Greenhouse gas emissions from pig and chicken supply chains. A global life cycle assessment

Size: px
Start display at page:

Download "Greenhouse gas emissions from pig and chicken supply chains. A global life cycle assessment"

Transcription

1 Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment

2

3 Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment A report prepared by: FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Animal Production and Health Division

4 Recommended Citation MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B. & Steinfeld, H Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. E-ISBN (PDF) FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO s endorsement of users views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via or addressed to copyright@fao.org. FAO information products are available on the FAO website ( and can be purchased through publications-sales@fao.org.

5 Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment This report presents results from an assessment carried out to improve the understanding of greenhouse gas (GHG) emissions along livestock supply chains. The analysis was conducted at the Animal Production and Health Division (AGA) of FAO and co-financed by the Mitigation of Climate Change in Agriculture (MICCA) programme. The following persons and institutions contributed to this undertaking: Study team: Pierre Gerber (Team leader, FAO) Michael MacLeod (Principal investigator, FAO) Theun Vellinga (Livestock modeler, Wageningen University) Alessandra Falcucci and Giuseppe Tempio (GIS modelling, FAO) Benjamin Henderson, Klaas Dietze, Guya Gianni, Anne Mottet, Carolyn Opio, Tim Robinson, Olaf Thieme and Viola Weiler (data collection and analysis, FAO) The followings provided comments, views and information that contributed to the analysis: Alexandra de Athayde (International Feed Industry Federation) Imke de Boer (Wageningen University) Peter Bradnock (International Poultry Council) Christel Cederberg (SIK and Chalmers University of Technology, Gothenburg) Jeroen Dijkman (FAO) Vincent Gitz (FAO) Vincent Guyonnet (International Egg Commission) Mario Herrero (Commonwealth Scientific and Industrial Research Organisation) Dong Hongmin (Chinese Academy of Agricultural Science) Hsin Huang (International Meat Secretariat) Adrian Leip (Joint Research Centre of the European Commission, Ispra, Italy) Brian Lindsay (Sustainable Agriculture Initiative) Alexandre Meybeck (FAO) Nathan Pelletier (Joint Research Centre of the European Commission, Ispra, Italy) Marja Liisa TapioBistrom (FAO, for the MICCA Programme) Greg Thoma (University of Arkansas) Tom Wassenaar (Centre de coopération internationale en recherche agronomique pour le développement) Report writing: Michael MacLeod, Pierre Gerber, Anne Mottet, Giuseppe Tempio, Alessandra Falcucci, Carolyn Opio, Theun Vellinga, Benjamin Henderson and Henning Steinfeld. iii

6

7 Table of contents List of tables List of figures Abbreviations Definitions of commonly used terms Executive summary viii x xii xiii xvii 1. Introduction Background Scope of this report The Global Livestock Environmental Assessment Model Outline of this report 2 2. Overview of the global monogastric sector 5 3. Methods Choice of Life Cycle Assessment (LCA) General principles of LCA The use of LCA in this assessment Functional units and system boundary Sources of GHG emissions Overview of calculation method Spatial variation and the use of Geographic Information System Emission factors Land-use change Data sources and management Allocation of emissions between products, by-products and services Production system typology Results for pig supply chains Global production and emissions Emissions intensity Variation in emission intensity between backyard, intermediate and industrial pig systems Geographical variation in emissions intensity Analysis of uncertainty in pig emission intensity Identification of main emissions categories Selection of parameters for inclusion in the analysis and their ranges Results of the Monte Carlo analysis Comparison of the pig results with other studies Scope Input assumptions Ration 41 v

8 5. Results for chicken supply chains Global production and emissions Emissions intensity Variation in emission intensity between broiler meat and layer eggs Variation in emission intensity between backyard and commercial systems Geographical variation in emission intensity Analysis of uncertainty for chickens Identification of main emissions categories Selection of parameters for inclusion in the analysis and their ranges Results of the Monte Carlo analysis for chickens Comparison of the chicken results with other studies Scope Ration Soybean and soybean meal LUC Feed N 2 O Feed CO Manure management Allocation Summary Summary of production and emission intensities Commercial systems (layers, broilers, industrial and intermediate pigs) Backyard systems Gaps in emission intensity within systems and regions Conclusions 71 References 75 Appendices 79 Appendix A Overview of the Global Livestock Environmental Assessment Model (GLEAM) 85 Appendix B Data and data sources 101 Appendix C Changes in carbon stocks related to land use and land-use change 123 Appendix D Postfarm emissions 143 Appendix E Emissions related to energy use 147 vi

9 Appendix F Allocation to slaughter BY-products 155 Appendix g Maps 157 Appendix h Country list 169 vii

10 List of tables 1. Sources of GHG emissions included and excluded in this assessment 9 2. Categories of GHG emissions Summary of the pig systems Summary of the chicken systems Values of selected explanatory parameters: pigs Feed conversion ratios for industrial systems for the herd and for the growing pig Factors leading to spatial variation in the emission intensity of individual feed materials: pigs Factors influencing the rate of manure CH 4 and N 2 O production: pigs Emissions categories contributing more than ten percent of total global emissions: pigs Combinations of system and country chosen for the Monte Carlo analysis: pigs Approaches used for varying CH 4 conversion factor (MCF): pigs Approaches used for varying the digestibility of the ration: pigs Soybean LUC emission factors and ranges Approaches used for varying soybean percentage: pigs Ranges of N applied per ha Ranges for feed N 2 O emissions factors for all species/systems Ranges for crop yields for all species/systems Ranges for fertilizer manufacture emissions factors for all species/systems Ranges for key herd parameters: pigs Summary of the results of the Monte Carlo analysis for pigs Comparison of emission intensities for pigs with other studies Global average feed conversion ratios for each system and commodity. Note that the values in this Table represent the averages over the whole flock, including parent birds: chickens Values of selected explanatory parameters: chickens Emissions categories contributing more than 10 percent of total global emissions: chickens Approaches used for varying CH 4 conversion factor (MCF): chickens Approaches used for varying the digestibility of the ration: chickens Approaches used for varying soybean percent and emission factors: chickens Ranges for key herd parameters: chickens Summary of the results of the Monte Carlo analysis for chickens 61 viii

11 30. Comparison of the emission intensities for broilers with other studies Summary of total global production and emissions for pig meat, chicken meat and eggs Comparison of key parameters for pigs and chickens Variation of pigs emission intensity within regions, systems and agro-ecological zone, in kg CO 2 -eq/kg CW Variation of chickens emission intensity within regions, systems and agro-ecological zone in kg CO 2 -eq/kg egg or meat CW 70 ix

12 List of figures 1. System boundary as defined for this assessment 8 2. Overview of the GLEAM modules and computation flows Illustration of partitioning emissions between chicken outputs Global pig production and emissions by region Global pig production and emissions by system Breakdown of total global GHG emissions by category for pig supply chains Global pig emission intensity by system Average feed conversion ratio of the pig herd, by region and system Backyard pigs emission intensities Intermediate pigs emission intensities Industrial pigs emission intensities All pigs emission intensities Backyard pigs feed emissions Intermediate pigs feed emissions Industrial pigs feed emissions Regional averages for key parameters influencing manure management CH 4 emissions in backyard pig systems Regional averages for key parameters influencing manure management CH 4 emissions in intermediate pig systems Regional averages for key parameters influencing manure management CH 4 emissions in industrial pigs systems Regional averages for key parameters influencing manure management N 2 O emissions in backyard pig systems Regional averages for key parameters influencing manure management N 2 O emissions in intermediate pig systems Regional averages for key parameters influencing manure management N 2 O emissions in industrial pig systems Pig emission intensity by system and agro-ecological zone Pig production by system and agro-ecological zone Distribution of results of the Monte Carlo simulation for industrial pigs in the United Kingdom ( runs) Contribution to variance of the main input parameters varied in the Monte Carlo simulation for industrial pigs in the United Kingdom ( runs) Total chicken meat and egg production by region Global chicken production and emissions by system Breakdown of total global GHG emissions by category for chicken meat and egg supply chains 47 x

13 29. Chicken meat emission intensity Chicken eggs emission intensity Average feed conversion ratio by system and region Average backyard eggs emission intensity by region Average backyard chicken feed emission intensity by region Average layers eggs emission intensity by region Average layers feed emission intensity by region Average broilers emission intensity by region Average broilers feed emission intensity by region Effect of agro-ecological zone on emission intensity Schematic representation of emission intensity gap, for a given commodity, within a region, agro-ecological zone and farming system 68 xi

14 Abbreviations AEZ BFM Bo CV CH 4 CO 2 -eq CW DE DM DOM EF EI FCR GE GHG GIS GLEAM GPP GWP HFCs IPCC ISO LAC kwh LCA LPS LUC LULUCF LW MCF ME MMS NENA NIR N 2 O Nx OECD SD SOC SSA UNFCCC VS VSx Ym Agro-ecological zone Bone-free meat Manure maximum methane producing capacity Coefficient of variation Methane Carbon dioxide equivalent Carcass weight Digestible energy Dry matter Dead organic matter Emission factor Emissions intensity Feed conversion ratio Gross energy Greenhouse gas Geographic Information System Global Livestock Environmental Assessment Model Gross primary production Global warming potential Hydrofluorocarbons Intergovernmental Panel on Climate Change International Organization for Standardization Latin America and the Caribbean Kilowatt hour Life cycle assessment Livestock production system Land-use change Land use, land-use change and forestry Live weight Methane conversion factor Metabolizable energy Manure management system Near East and North Africa National inventory report Nitrous oxide Nitrogen excreted Organisation for Economic Co-operation and Development Standard deviation Soil organic carbon Sub-Saharan Africa United Nations Framework Convention for Climate Change Volatile solid Volatile solids excreted Percent of gross energy intake converted to methane xii

15 Definitions of commonly used terms Anaerobic Breeding overhead Broiler By-product Carbon footprint CO 2 -equivalent emission Coefficient of variation (CV) Cohort Co-product Crop residue In the absence of oxygen, i.e. conditions conducive to the conversion of organic carbon into methane (CH 4 ) rather than carbon dioxide (CO 2 ). Animals that are kept to maintain the herd/flock size, rather than for production purpose. Chicken reared for meat. Material produced during the processing (including slaughtering) of a crop or livestock product that is not the primary objective of production (e.g. meals and brans, offal or skins). The total amount of GHG emissions associated with a product, along its supply chain, and sometimes includes emissions from consumption, end-of-life recovery and disposal. Usually expressed in kg or tonnes of carbon dioxide equivalent (CO 2 -eq.). The amount of CO 2 emissions that would cause the same time integrated radiative forcing, over a given time horizon, as an emitted amount of a mixture of GHGs. It is obtained by multiplying the emission of a GHG by its Global Warming Potential (GWP) for the given time horizon. The CO 2 equivalent emission is a standard metric for comparing emissions of different GHGs (IPCC, 4 AR 2007). The standard deviation (SD) expressed as a percent of the mean. Class of animals within a herd/flock defined by their age and sex (e.g. adult females, replacement females, males for fattening). Material generated by a production activity that generates more than one output (e.g. meat, eggs and manure are co-products of chicken production). Materials left in an agricultural field after the crop has been harvested (e.g. straw or stover). xiii

16 Direct energy Indirect or embedded energy Emission factor (EF) Emissions intensity (EI) Feed conversion ratio Feed material Fieldwork Geographical Information System Global warming potential Layer Energy used on-farm for livestock production, e.g. for lighting, heating and cooling. Energy used during the manufacture of farm inputs such as fertilizer or steel. Factor that defines the rate at which a greenhouse gas is emitted, e.g. kg CH 4 /animal/year or kg N 2 O-N/kg manure N. Mass of emissions per unit of product, e.g. kg CO 2 -eq/kg of egg. Measure of the efficiency with which an animal converts feed into tissue, usually expressed in terms of kg of feed per kg of output (e.g. LW, eggs or protein). Individual feed ingredient (e.g. grain or wheat straw). General term for the field operations undertaken during crop cultivation, e.g. ploughing, drilling, spreading. A computerized system organizing data sets through the geographical referencing of all data included in its collections. Defined by the Intergovernmental Panel on Climate Change (IPCC), as an indicator that reflects the relative effect of a GHG in terms of climate change considering a fixed time period, such as 100 years, compared to the same mass of carbon dioxide. Chicken kept to produce eggs for human consumption. Manure N Nitrogen in liquid and solid manure. Methane conversion factor (MCF) Monte Carlo analysis The percentage of the manure s maximum methane producing capacity (Bo) that is achieved during manure management (IPCC, 2006). Method that uses repeated random sampling for estimating uncertainty in results. xiv

17 Pixel Ration Scavenging Second grade crops Swill Synthetic N Tier levels The smallest unit of information in GIS raster data, usually square in shape. In GIS dataset, each pixel represents a portion of the earth, and usually has an attribute value associated with it, such as soil type or vegetation class. Pixel is often used synonymously with cell. The combination of feed materials constituting the animal s diet. Backyard animals roaming freely in search of ad hoc feed sources, e.g. food scraps, insects. Crops fed to local livestock because they have failed to meet the standards required to be sold as human food or compound feed ingredients. Human food waste from domestic or commercial premises. Nitrogen in the form of manufactured fertilizers, such as ammonium nitrate. Defined in IPCC (2006), these correspond to a progression from the use of simple equations with default data (Tier 1 EFs), to country-specific data in more complex national systems, (Tier 2 & 3 EFs). Tiers implicitly progress from least to greatest levels of certainty, as a function of methodological complexity, regional specificity of model parameters, spatial resolution and the availability of activity data. xv

18

19 Executive summary Background and purpose The livestock sector is one of the fastest growing subsectors of the agricultural economy, and faces several unprecedented and concomitant challenges. The sector needs to respond to the increasing demands for livestock products that are arising from population growth and changing consumer preferences. It also has to adapt to changes in the economic and policy contexts, and in the natural environment upon which production depends. At the same time, it has to improve its environmental performance and mitigate its impact on climate. The pig sector is the biggest contributor to global meat production, with 37 percent in Chicken meat accounts for about 24 percent. Global demand for pig meat, chicken meat and chicken eggs are forecast to grow by 32 percent, 61 percent and 39 percent respectively during the period If the greenhouse gases (GHG) emissions intensities (emission intensity; or the kg of GHG per kg of product) of these commodities are not reduced, the increases in production required to meet demand will lead to proportionate increases in GHG emissions. Improving our understanding of where and why emissions arise in livestock supply chains is an important step towards identifying ways to improve efficiency and reduce emissions intensity. This report presents a life cycle assessment (LCA) of the GHG emissions arising from pig and chicken supply chains. It provides a detailed analysis of emissions according to region, sector and systems of production. In addition to informing efforts to reduce GHG emissions, it is hoped that the assessment will also help inform public debate on this important subject. Two similar reports on emissions from beef and small ruminant supply chains and from the dairy sector are also available. An overall report providing an overview of results and exploring mitigation potential and options is also available. 1 Methodology This analysis is based on a LCA approach and includes: (a) pre-farm emissions arising from the manufacture of inputs; (b) on-farm emissions during crop and animal production; and (c) postfarm emissions arising from the processing and transportation of products to the retail point. Emissions and food losses that arise after delivery to the retail point are not included. While gases of minor importance have been omitted, the three major GHG in agriculture are included, namely: methane (CH 4 ), nitrous oxide (N 2 O) and carbon dioxide (CO 2 ). The Global Livestock Environmental Assessment Model (GLEAM) was developed to carry out this assessment. This model quantifies GHG emissions arising from production of the main livestock commodities: meat and milk from cattle, sheep, goats and buffalo; meat from pigs; and meat and eggs from chickens. The model calculates total emissions and (commodity) production for a given farming 1 FAO Greenhouse gas emissions from the dairy sector - A life cycle assessment. FAO, Rome. FAO. 2013a. Tackling climate change through livestock A global assessment of emissions and mitigation opportunities. FAO, Rome. FAO. 2013b. Greenhouse gas emissions from ruminant supply chains A global life cycle assessment. FAO, Rome. xvii

20 system within a defined area. The emissions per unit of product can be calculated for combinations of different commodities/farming systems/locations at different spatial scales. Emissions are calculated around the year 2005, the most recent year for which all input data and parameters are available. In a complex analysis such as this, results are not definitive, but rather the best assessment that could be made and subject to improvement in subsequent revisions. Methodological developments are being developed within the context of the LEAP Partnership (Livestock Environmental Assessment and Performance 2 ), to harmonize metrics and approaches used in the assessment of environmental performance of livestock supply chains, including future updates of this report. Key findings Overall contribution of the pig and chicken sectors to global GHG emissions Globally, GHG emissions from pig and chicken supply chains are relatively low. 3 Pig supply chains are estimated to produce 0.7 gigatonnes CO 2 -eq per annum representing 9 percent of the livestock sector s emissions. Chickens are estimated to emit 0.6 gigatonnes CO 2 -eq, representing 8 percent of the livestock sector s emissions. While their emissions are comparatively low, the sector s scale and rate of growth require reductions in emission intensity. Main emissions sources Pig supply chains Feed production contributes 60 percent of the emissions arising from global pig supply chains, and manure storage/processing 27 percent. The remaining 13 percent arises from a combination of postfarm processing and transport of meat (6 percent), direct and indirect energy use in livestock production (3 percent) and enteric fermentation (3 percent). Of the feed emissions, N 2 O resulting from the application of synthetic and organic fertilizers in feed crop production accounts for 17 percent of total pig emissions, while CO 2 from the use of energy in field operations, crop transport and processing, and the manufacture of fertilizer and synthetic feed materials accounts for 27 percent. An additional 13 percent of the total emissions arises from land-use change (LUC) driven by increased demand for feed crops. The remaining feed emissions (3 percent) are CH 4 from flooded rice cultivation. Total direct and indirect energy consumption across the supply chain 4 accounts for 37 percent of the total emissions. Chicken meat and egg supply chains For chicken meat, feed production contributes 78 percent of emissions, direct onfarm energy use 8 percent, postfarm processing and transport of meat 7 percent and manure storage/processing 6 percent. For eggs, feed production contributes 69 percent of emissions, direct on-farm energy use 4 percent, postfarm processing and transport of meat 6 percent and manure storage and processing 20 percent See FAO (2013) Tackling climate change through livestock. FAO, Rome. for a comparison between commodities and species. 4 Energy used (a) pre-farm to manufacture inputs, (b) on-farm in feed and livestock production, and (c) postfarm in transport and processing. xviii

21 Meat has higher feed emissions than eggs partly because rations for broiler chickens, on average, include a higher share of soybean and therefore more soybean sourced from areas where LUC is taking place. Consequently LUC accounts for 21 percent of meat emissions and 13 percent of egg emissions. Eggs have higher manure emissions because layers have a greater proportion of their manure managed in anaerobic conditions, which lead to higher CH 4 emissions. Feed emissions arising from fertilizer application and energy use are important for both meat and eggs: N 2 O from fertilizer application accounts for 32 percent of meat and 30 percent of egg emissions, while CO 2 arising from energy use in feed production accounts for 25 percent and 27 percent for meat and eggs respectively. Total direct and indirect energy consumption across the supply chain 5 accounts for 41 percent of the total emissions for meat and 37 percent for eggs. Summary of the factors influencing emission intensity Emission intensities can be influenced by a combination of factors, depending on the species, system and region in question. Some of the key factors are summarized briefly below. Feed conversion ratio (FCR) 6 As feed production is the activity that produces the most GHG for both monogastric species, the efficiency with which pigs and chickens convert feed into edible products is a key determinant of emission intensity. Due primarily to physiological differences, the individual broiler or laying hen tends to be a more efficient converter of feed into edible products than the growing pig. Furthermore, backyard pigs and chickens have higher FCRs than their commercial equivalents, due to differences in the breeds used, feed quality and availability, and management strategies. Land-use change Land-use change arising from increased demand for feed crops is a major driver of emissions, but its quantification is associated with strong methodological and data uncertainty. Pig and chicken that have a higher proportion of their ration consisting of soybean produced in countries where LUC is occurring will tend to have significantly higher feed emissions. Manure management Manure emissions are a function of the rate at which volatile solids (VS) or N are excreted, and the rate at which they are subsequently converted to CH 4 or N 2 O during manure management. High FCRs and low digestibility of feed tend to produce higher rates of VS and N excretion, and explain, for example, why backyard chickens have higher manure N 2 O emissions. The rate at which VS are converted to CH 4 depends on the way in which the manure is managed and the ambient temperature. Higher temperatures combined with anaerobic conditions in manure management tend to lead to high conversion rates of VS to CH 4. 5 Energy used (a) pre-farm to manufacture inputs, (b) on-farm in feed and livestock production, and (c) postfarm in transport and processing 6 FCR is a measure of the efficiency with which an animal converts feed into tissue, usually expressed in kg of feed per kg of output (e.g. LW, eggs or protein). xix

22 Energy use When summed across the supply chains, emissions from energy use account for 37 percent of the total emissions arising from production of eggs and pig meat and 41 percent of the emissions from chicken meat. The emission intensity of energy production depends on the types of fuels used and the efficiency of energy conversion and distribution. Furthermore, as most of the energy emissions arise as a result of feed production, FCR is also a key determinant of the energy emission intensity per kg of eggs or meat. Herd/flock structure The size of the breeding overhead 7 is small in commercial pig and chicken systems, and therefore variation in the herd/flock structure has a limited impact on the overall emissions intensity in these systems. However in backyard systems, where death rates are high and fertility rates low, breeding animals make up a greater proportion of herd/flock and therefore variation in the size of the breeding overhead can be a significant influence on emissions intensity. Variation in emissions intensity between production systems Pig supply chains Industrial systems, which account for 60 percent of global production, have lower emission intensities than intermediate systems due to a combination of lower feed conversion ratios, more digestible rations and lower shares of rice products in the ration. 8 The emission intensity of backyard pigs is lower than the other systems primarily because the emissions per kg of feed are significantly lower for backyard pigs (although the low feed emissions are partially offset by their higher FCRs). The higher FCRs lead to higher rates of excretion of both volatile solids and N per kg of meat produced, which result in higher manure emissions. In addition, backyard pigs are assumed to have negligible emissions arising from LUC or from postfarm processing and transport of meat. Chicken supply chains On average, layers have a lower emission intensity than broilers or backyard systems, when measured in terms of emissions per kg of protein. Although layers have higher manure CH 4 emissions than broilers, this is compensated by their lower emissions per kg of feed (as a result of having less soybean in their ration and, consequently, lower LUC emissions) and their lower FCR. Backyard systems have significantly higher FCRs than layers or broilers due to the lower physical performance. This is exacerbated by the structure of the backyard flocks, which have higher proportions of relatively unproductive breeding animals due to higher death rates and lower fertility rates. The amount of N excreted per kg of protein produced is therefore higher in backyard systems, which leads to higher manure N 2 O emissions. 7 A number of breeding animals, e.g. sows and boars, are required to produce offspring to maintain the herd. While they perform an essential function, breeding animals are relatively unproductive in terms of the amount of meat or eggs they produce, so these animals (along with the animals reared to replace them) are often referred to as the breeding overhead. 8 Flooded rice cultivation can produce significant amounts of CH 4, which contributes to a high emissions intensity of the feed ration. xx

23 Regional variation in emission intensity Emission intensities vary between the main producing regions. Differences are mostly explained by variation in feed materials in the ration, animal productivity and manure management. Pig supply chains There is significant regional variation in average FCR in backyard systems, which leads to variations in the feed emissions. For example, the FCR of backyard pigs in Sub-Saharan Africa is 35 percent greater than that of Eastern Europe, when measured at the herd level. The variations in FCR arise due to differences in parameters such as genetic potential, nutrition and health status. The regional differences in FCR are less marked in intermediate and industrial systems, reflecting the greater levels of standardization. For industrial pigs the emissions per kg of feed can vary a great deal between regions, depending on the amount of soybean in the ration, and the proportion of the soybean that is sourced from countries where LUC is occurring. This leads to markedly higher feed emissions for industrial pigs in Latin America and Western Europe. In intermediate systems, the presence of rice feed products leads to significant increases in feed emissions in Asia. Regions that have higher than average manure CH 4 emissions include: backyard pigs in South Asia (due to high temperatures and high VS excretion rates); intermediate pigs in East and South east Asia (due to high temperatures and liquid manure management); and industrial pigs in North America (due to the use of lagoons/ slurry/pits with long storage, and the higher biodegradability of the manure). Chicken supply chains There is significant regional variation in average FCR in backyard systems, which leads to variations in the feed emissions. For example, the FCRs of backyard chickens in Sub-Saharan Africa and East and South east Asia are more than twice those in Eastern Europe, when measured at the flock level. As with backyard pigs, the variations in FCR arise due to differences in parameters such as genetic potential, nutrition and health status with backyard chickens particularly susceptible to disease and predation. In contrast, the regional differences in FCR are negligible for broilers and layers, reflecting the high degree of standardization in these systems. For broilers and layers, the emissions per kg of feed can vary a great deal depending on the amount of soybean sourced from areas associated with LUC. As with industrial pigs, this leads to higher emissions in regions such as Latin America and Western Europe. In backyard systems, the CO 2 emissions arising from energy use in field operations are lower in regions such as Sub-Saharan Africa and Asia, where a significant proportion of the work is undertaken using animal draft power. Finally, feed N 2 O varies between regions in response to differences in the rates at which nutrients are applied to, and used by, crops. Manure N 2 O emissions in backyard systems are higher in Sub-Saharan Africa and Asia, due to the higher FCRs in these regions. For layers, manure CH 4 emissions tend to be lower in regions where solid storage (i.e. North America and South Asia) or drylots (Eastern Europe) predominate. xxi

24 Conclusions The range of emission intensity, both across and within supply chains, suggests that there is room for improvement. The following areas show particular promise for reducing emissions: reducing LUC arising from feed crop cultivation; improving the efficiency of crop production, particularly improving fertilization management; improving the efficiency of energy generation and supply, and of energy use, both on-farm (in housing and field operations) and off-farm (manufacture of agricultural inputs, and transportation and processing of farm products); reducing use of uncovered liquid manure management systems (MMS), particularly in warm climates; improving feed conversion of the individual animal (through, for example, better breeding techniques) and also of the herd (by reducing losses to disease and predation, particularly in backyard systems); providing balanced animal nutrition. Finally, it should be borne in mind that this report focuses on a single measure of environmental performance: kg CO 2 -eq/kg commodity. When evaluating GHG mitigation measures, attention should be paid to the potential impacts on other policy objectives, such as sustaining water resources, improving food security and reducing poverty. xxii

25 1. Introduction 1.1 Background The global livestock sector is faced with a three-fold challenge: increasing production to meet demand, adapting to a changing and increasingly variable economic and natural environment and, lastly, improving its environmental performance. Major concerns have been raised about the potential consequences of livestock sector growth; in particular, that it will cause increased natural resource use and degradation, contribute to global warming, deplete water resources, impact on biodiversity and cause habitat change. These concerns have raised interest in assessing the environmental performance of livestock production systems (LPS), to improve understanding of how the sector can meet future demand in a sustainable way. In response to the challenge posed by climate change, the Animal Production and Health Division (AGA) of FAO has, since 2009, engaged in a comprehensive assessment of livestock-related GHG emissions, with the aim of identifying lowemission development pathways for the livestock sector. The assessment has two primary objectives: firstly, to disaggregate and refine the initial estimates of the livestock sector s overall emissions provided in Livestock s long shadow (FAO, 2006), and secondly, to identify potential mitigation options along livestock supply chains. This report presents an update of FAO (2006) assessment of GHG emissions from pig and chicken supply chains (meat and eggs). It is one part of continuing efforts by FAO to improve assessment of the sector s GHG emissions. 1.2 Scope of this report Livestock commodities differ in resource use and emission profile. These variations reflect fundamental differences both in their underlying biology and in modes of production. This report quantifies GHG emissions and analyses them in terms of: main pig and chicken products (meat and eggs); predominant pig and chicken production systems; world regions and agro-ecological zones; and major stages in the supply chains. The assessment takes a supply chain approach. Emissions generated are estimated during: (a) the production of inputs for the production process, (b) crop and animal production and (c) subsequent transport of the outputs and processing into basic commodities. Emissions and food losses that arise after delivery to the retail point are not included in this report. Given the global scope of the assessment and the complexity of livestock supply chains, several hypotheses and generalizations had to be made to keep data requirements of the assessment manageable. They are documented in the report and their impact on results is analysed. This report is aimed primarily at a technical audience, within private and public organizations, academia, and in the LCA community. General readers will find a comprehensive review of results, methods and the mitigation potential in the livestock sector in an overview report published in parallel to this one (FAO, 2013a). By providing a consistent global analysis, this assessment should aid efforts to identify priority areas for mitigation, while providing a benchmark against which future trends can be measured. 1

26 Greenhouse gas emissions from pig and chicken supply chains This report focuses on GHG emissions only. Other environmental dimensions, such as water resources, land, biodiversity and nutrients have not been considered. GHG emissions from the livestock sector need to be placed within this broader context, so that the synergies and trade-offs among competing environmental, social and economic objectives can be fully understood. The base year selected for this assessment is This year was chosen because at the start of the assessment the available spatial data and, in particular, the map of predicted livestock densities, were based on 2005 data. 1.3 The Global Livestock Environmental Assessment Model (GLEAM) This update is based on a newly developed analytical framework: the Global Livestock Environmental Assessment Model (GLEAM). GLEAM integrates existing knowledge on production practices and emissions pathways and offers a framework for disaggregation and comparisons of emissions on a global scale. GLEAM has been developed for six animal species (cattle, buffalo, sheep, goats, pigs and chickens) and their edible products. It recognizes two farming systems for ruminant species (mixed and grazing), three for pigs (backyard, intermediate and industrial) and three for chickens (backyard, industrial egg and industrial meat). In total, more than theoretical supply chains can be identified, each uniquely defined in terms of commodity, farming system, country and climatic zone. Four publications present the results of this work: the present technical report, addressing global pig and chicken (meat and eggs) sectors; a report addressing global cattle and small ruminant (sheep and goat) sectors, published in parallel to this report (FAO, 2013b); an earlier technical report published in 2010, addressing the world dairy sector (FAO, 2010); an overview report, summarizing the above at the sector level and providing additional cross-cutting analysis of emissions and mitigation potential, published in parallel to this report (FAO, 2013a). 1.4 Outline of this report This report consists of six sections (including this introductory section). Section two starts with a brief introduction to the global monogastric sector describing production systems and their contribution to global meat and eggs production. Section 3 gives an overview of the approach used in the estimation of GHG emissions in this assessment, providing basic information on the LCA approach. It provides a description of the functional units used, system boundary, allocation to co-products and sources of GHG emissions. The section also gives an overview of the monogastric production system typology applied, the tool (GLEAM) and methods as well as broader information on data sources and management. Detailed description of the approach and methods can be found in the appendices. The results (total emissions and emission intensities) of this assessment are presented in Section 4 for pigs and Section 5 for chickens, with a discussion on the most important sources and drivers of emissions from both species as well as a discussion on uncertainty and assumptions likely to influence the results. These sections also present the results of the Monte Carlo uncertainty analysis performed in this study. 2

27 Introduction Section 6 presents the conclusions and recommendations that can be drawn from this work, illustrates the gaps within systems and regions and outlines some areas for improvement. The appendices in this report provide a detailed description of the GLEAM model, methods applied (on quantifying carbon losses from land-use change, on-farm direct and indirect energy use and postfarm emissions) and data. The appendices also explore different computation approaches (e.g. for estimating LUC emissions and allocation of emissions to slaughter by-products) and their impact on emission intensity. 3

28

29 2. Overview of the global monogastric sector In this report, the monogastric sector comprises pigs and chickens. The global pig population in 2010 was estimated to be 968 million animals (FAOSTAT, 2012), 20 percent more than in The global poultry population in 2010 was estimated to be almost 22 billion animals, nearly 3 times as much as in 1980, with chickens making up 90 percent (including nearly 6 billion laying hens), ducks 6 percent, geese 2 percent and turkeys 2 percent. The pig sector is the biggest contributor to global meat production, with 37 percent of the total 296 million tonnes carcass weight (CW) in Poultry produced 33 percent of the global meat in 2010 and ruminants, 28 percent. Chicken meat accounts for 88 percent of total poultry meat; turkey, 5 percent; duck, 4 percent and goose, 3 percent. In 2010, total egg production reached 69 million tonnes, hen eggs accounting for 92 percent of it, with 1.2 billion eggs. Pig production worldwide ranges from traditional subsistence-driven smallscale production to specialized industrial farming. The latter has a distribution pattern similar to the intensive poultry sector in that it is concentrated near towns and sources of inputs. In this study, three different types of pig systems are considered: backyard, intermediate and industrial, with respective contributions to total pig production of 19 percent, 20 percent and 61 percent. Pig production can be found on all continents, except for some regions with cultural and religious strictures regarding the consumption of pork. But pigs are geographically concentrated, with 95 percent of production taking place in East and Southeast Asia, Europe and the Americas. In addition to cultural preferences, the location of pig production, from large- or medium-scale industrial systems, in particular, is also driven by factors such as proximity of output markets, infrastructures and cost of land (FAO, 2011, p. 44). Large-scale and market-oriented pig production systems have achieved a high level of uniformity in terms of animal genetics, feed and housing systems. On the other hand, in developing countries, half of the current pig population is still kept in backyard, small-scale and low-input systems in which pigs represent an important source of nutrition and income, as well as fulfilling a role in cultural traditions. Poultry production also ranges from extensive production systems supporting livelihoods and supplying local or niche markets to industrialized production systems of large- and medium-size feeding into integrated value chains. In this study, three chicken production systems are considered: backyard, broiler and layer. Backyard chicken systems can be found worldwide and contribute to 4 percent of total poultry meat production and 14 percent of total eggs production, according to the results of this study. Backyard chickens are kept in simple night shelters with limited management and disease prevention measures, and fed a mixture of household food waste and second grade crops, which they supplement by scavenging for opportunistic food sources such as insects and food scraps. Backyard poultry make 5

30 Greenhouse gas emissions from pig and chicken supply chains a significant contribution to food security and livelihoods by providing a relatively low cost source of high quality protein and a source of cash income. Specialized layer systems contribute to 86 percent of total egg production and to 6 percent of total poultry meat production. Laying hens in commercial medium- or large-scale units are bred to lay eggs and the meat is often used for pet food or animal feed rather than human food. These selected types require a suitable physical environment, optimal nutrition and efficient protection from the effects of disease. To achieve these, the birds are usually confined, so they need to be provided with all or most of their nutritional requirements. East and Southeast Asia dominate egg production, accounting for 42 percent (by mass) of eggs from layers. Chicken meat production has increased tenfold over the past 50 years, in particular, in specialized broiler systems. According to the results of this study, they now account for 81 percent of total poultry meat production and are particularly concentrated in Latin America and the Caribbean, North America and East and Southeast Asia. Specialized broiler systems in these regions account for around 70 percent of total chicken meat production. As for specialized layer operations, technology developments and advances in breeding have led the poultry industry and the associated feed industry to scale up rapidly, to concentrate themselves close to input sources or final markets, and to integrate vertically (FAO, 2006). 6

31 3. Methods 3.1 Choice of Life Cycle Assessment (LCA) The LCA approach is now widely accepted in agriculture and other industries as a method by which the environmental impacts of production can be evaluated and hotspots within the life cycle identified. The method is defined by the International organization for standardization (ISO) standards and (ISO, 2006a, b). The main strengths of LCA lie in its ability to provide a holistic assessment of production processes, and to identify measures that merely shift environmental problems from one phase of the life cycle to another. However, LCA also presents significant challenges, particularly when applied to agriculture. First, the data-intensive nature of the method often requires simplification of the inherent complexity of food supply chains. A second difficulty lies in the fact that variation in methods and assumptions such as the choice of system boundary, functional units and allocation techniques can affect results. 3.2 General principles of LCA LCA was originally applied to analyse industrial processes, but it has been progressively adapted to assess the environmental impacts of agriculture. LCA involves the systematic analysis of production systems, considering all inputs and outputs for a specific product within a defined system boundary. The system boundary largely depends on the goal of the study. The reference unit that denotes the useful output of the production system is known as the functional unit and it has a defined quantity, such as one kg of CW. The application of LCA to agricultural systems is often complicated by the multiple-output nature of production (e.g. laying chickens produce eggs, meat, manure and some slaughter by-products). This complexity means that the total environmental impact of production needs to be partitioned between the various outputs using system expansion or allocation. 3.3 The use of LCA in this assessment In recent years, a range of LCA studies have been conducted concerning pigs and chickens (see Tables 21 and 30). Although LCA methods are well defined, these studies vary considerably in their level of detail, their definition of system boundaries, the emission factors (EF) they use, and other technical aspects, such as the allocation techniques and functional units they employ. This assessment sets out to perform an LCA for the global pig and chicken sectors, using consistent calculation methods, modelling approaches, and data and parameters for each production system. Unlike previous LCA studies of the livestock sector which have concentrated on emissions in Organisation for Economic Co-operation and Development (OECD) countries, this study is global in scope and includes both developed and developing countries. Onerous data requirements have meant the study has had to employ simplifications resulting in a loss of accuracy, particularly for systems at lower levels of aggregation. An attributional approach is adopted in this study, i.e. the average environmental performance under current production and market conditions is estimated. The 7

The Contribution of Global Agriculture to Greenhouse Gas Emissions

The Contribution of Global Agriculture to Greenhouse Gas Emissions The Contribution of Global Agriculture to Greenhouse Gas Emissions Dr. Tommy Boland, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 tommy.boland@ucd.ie Acknowledge

More information

- focus on green house gas emission

- focus on green house gas emission Life cycle assessment of milk at farm gate - focus on green house gas emission Troels Kristensen Institute of Agroecology Århus University, Denmark EAAP 2011 Stavanger Norway Session 7 Structure of the

More information

TACKLING CLIMATE CHANGE THROUGH LIVESTOCK. A global assessment of emissions and mitigation opportunities

TACKLING CLIMATE CHANGE THROUGH LIVESTOCK. A global assessment of emissions and mitigation opportunities TACKLING CLIMATE CHANGE THROUGH LIVESTOCK A global assessment of emissions and mitigation opportunities TACKLING CLIMATE CHANGE THROUGH LIVESTOCK A global assessment of emissions and mitigation opportunities

More information

Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle Assessment

Greenhouse Gas Emissions from the Dairy Sector. A Life Cycle Assessment Greenhouse Gas Emissions from the Dairy Sector A Life Cycle Assessment Greenhouse Gas Emissions from the Dairy Sector A Life Cycle Assessment A report prepared by: FOOD AND AGRICULTURE ORGANIZATION OF

More information

Farming at dairy farms (produktion på mælkelandbrug)

Farming at dairy farms (produktion på mælkelandbrug) Farming at dairy (produktion på mælkelandbrug) Process description The present data refer to production on eight typical Danish Dairy in 2000, which combines dairy and (cash) crop production in a mixed

More information

A comparison of greenhouse gas emissions from the New Zealand dairy sector calculated using either a national or a regional approach.

A comparison of greenhouse gas emissions from the New Zealand dairy sector calculated using either a national or a regional approach. A comparison of greenhouse gas emissions from the New Zealand dairy sector calculated using either a national or a regional approach December 2008 A comparison of greenhouse gas emissions from the New

More information

Harvesting energy with fertilizers

Harvesting energy with fertilizers Harvesting energy with fertilizers Sustainable agriculture in Europe 1 Harvesting energy with fertilizers The reason for agriculture s existence is to supply energy to mankind. Agriculture converts solar

More information

GREENHOUSE GAS FOOTPRINTING USING OVERSEER THE WHOLE PICTURE

GREENHOUSE GAS FOOTPRINTING USING OVERSEER THE WHOLE PICTURE GREENHOUSE GAS FOOTPRINTING USING OVERSEER THE WHOLE PICTURE David Wheeler, S Ledgard and M Boyes AgResearch, Hamilton Abstract The inputs into OVERSEER Nutrient Budgets (Overseer) allow farm-specific

More information

Estimating emission inventories of French farms using the Farm Accountancy Data Network (FADN)

Estimating emission inventories of French farms using the Farm Accountancy Data Network (FADN) Estimating emission inventories of French farms using the Farm Accountancy Data Network (FADN) M.S. Corson, J.F. Ruas, F. Levert, C. Guerrier, P. Dupraz, H.M.G. van der Werf SAS and SMART Research Units,

More information

Bottom-up: Responding to climate change through livestock in integrated agriculture

Bottom-up: Responding to climate change through livestock in integrated agriculture Bottom-up: Responding to climate change through livestock in integrated agriculture Katrien van t Hooft, ETC Adviesgroep, Netherlands Personal introduction Veterinary medicine in Utrecht, NL MSc Management

More information

Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions

Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions Robert Beach, RTI International Benjamin DeAngelo and Steven Rose, US EPA William Salas, Applied Geosolutions Changsheng

More information

5.5 QUALITY ASSURANCE AND QUALITY CONTROL

5.5 QUALITY ASSURANCE AND QUALITY CONTROL 0 0 0. QUALITY ASSURANCE AND QUALITY CONTROL.. Introduction The IPCC Good Practice Guidance and Uncertainty Management (GPG000, IPCC, 000), Chapter, Quality Assurance and Quality Control, defines quality

More information

Reducing methane emissions through improved lamb production

Reducing methane emissions through improved lamb production Reducing methane emissions through improved lamb production www.hccmpw.org.uk Hybu Cig Cymru / Meat Promotion Wales Tŷ Rheidol, Parc Merlin, Aberystwyth SY23 3FF Tel: 01970 625050 Fax: 01970 615148 Email:

More information

3.2 Extent of food losses and waste

3.2 Extent of food losses and waste 4 3. Extent of food losses and waste 3.1 Food volumes produced Figure 1 illustrates the 2007 production volumes of all commodity groups in their primary form, including animal feed products (which are

More information

Six greenhouse gases covered by the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol are:

Six greenhouse gases covered by the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol are: Fact sheet: The need for mitigation United Nations Framework Convention on Climate Change Along with adaptation, mitigation is one of the two central approaches in the international climate change process.

More information

Towards climate-smart agriculture

Towards climate-smart agriculture Towards climate-smart agriculture Background notes for the informal meeting of the Ministers of Agriculture Luxembourg, 15 September 2015 Table of contents Agricultural impact on climate change Climate

More information

Ecological, Carbon and Water Footprint

Ecological, Carbon and Water Footprint Ecological, Carbon and Water Footprint Part I: Ecological Footprint Ecological Footprint - Definition The Ecological Footprint, (EF) is a composite index that represents the amount of land and sea needed

More information

Data collection and analysis

Data collection and analysis Regional workshop for the Capacity Development for sustainable national Greenhouse Gas Inventories AFOLU sector (CD-REDD II) Programme Data collection and analysis Daniela Romano Institute for Environmental

More information

Global. losses. waste

Global. losses. waste Study conducted for the International Congress SAVE FOOD! at Interpack2011 Düsseldorf, Germany Global f o o d losses a n d f o o d waste extent, causes and prevention Study conducted for the International

More information

Status of the World s Soil Resources

Status of the World s Soil Resources 5 December 2015 Status of the World s Soil Resources The Intergovernmental Technical Panel on Soils (ITPS), the main scientific advisory body to the Global Soil Partnership (GSP) hosted by the Food and

More information

Carbon footprinting on farms

Carbon footprinting on farms Carbon footprinting on farms Information sheet Soil Association Producer Support South Plaza, Marlborough Street, Bristol, BS1 3NX T 0117 914 2400 F 0117 314 5001 E producer.support@soilassociation.org

More information

Livestock and greenhouse gas emissions: the importance of getting the numbers

Livestock and greenhouse gas emissions: the importance of getting the numbers Livestock and greenhouse gas emissions: the importance of getting the numbers right 1 1 1 1 1 1 1 0 1 M. Herrero 1, P. Gerber, T. Vellinga, T. Garnett, T. McAllister, A. Leip, C. Opio, H.J. Westhoek, P.K.

More information

Frank Mitloehner, PhD Air Quality CE Specialist Animal Science, UC Davis

Frank Mitloehner, PhD Air Quality CE Specialist Animal Science, UC Davis Mitigation Solutions for Nitrous Oxide Emissions from Animal Waste International Symposium on Near-Term Solutions for Climate Change Mitigation in California March 5-7, 2007 Frank Mitloehner, PhD Air Quality

More information

Eastern Africa, bordering the Indian Ocean between Kenya and Mozambique

Eastern Africa, bordering the Indian Ocean between Kenya and Mozambique THE COUNTRY IN BRIEF COUNTRY: LOCATION: HUMAN POPULATION: Tanzania Eastern Africa, bordering the Indian Ocean between Kenya and Mozambique 50 Million PER CAPITA INCOME: USD 912 LIVESTOCK CONTRIBUTION TO

More information

Speaker Summary Note

Speaker Summary Note 2020 CONFERENCE MAY 2014 Session: Speaker: Speaker Summary Note Building Resilience by Innovating and Investing in Agricultural Systems Mark Rosegrant Director, Environment and Production Technology Division

More information

THE PREPARATION. SUPPLY/UTILIZATION ACCOUNTS (SUAs)

THE PREPARATION. SUPPLY/UTILIZATION ACCOUNTS (SUAs) THE PREPARATION OF SUPPLY/UTILIZATION ACCOUNTS (SUAs) I. INTRODUCTION The statistical framework of SUAs has been developed with the aim of providing a useful statistical tool for the preparation, conduct

More information

Greenhouse Gas Mitigation on Diversified Farms. Elwin G. Smith and B. Mani Upadhyay

Greenhouse Gas Mitigation on Diversified Farms. Elwin G. Smith and B. Mani Upadhyay Greenhouse Gas Mitigation on Diversified Farms Elwin G. Smith and B. Mani Upadhyay Agriculture and Agri-Food Canada. Lethbridge Research Centre, PO Box 3000, Lethbridge, AB, Canada. T1J 4B1. Selected Paper

More information

Food wastage footprint Impacts on natural resources

Food wastage footprint Impacts on natural resources Food wastage footprint Impacts on natural resources The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part

More information

The Role of Spatial Data in EU Agricultural Policy Analysis

The Role of Spatial Data in EU Agricultural Policy Analysis The Role of Spatial Data in EU Agricultural Policy Analysis Wolfgang Britz Institute for Food and Resource Economics, University Bonn Geospatial Open Source Hosting of Agriculture, Resource and Environmental

More information

Supplementary information on the Irish Dairy sector in support of

Supplementary information on the Irish Dairy sector in support of Research and Information Service Paper 30/15 26 th January 2015 NIAR 21-15 Mark Allen Supplementary information on the Irish Dairy sector in support of 1 Background 29/15 NIAR 912-14 This briefing note

More information

Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT

Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT Emerging BioFuel Crops and Technology Kurt Thelen Michigan State University, East Lansing, Michigan ABSTRACT United States energy policy requires 36 billion gallons of ethanol by the year 2022, with 21

More information

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Agricultural biodiversity the variability of crops and their wild relatives, trees, animals, arthropods,

More information

Calculating Greenhouse Gas Emissions

Calculating Greenhouse Gas Emissions GIIRS Emerging Market Assessment Resource Guide: What s in this Guide? I. Definition: What Are Greenhouse Gas (GHG) Emissions? II. Why Calculate GHGs? III. How to Calculate Company-wide GHGs IV. Outsourcing

More information

FARMING FOR THE FUTURE How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System

FARMING FOR THE FUTURE How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System How mineral fertilizers can feed the world and maintain its resources in an Integrated Farming System european fertilizer manufacturers association Global trends in population growth (Population 1000 million),

More information

AGRICULTURAL PROBLEMS OF JAPAN

AGRICULTURAL PROBLEMS OF JAPAN AGRICULTURAL PROBLEMS OF JAPAN Takeshi Kimura, Agricultural Counselor Embassy of Japan, Washington, D. C. I would like, first, to sketch the Japanese agricultural situation and, second, to review Japan's

More information

Using LCA models to inform about industry-led efforts to reduce the ecological footprint of farmed salmon from feed and other inputs "

Using LCA models to inform about industry-led efforts to reduce the ecological footprint of farmed salmon from feed and other inputs Using LCA models to inform about industry-led efforts to reduce the ecological footprint of farmed salmon from feed and other inputs " Authors Jason Mann (EWOS Canada, presentation) Louise Buttle (EWOS

More information

Scope 1 describes direct greenhouse gas emissions from sources that are owned by or under the direct control of the reporting entity;

Scope 1 describes direct greenhouse gas emissions from sources that are owned by or under the direct control of the reporting entity; 9 Greenhouse Gas Assessment 9.1 Introduction This chapter presents an assessment of the potential greenhouse gas emissions associated with the Simandou Railway and evaluates the significance of these in

More information

RIVM report 680125002/2006 MNP report 500080002/2006

RIVM report 680125002/2006 MNP report 500080002/2006 RIVM report 680125002/2006 MNP report 500080002/2006 Methane and nitrous oxide emissions from animal manure management, 1990-2003 Background document on the calculation method for the Dutch National Inventory

More information

MATCHING BOTTOM-UP AND TOP-

MATCHING BOTTOM-UP AND TOP- MATCHING BOTTOM-UP AND TOP- DOWN FOR VERIFICATION AND INTEGRATION OF LCI DATABASES BY BO P. WEIDEMA, 2.-0 LCA CONSULTANTS, WWW.LCA-NET.COM International Workshop on LCI-Quality, Karlsruhe, 2003.10.20-21.

More information

Academic Offerings. Agriculture

Academic Offerings. Agriculture Academic Offerings This section contains descriptions of programs, majors, minors, areas of concentration, fields of specialization, and courses. Semesters following course titles indicate when each course

More information

TABLET DETERGENTS Towards A More Sustainable Future

TABLET DETERGENTS Towards A More Sustainable Future TABLET DETERGENTS Towards A More Sustainable Future Unilever Supports Sustainable Development of Detergents with Tablets THE CONTRIBUTION OF TABLETS Unilever is committed to meeting the needs of customers

More information

Need for up-to-date data to support inventory compilers in implementing IPCC methodologies to estimate emissions and removals for AFOLU Sector

Need for up-to-date data to support inventory compilers in implementing IPCC methodologies to estimate emissions and removals for AFOLU Sector Task Force on National Greenhouse Gas Inventories Need for up-to-date data to support inventory compilers in implementing IPCC methodologies to estimate emissions and removals for AFOLU Sector Joint FAO-IPCC-IFAD

More information

Available study programs at Czech University of Life Sciences Prague

Available study programs at Czech University of Life Sciences Prague EU subject code University subject Name of course/program Mobility Language Homepage 1,1 1,1 Environmental Engineering in Agriculture II Rural Communication and Extension 1,1 Tropical Forestry and Agroforestry

More information

Greenhouse Gas Emissions of Meat Methodological issues and establishment of an information infrastructure - background document -

Greenhouse Gas Emissions of Meat Methodological issues and establishment of an information infrastructure - background document - Greenhouse Gas Emissions of Meat Methodological issues and establishment of an information infrastructure - background document - Hans Blonk Boki Luske in cooperation with Chris Dutilh November-2008 Greenhouse

More information

METHANE EMISSION FROM LIVESTOCK IN THE PODLASKIE VOIVODESHIP

METHANE EMISSION FROM LIVESTOCK IN THE PODLASKIE VOIVODESHIP Journal Ecological Engineering Volume 15, No. 3, July 2014, pp. 46 50 DOI: 10.12911/22998993.1109122 Research Article METHANE EMISSION FROM LIVESTOCK IN THE PODLASKIE VOIVODESHIP Robert Czubaszek 1, Agnieszka

More information

New York dairy manure management greenhouse gas emissions and mitigation costs (1992-2022) Jenifer L. Wightman and Peter B.

New York dairy manure management greenhouse gas emissions and mitigation costs (1992-2022) Jenifer L. Wightman and Peter B. SUPPLEMENTAL MATERIALS New York dairy manure management greenhouse gas emissions and mitigation costs (1992-2022) Jenifer L. Wightman and Peter B. Woodbury This supplement includes: Equations Equation

More information

Agriculture and Land use (ALU) Software: A tool for GHG Inventory and LEDS

Agriculture and Land use (ALU) Software: A tool for GHG Inventory and LEDS Agriculture and Land use (ALU) Software: A tool for GHG Inventory and LEDS Asia Low Emission Development Strategies (LEDS) Forum: Catalyzing an Era of Green Growth (18-21 September 2012, Bangkok, Thailand

More information

Nitrogen Management Project Protocol (NMPP) Special Topics Webinar & Project Developer Training

Nitrogen Management Project Protocol (NMPP) Special Topics Webinar & Project Developer Training Nitrogen Management Project Protocol (NMPP) Special Topics Webinar & Project Developer Training January 17 th 2013 Scott Hernandez Business Development Manager Teresa Lang Policy Manager & NMPP Lead Agenda

More information

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 1/29/2013 GAIN Report Number:

More information

Environmental Defense Fund NAFA Fleet Management Association

Environmental Defense Fund NAFA Fleet Management Association August 2009 Introduction About Our Organizations Highway Emissions Carbon Dioxide Methane and Nitrous Oxide Refrigerants (HFCs) Non-highway Emissions Sample Calculations Private light-duty fleet Private

More information

Investment in agricultural mechanization in Africa

Investment in agricultural mechanization in Africa Investment in agricultural mechanization in Africa Executive summary Conclusions and recommendations of a Round Table Meeting of Experts Co-organized by: Food and Agriculture Organization of the United

More information

The Greenhouse Gas Protocol

The Greenhouse Gas Protocol The Greenhouse Gas Protocol Introduction to the Greenhouse Gas Protocol Corporate Accounting and Reporting Standard The Greenhouse Gas (GHG) Protocol Corporate Accounting and Reporting Standard provides

More information

EASYPol Module 148. DrumNet An Enterprising Third Party Transaction Manager

EASYPol Module 148. DrumNet An Enterprising Third Party Transaction Manager EASYPol Module 148 DrumNet An Enterprising Third Party Transaction Manager DrumNet An Enterprising Third Party Transaction Manager by Ron Kopicki, World Bank Investment Officer, Washington DC, USA and

More information

In 2013, the Spanish economy emits 316.9 million tonnes of greenhouse effect gases, 7.8% less than in 2012

In 2013, the Spanish economy emits 316.9 million tonnes of greenhouse effect gases, 7.8% less than in 2012 20 November 2015 Environmental accounts. Atmospheric Emission Accounts. Base 2010. Accounting series 2010-2013 In 2013, the Spanish economy emits 316.9 million tonnes of greenhouse effect gases, 7.8% less

More information

Water Footprint Calculations for Pasture Based Beef Production

Water Footprint Calculations for Pasture Based Beef Production Water Footprint Calculations for Pasture Based Beef Production Dr. Horst Jürgen Schwartz Professor (retired), Chair of Livestock Ecology Humboldt University of Berlin Faculty of Agriculture, Institute

More information

WNA Report. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources

WNA Report. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources WNA Report Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources Contents 1. Introduction 2 2. Scope and Objectives 2-4 3. Methodology 5 4. Summary of Assessment Findings

More information

LIFE CYCLE ASSESSMENT ON COTTON AND VISCOSE FIBRES FOR TEXTILE PRODUCTION

LIFE CYCLE ASSESSMENT ON COTTON AND VISCOSE FIBRES FOR TEXTILE PRODUCTION LIFE CYCLE ASSESSMENT ON COTTON AND VISCOSE FIBRES FOR TEXTILE PRODUCTION Janka Dibdiakova, Volkmar Timmermann Norwegian Forest and Landscape Institute (NFLI) Ås, Norway COST FP1205 Innovative applications

More information

This fact sheet provides an overview of options for managing solid

This fact sheet provides an overview of options for managing solid What Is Integrated Solid Waste Management? This fact sheet provides an overview of options for managing solid waste, identifies the important issues you should consider when planning for solid waste management,

More information

Green Power Accounting Workshop: Concept Note For discussion during Green Power Accounting Workshop in Mexico City, May 13th 2011

Green Power Accounting Workshop: Concept Note For discussion during Green Power Accounting Workshop in Mexico City, May 13th 2011 Introduction As more companies and government organizations prepare greenhouse gas (GHG) inventories that reflect the emissions directly and indirectly associated with their operations, they increasingly

More information

Global warming potential from French grassland / livestock systems

Global warming potential from French grassland / livestock systems http://www.clermont.inra.fr/urep/accae Adaptation au Changement Climatique de l'agriculture et des Ecosystèmes Global warming potential from French grassland / livestock systems Anne-Isabelle Graux Romain

More information

Physical flow accounts: principles and general concepts

Physical flow accounts: principles and general concepts Physical flow accounts: principles and general concepts Julian Chow United Nations Statistics Division 1 st Sub-Regional Course on SEEA 23-27 September 2013 Malaysia SEEA Conceptual Framework Outside territory

More information

1.1 Importance of indigenous chicken

1.1 Importance of indigenous chicken 1.1 Importance of indigenous chicken Many rural households in most developing countries keep poultry in their farms. Poultry provides food and a small cash income for the family. They are used for socio-cultural

More information

Feed Management Plan Template (06. 21. 10) Address: Address: Town, State, Zip: Homer City. Farm Name: Phone: Fax: e-mail:

Feed Management Plan Template (06. 21. 10) Address: Address: Town, State, Zip: Homer City. Farm Name: Phone: Fax: e-mail: Feed Management Plan Template (06. 21. 10) Producer's Name: Address: LG Address: Town, State, Zip: Homer City Farm Name: Phone: Fax: e-mail: Consultant's Name: Cargill Animal Nutrition Address: Address:

More information

Competition for land use between different production alternatives

Competition for land use between different production alternatives New perspectives Competition for land use between different production alternatives Nan-Dirk Mulder, International IEC London 2011 Conference : A leading Food & Agribank Presence in 41 countries 2 Battle

More information

2014 Residential Electricity Price Trends

2014 Residential Electricity Price Trends FINAL REPORT 2014 Residential Electricity Price Trends To COAG Energy Council 5 December 2014 Reference: EPR0040 2014 Residential Price Trends Inquiries Australian Energy Market Commission PO Box A2449

More information

How protecting farm animal welfare can boost jobs and livelihoods

How protecting farm animal welfare can boost jobs and livelihoods How protecting farm animal welfare can boost jobs and livelihoods Local and informal supply chains provide food, social capital and food security to livestock owners Animal welfare is essential for the

More information

Guidelines for Animal Disease Control

Guidelines for Animal Disease Control Guidelines for Animal Disease Control 1. Introduction and objectives The guidelines are intended to help countries identify priorities, objectives and the desired goal of disease control programmes. Disease

More information

LCA of Dutch pork Assessment of three pork production systems in the Netherlands Carin Rougoor, Emiel Elferink, Tjerk Lap, Annelies Balkema

LCA of Dutch pork Assessment of three pork production systems in the Netherlands Carin Rougoor, Emiel Elferink, Tjerk Lap, Annelies Balkema LCA of Dutch pork Assessment of three pork production systems in the Netherlands Carin Rougoor, Emiel Elferink, Tjerk Lap, Annelies Balkema Global and local food assessment: a multidimensional performance-based

More information

FOOD AVAILABILITY AND NATURAL RESOURCE USE

FOOD AVAILABILITY AND NATURAL RESOURCE USE FOOD AVAILABILITY AND NATURAL RESOURCE USE Nadia El-Hage Scialabba Natural Resources Management and Environment Department, FAO FAO/OECD Expert Meeting on Greening the Economy with Agriculture Paris, 5

More information

ACCOUNTING FOR ASIA S NATURAL CAPITAL

ACCOUNTING FOR ASIA S NATURAL CAPITAL ACCOUNTING FOR S NATURAL CAPITAL DRIVING THE TRANSITION TO A RESOURCE-EFFICIENT GREEN ECONOMY Asia s rapid economic growth during recent decades has been accompanied by serious depletion of the region

More information

Nepalese organic baby clothing

Nepalese organic baby clothing Running head: EXPORTING ORGANIC CLOTHES FOR BABIES Nepalese organic baby clothing Gabriela Gomes de Lima AGR*2150 Plant Agriculture for International Development University of Guelph November, 2014 - Fall

More information

HLPE report on Nutrition and Food Systems

HLPE report on Nutrition and Food Systems HLPE report on Nutrition and Food Systems e-consultation on an Issues Note proposed by the HLPE Steering Committee From 9 December 2015 to 15 February 2016 Short Summary by the HLPE Secretariat 1 There

More information

A Global Outlook on Sustainability in the Dairy Production

A Global Outlook on Sustainability in the Dairy Production A Global Outlook on Sustainability in the Dairy Production VII CONGRESO COOPERATIVAS AGRO-ALIMENTARIAS Hans Jöhr Head Corporate Operations Agriculture Valencia, 27 February 2015 Content Part I: The challenge

More information

How UK farmers could reduce greenhouse gas (GHG) emissions

How UK farmers could reduce greenhouse gas (GHG) emissions How UK farmers could reduce greenhouse gas (GHG) emissions Standard Note: SN/SC/4340 Last updated: 23 March 2012 Author: Section Christopher Barclay Science and Environment Section It is generally accepted

More information

Renewable energy in transport

Renewable energy in transport Renewable energy in transport Source: http://worldwideed.staradvertiserblogs.com/2009/11/23/fun-day-monday-free-transport-from-naia-airport World transport energy use is growing rapidly Source: IEA Energy

More information

Making Sense of Climate Change - for businesses and consumers: measuring greenhouse gas emissions ( carbon footprint )

Making Sense of Climate Change - for businesses and consumers: measuring greenhouse gas emissions ( carbon footprint ) 1 Making Sense of Climate Change - for businesses and consumers: measuring greenhouse gas emissions ( carbon footprint ) Anne Ferguson, BSI British Standards Contents 2 Some necessary definitions What

More information

Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23 November 2013

Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23 November 2013 United Nations FCCC/CP/2013/10/Add.3 Distr.: General 31 January 2014 Original: English Conference of the Parties Contents Report of the Conference of the Parties on its nineteenth session, held in Warsaw

More information

The agro-ecological transition at INRA

The agro-ecological transition at INRA The agro-ecological transition at INRA Olivier Le Gall Nouvelles orientations pour la recherche agronomique Montpellier, Agropolis International, 10Sep13 #nora13.01 The agro-ecological transition at INRA

More information

Technical paper. Summary

Technical paper. Summary UNITED NATIONS Distr. GENERAL FCCC/TP/2009/1 31 May 2009 ENGLISH ONLY Cost of implementing methodologies and monitoring systems relating to estimates of emissions from deforestation and forest degradation,

More information

Agricultural Production and Research in Heilongjiang Province, China. Jiang Enchen. Professor, Department of Agricultural Engineering, Northeast

Agricultural Production and Research in Heilongjiang Province, China. Jiang Enchen. Professor, Department of Agricultural Engineering, Northeast 1 Agricultural Production and Research in Heilongjiang Province, China Jiang Enchen Professor, Department of Agricultural Engineering, Northeast Agricultural University, Harbin, China. Post code: 150030

More information

Consequences of 100% organic diets for pigs and poultry

Consequences of 100% organic diets for pigs and poultry Consequences of 100% organic diets for pigs and poultry Albert Sundrum Tier-EG Department of Animal Nutrition and Animal Health / University Kassel Outline! Problems concerning 100% organic diets! High

More information

GHG Protocol Product and Supply Chain Initiative. Proposed List of Technical Topics

GHG Protocol Product and Supply Chain Initiative. Proposed List of Technical Topics Page 1 World Business Council for Sustainable Development GHG Protocol Product and Supply Chain Initiative Proposed List of Technical Topics Seven technical working groups have been established to develop

More information

Land O Lakes Feed DDGS. Nutrients Concentrate: United States Ethanol Outlook. A Growing Opportunity

Land O Lakes Feed DDGS. Nutrients Concentrate: United States Ethanol Outlook. A Growing Opportunity DDGS A Growing Opportunity Dr. Harold Tilstra Region Manager Land O Lakes Feed hdtilstra@landolakes.com 4/9/2004 Land O' Lakes Feed; Tilstra 2 Land O Lakes Feed Vision: To To be the leading animal nutrition

More information

Environmental / Ecological Impact of the Dairy Sector:

Environmental / Ecological Impact of the Dairy Sector: Bulletin of the International Dairy Federation 436/ 003 2005 2009 Environmental / Ecological Impact of the Dairy Sector: Literature review on dairy products for an inventory of key issues List of environmental

More information

Greenhouse gas emissions in Winchester District: Part IV Estimates and trends (2005-2012)

Greenhouse gas emissions in Winchester District: Part IV Estimates and trends (2005-2012) Greenhouse gas emissions in Winchester District: Part IV Estimates and trends (2005-2012) A summary Bob Whitmarsh Winchester Action on Climate Change (WinACC) (September 2014) Introduction This is the

More information

Tech Prep Articulation

Tech Prep Articulation Tech Prep Articulation Agriculture & Natural Resources Tech Prep Education: Tech Prep education in Missouri is an articulated two-year secondary and two or more year post-secondary education program which:

More information

Action Plan. Securing crop supply through whole crop purchasing

Action Plan. Securing crop supply through whole crop purchasing Waste Action Plan Author: Alan Spray Securing crop supply through whole crop purchasing This Action Plan is intended to be used by a Director or Senior individual within a Procurement function in a Retail

More information

Business as Usual is Not an Option: Trade and Markets

Business as Usual is Not an Option: Trade and Markets Issues in Brief Business as Usual is Not an Option: Trade and Markets Underinvestment in developing country agriculture including in local and regional market infrastructure, information and services has

More information

Chicago Climate Exchange Agricultural Methane Collection and Combustion Offset Project Protocol

Chicago Climate Exchange Agricultural Methane Collection and Combustion Offset Project Protocol Chicago Climate Exchange Agricultural Methane Collection and Combustion Offset Project Protocol Agricultural Methane Collection and Combustion Offset Projects The Chicago Climate Exchange (CCX ) Agricultural

More information

BASELINE SURVEY: PRA TOOLS

BASELINE SURVEY: PRA TOOLS DEVELOPMENT AND APPLICATION OF DECISION SUPPORT TOOLS TO CONSERVE AND SUSTAINABLY USE GENETIC DIVERSITY IN INDIGENOUS LIVESTOCK & WILD RELATIVES BASELINE SURVEY: PRA TOOLS Collaborating Institutions; FAnGR

More information

SUSTAINABILITY AND GENE CONSERVATION AS GUIDING PRINCIPLES OF THE HUNGARIAN-VIETNAMESE POULTRY RESEARCH FOR DEVELOPMENT

SUSTAINABILITY AND GENE CONSERVATION AS GUIDING PRINCIPLES OF THE HUNGARIAN-VIETNAMESE POULTRY RESEARCH FOR DEVELOPMENT SUSTAINABILITY AND GENE CONSERVATION AS GUIDING PRINCIPLES OF THE HUNGARIAN-VIETNAMESE POULTRY RESEARCH FOR DEVELOPMENT Szalay, I.T. Dong Xuan, K. D. T. Association of Hungarian Small Animal Breeders for

More information

Quality Assurance/Quality Control Plan: Samples and Manual for Development

Quality Assurance/Quality Control Plan: Samples and Manual for Development DRAFT Quality Assurance/Quality Control Plan: Samples and Manual for Development Report prepared by Dr. Natalya Parasyuk for project CAPACITY BUILDING FOR IMPROVING THE QUALITY OF GREENHOUSE GAS INVENTORIES

More information

International Standard for Determining Greenhouse Gas Emissions for Cities

International Standard for Determining Greenhouse Gas Emissions for Cities International Standard for Determining Greenhouse Gas Emissions for Cities The Intergovernmental Panel on Climate Change (IPCC) advices that, to avoid the worst impacts from climate change, global CO 2

More information

Greenhouse Gas Protocol Report for IT Mästaren. Assessment Period: 2013. Produced on June 10, 2014 by Our Impacts on behalf of U&W

Greenhouse Gas Protocol Report for IT Mästaren. Assessment Period: 2013. Produced on June 10, 2014 by Our Impacts on behalf of U&W Greenhouse Gas Protocol Report for IT Mästaren Assessment Period: 2013 Produced on June 10, 2014 by Our Impacts on behalf of U&W Assessment Details Consolidation Approach Operational Control Organisational

More information

Comprehensive emissions per capita for industrialised countries

Comprehensive emissions per capita for industrialised countries THE AUSTRALIA INSTITUTE Comprehensive emissions per capita for industrialised countries Hal Turton and Clive Hamilton The Australia Institute September 2001 the Parties included in Annex I shall implement

More information

Animal Operations and Air Quality

Animal Operations and Air Quality Animal Operations and Air Quality Jan. 18 th, 2011 Zifei Liu Research Associate Departments of Animal Science and Biosystems & Agriculture Engineering Outline I. What are emitted from farms? Background

More information

Carbon Sequestration Tool Background and User Guide

Carbon Sequestration Tool Background and User Guide Carbon Sequestration Tool Background and User Guide Table of Contents Quick Start Methodology Content of Worksheets Frequently Asked Questions Quick Start 1. Determine which of the two carbon tools you

More information

THE ACCOR GROUP S ENVIRONMENTAL FOOTPRINT: AN APPLICATION OF LIFE-CYLE APPROACH TO ASSESS AND MONITOR AN ORGANIZATION ENVIRONMENTAL PERFORMANCE

THE ACCOR GROUP S ENVIRONMENTAL FOOTPRINT: AN APPLICATION OF LIFE-CYLE APPROACH TO ASSESS AND MONITOR AN ORGANIZATION ENVIRONMENTAL PERFORMANCE THE ACCOR GROUP S ENVIRONMENTAL FOOTPRINT: AN APPLICATION OF LIFE-CYLE APPROACH TO ASSESS AND MONITOR AN ORGANIZATION ENVIRONMENTAL PERFORMANCE FLOC H Emilie, LEFEVRE Clément PwC Abstract This paper presents

More information

CAPRICORN: A Windows Program for Formulating and Evaluating Rations for Goats

CAPRICORN: A Windows Program for Formulating and Evaluating Rations for Goats CAPRICORN: A Windows Program for Formulating and Evaluating Rations for Goats A. Ahmadi 1, P.H. Robinson 1 1 Animal Science, University of California, Davis, California, USA, phrobinson@ucdavis.edu Abstract

More information

United Nations Educational, Scientific and Cultural Organization. United Nations Environment Programme

United Nations Educational, Scientific and Cultural Organization. United Nations Environment Programme United Nations Educational, Scientific and Cultural Organization Scientific Committee on Problems of the Environment United Nations Environment Programme Many countries and companies are investing heavily

More information