? B u l blbg plu ugu b lc cva v? z fllw b u ulw Au ç l?? l l f hgl z cu f h pw l z ç? S b uzluhw ull lgl u l g h z u ç çl? p v 4001 vb. cl S? 1 cl O IS, 1 O 900 ç ç l f u b GMP,

More information

Asian Development Bank Institute. ADBI Working Paper Series

Asian Development Bank Institute. ADBI Working Paper Series ADB Worng ar Sr E mrgn of ang Agn: mlaon for E abl hng a gonal ang Agny n A a Yng Y Ta and -Gang u No. 4 Augu 00 Aan Dvlomn Ban nu Yng Y Ta an aoa rofor Darmn of Ald Eonom Naonal Unvry of Kaohung TaChna.

More information

Ref No: Version 5.1 Issued: September, 2013

Ref No: Version 5.1 Issued: September, 2013 Sv Goodridg 21 Casl Sr Edardson SA 5039 obil: 0405 111 646 [email protected] Adlaid SEO ~ Sv Goodridg Sarch Engin Succss R No: Vrsion 5.1 Issud: Spbr, 2013 Sv Goodridg ~ Adlaid SEO SEO-Packs.doc

More information

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY VOUME 2, 2 NFUENCE OF DEBT FNANCNG ON THE EFFECTVENE OF THE NVETMENT PROJECT WTHN THE MODGANMER THEORY Pr Brusov, Taaa Flaova, Naal Orhova, Pavl Brusov, Nasa Brusova Fac Uvrsy ur h Govrm of h Russa Frao,

More information

Sun Synchronous Orbits for the Earth Solar Power Satellite System

Sun Synchronous Orbits for the Earth Solar Power Satellite System Sun Synchrnus Orbts fr th Earth Sar Pwr Satt Systm Sm f th mst prmsng rbts fr th Earth Sar Pwr Systm ar crcuar Sun synchrnus rbts whch nvr ntr Earth's shaw. In ths rbts, gravty grant stabz "pwr twrs" w

More information

P r o f. d r. W. G u e d e n s L i c. M. R e y n d e r s D 2 Chemie o e l s t e l l i n g B e pal i n g v an d e c o n c e n t r at i e z u u r i n w i t t e w i j n d o o r u i t v o e r i n g v an e

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

A Formal Model for Data Flow Diagram Rules

A Formal Model for Data Flow Diagram Rules Volum No. MAY 0 ARPN Journal o Sytm and Sotwar 00- AJSS Journal. All rght rrvd htt://www.cntc-ournal.org A Formal Modl or Data Flow Dagram Rul Rozat Ibrahm Sow Yn Yn Dartmnt o Sotwar Engnrng Unvrty Tun

More information

Visa Smart Debit/Credit Certificate Authority Public Keys

Visa Smart Debit/Credit Certificate Authority Public Keys CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online

More information

JCUT-3030/6090/1212/1218/1325/1530

JCUT-3030/6090/1212/1218/1325/1530 JCUT CNC ROUTER/CNC WOODWORKING MACHINE JCUT-3030/6090/1212/1218/1325/1530 RZNC-0501 Users Guide Chapter I Characteristic 1. Totally independent from PC platform; 2. Directly read files from U Disk; 3.

More information

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS 1 E-Bill Standard Layout A B C D E F G Field/ DHL Account Number Billing Customer Name Billing Customer Address Billing Customer City Billing Customer

More information

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

More information

m Future of learning Zehn J a hr e N et A c a d ei n E r f o l g s p r o g r a m Cisco E x p o 2 0 0 7 2 6. J u n i 2 0 0 7, M e sse W ie n C. D or n in g e r, b m u k k 1/ 12 P r e n t t z d e r p u t

More information

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves Physics 6 Lctur Oscillations II SJ 7 th Ed.: Chap 5.4, Rad only 5.6 & 5.7 Rcap: SHM using phasors (unifor circular otion) Physical pndulu xapl apd haronic oscillations Forcd oscillations and rsonanc. Rsonanc

More information

Collaboration in Public H e alth be tw e e n U niv e rs ity of H e id e lbe rg and U niv e rs ity of D ar e s S alaam How t h e c oop e r a t i on e m e r g e d Informal c ont ac t s from e arly 1 9

More information

Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction

Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction Lnear Exenson Cube Aack on Sream Cphers Lren Dng Yongjuan Wang Zhufeng L (Language Engneerng Deparmen, Luo yang Unversy for Foregn Language, Luo yang cy, He nan Provnce, 47003, P. R. Chna) Absrac: Basng

More information

INDUSTRIAL TF1: 16 keys with LED 6AV1 902-0AA00 KEYBOARDS TF2: 20 keys with LED 6AV1 902-0AB00 6AV3 017-1NE30-0AX0 6AV3 503-1DB10 6AV3 505-1FB12

INDUSTRIAL TF1: 16 keys with LED 6AV1 902-0AA00 KEYBOARDS TF2: 20 keys with LED 6AV1 902-0AB00 6AV3 017-1NE30-0AX0 6AV3 503-1DB10 6AV3 505-1FB12 Siemens SIMATIC S5 SYSTEMS FOR CONTROL AND MONITORING OPERATOR PANELS INDUSTRIAL TF1: 16 keys with LED 6AV1 902-0AA00 KEYBOARDS TF2: 20 keys with LED 6AV1 902-0AB00 TF3: 24 keys with LED 6AV1 902-0AC00

More information

Section 7.4: Exponential Growth and Decay

Section 7.4: Exponential Growth and Decay 1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart

More information

Modeling Contract Form: An Examination of Cash Settled Futures. Dwight R. Sanders. and. Mark R. Manfredo *

Modeling Contract Form: An Examination of Cash Settled Futures. Dwight R. Sanders. and. Mark R. Manfredo * Modlng Conra orm: An xamnaon of Cash ld uurs Dwgh R andrs and Mark R Manfrdo * Papr prsnd a h NCR- Confrn on Appld Commody Pr Analyss orasng and Mark Rsk Managmn Lous Mssour Aprl - 00-0-0 Copyrgh 00 by

More information

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B. Displacmn snsors Many quaniis ar ransducd in a displacmn and hn in an lcric signal (prssur, mpraur, acclraion). Poniomrs Poniomrs i p p i o i p A poniomr is basd on a sliding conac moving on a rsisor.

More information

Using the Two-Stage Approach to Price Index Aggregation

Using the Two-Stage Approach to Price Index Aggregation Oaa Grou Meeng, 3 Ung he To-Sage Aroach o Prce Inde Aggregaon Toc: Samlng and Elemenary Aggregae; Aggregaon Aravndan Jayanha and Le Conn Abrac Th aer aee he raccal mlcaon for Naonal Sacal Offce (NSO) of

More information

Multi- item production inventory systems with budget constraints

Multi- item production inventory systems with budget constraints rodns of h s Inrnaonal Confrn on Manufaurn Ennrn Qualy and roduon Sysms Volum I Mul- m produon nvnory sysms wh bud onsrans ZAI.. AKI parmn of Sass & Opraons Rsarh Coll of Sn Kn Saud Unvrsy.O. ox 55Ryadh

More information

DATING YOUR GUILD 1952-1960

DATING YOUR GUILD 1952-1960 DATING YOUR GUILD 1952-1960 YEAR APPROXIMATE LAST SERIAL NUMBER PRODUCED 1953 1000-1500 1954 1500-2200 1955 2200-3000 1956 3000-4000 1957 4000-5700 1958 5700-8300 1959 12035 1960-1969 This chart displays

More information

Samknows Broadband Report

Samknows Broadband Report Samknows Broadband Report London Borough of Enfield This report describes the current broadband landscape for the London Borough of Enfield both in terms of general availability and choice, and in terms

More information

SIF 8035 Informasjonssystemer Våren 2001

SIF 8035 Informasjonssystemer Våren 2001 SIF 8035 Iformasjossysmr Vår 2001 Øvig 6 SAP Løsigsforslag Cas scripio Th compay IDES AG is a Grma-bas car proucr, which buys car pars (bumprs) from BMW a Volkswag. Th compay is maag from Hamburg, hough

More information

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II Lecure 4 Curves and Surfaces II Splne A long flexble srps of meal used by drafspersons o lay ou he surfaces of arplanes, cars and shps Ducks weghs aached o he splnes were used o pull he splne n dfferen

More information

How To Know If You Are A Good Person Or A Bad Person

How To Know If You Are A Good Person Or A Bad Person F uj nqu U D gn Po o o&s dwo O w o h o ow ng o omd 805 3G Au Pfi n g 28 www j nqu fl u D opm n W bd gn V u on mob W bu D gn n o m ong ph KnowCon n A nap h un pp om pp now on n n d3 87 86987 1? m =8 n uppo

More information

CEO Björn Ivroth. Oslo, 29 April 2015. Q1 2015 Presentation

CEO Björn Ivroth. Oslo, 29 April 2015. Q1 2015 Presentation CEO Björ Ivroh Oslo, 29 April 2015 2015 Prsaio Par I `15 Rpor o Highlighs o Group o Sgms o Fiac Par II Mark oulook Summary Appdix 2015 prsaio 2 Highlighs Lyg Bidco AS has acquird 88 % of h shars o No icludig

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

C e r t ifie d Se c u r e W e b

C e r t ifie d Se c u r e W e b C r t ifi d S c u r W b Z r t ifizi r t Sic h r h it im W b 1 D l gat s N ic o las M ay n c o u r t, C EO, D r am lab T c h n o lo gi s A G M ar c -A n d r é B c k, C o n su lt an t, D r am lab T c h n

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A UNIVERSITY OF WASHINGTON SCHOOL OF MEDICINE QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A Plas rurn your compld qusionnair in h nclosd nvlop o: [Rurn Addrss] RNID PID Copyrigh by h Univrsiy

More information

13. a. If the one-year discount factor is.905, what is the one-year interest rate?

13. a. If the one-year discount factor is.905, what is the one-year interest rate? CHAPTER 3: Pracice quesions 3. a. If he one-year discoun facor is.905, wha is he one-year ineres rae? = DF = + r 0.905 r = 0.050 = 0.50% b. If he wo-year ineres rae is 0.5 percen, wha is he wo-year discoun

More information

Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities

Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities September 2004 Institute for the Study of Public Policy Implementation Overview Background Behind the Results

More information

www.akcp.com Virtual Sensors

www.akcp.com Virtual Sensors www.akcp.cm Irduci: Virual Ssrs Virual ssrs ca b a vry pwrful l i yur mirig sysm. O h scuriyprb yu ca hav up 80 f hs virual ssrs ad hy allw fr a muliud f applicais. Igrai wih MODBUS wrks wih h scuriyprb

More information

Generator stability analysis - Fractional tools application

Generator stability analysis - Fractional tools application Generor by ny - Frcon oo ppcon Auhor : Ocvn ENACHEANU Dephne RIU Nco RETIERE SDNE Grenobe -67 Oune. Eecrc nework cone. Frcon moeng o ynchronou mchne. Se pce repreenon n by conon o ynchronou mchne neger

More information

State Corporate Income Tax-Calculation

State Corporate Income Tax-Calculation State Corporate Income Tax-Calculation 1 Because it takes all elements (a*b*c) to calculate the personal or corporate income tax, no one element of the corporate income tax can be analyzed separately from

More information

The Valuation of Futures Options for Emissions Allowances under the Term Structure of Stochastic Multi-factors

The Valuation of Futures Options for Emissions Allowances under the Term Structure of Stochastic Multi-factors WSEAS RASACIOS on SYSEMS Ka Chang Su-Shng Wang Png K Huang Yu-Rong Yu Zhn h Valuaon of Fuurs Opons for Emssons Allowancs undr h rm Srucur of Sochasc Mul-facors Ka Chang Su-Shng Wang Png KHuang Yu-rongYu

More information

Cruisin with Carina Motorcycle and Car Tour Guide

Cruisin with Carina Motorcycle and Car Tour Guide Ifi Tchlgy Slui Wh Swdih hpiliy V, ully. Cuii wih Ci Mcycl d C Tu Guid Ikp: Ci Th 290 Ru 100 W Dv, V 05356 800-745-3615 802-464-2474 L h g ll! Th d i ck, c, i d l x. My 17h, 18h, & 19h W ivi yu c cui h

More information

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics .4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field ecure 4 nducon evew nducors Self-nducon crcus nergy sored n a Magnec Feld 1 evew nducon end nergy Transfers mf Bv Mechancal energy ransform n elecrc and hen n hermal energy P Fv B v evew eformulaon of

More information

Appendix B Intervention Codes

Appendix B Intervention Codes Appendix B Intervention Codes Intervention/Exception Codes The Intervention and Exception Codes field (in the ZCD segment of PharmaNet) provides additional information that may be used by PharmaNet to

More information

Trading-Day Adjustment as a Practical Problem

Trading-Day Adjustment as a Practical Problem In. Sasa Ins.: Pro. 58h Word Sasa ongrss, 0, Dubn (Ssson STS030).3 Tradng-Day Adusn as a Praa Prob Aa-Toubr, Ky IS, Déarn ds sasqus d our r 8, Bouvard Adoh Pnard 55 PARIS D 4, FRA -a: [email protected] Ladray,

More information

O s OAM Requirements for 40/100 GE Eth ernet AI S? Gary Nicholl C is co S ys t e m I E E E 8 0 2. 3 b a T as k F orce M arch 1 8, 2 0 0 8 rlan d o, F L 1 O O O O Background E t h e r n e t i s r a p i

More information

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

More information

Self-rescue in quantitative risk analysis

Self-rescue in quantitative risk analysis Slf-rscu n quanav rsk analyss I.J.M. Trjssnaar- Buhr & I.M.E. Rabn & T. Wrsma & S.I. Wjnan TNO, Apldoorn, Th Nhrlands ABSTRACT: In quanav rsk analyss (QRA) mhods, h damag of oxc and fr ffcs o prsons s

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

Exotic Options Pricing under Stochastic Volatility

Exotic Options Pricing under Stochastic Volatility Exoic Opion Pricing undr Sochaic olailiy Nabil AHANI Prliminary draf April 9h Do no quo Conac informaion: Nabil ahani HEC Monréal Canada Rarch Chair in Rik Managmn 3 Chmin d la Cô-Sain-Cahrin Monral Qubc

More information

Lecture 20: Emitter Follower and Differential Amplifiers

Lecture 20: Emitter Follower and Differential Amplifiers Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.

More information

UNDERSTANDING FLOW PROCESSING WITHIN THE CISCO ACE M ODULE Application de liv e r y pr odu cts can distr ib u te tr af f ic to applications and w e b se r v ice s u sing v ar y ing le v e ls of application

More information

Child Care Resource Kit celebrate relationships!

Child Care Resource Kit celebrate relationships! K u R C d C b d k f Fu w y Pd by p! u R Cd C g d g b u d yu g p m d fu g f pg m g w Tk yu C g p D Ng kd pg u bk! T y g b fm dy m d md g g p By pvdg ud d ug yu u f D Ng Cg v, yu b pg up g u d g v bf W v

More information

Work, Energy, Conservation of Energy

Work, Energy, Conservation of Energy This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Factoring Polynomials: Factoring by Grouping

Factoring Polynomials: Factoring by Grouping OpenStax-CNX module: m21901 1 Factoring Polynomials: Factoring by Grouping Wade Ellis Denny Burzynski This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information