Math/Stat 394 Homework 2
|
|
|
- Tyler Daniel
- 9 years ago
- Views:
Transcription
1 Math/Stat 39 Homework Due Wednesday Jan Six awards are to be given out among 0 students. How many ways can the awards be given out if (a one student will win exactly five awards. (b one student will win exactly four awards. (c no student can win more than three awards. ( (a There are 0 choices for which student wins five awards, 6 choices for which awards they win and 39 choices for who wins the remaining award. Thus there are ( ways the awards can be given out such that a student can win exactly five awards. ( (b There are 0 choices for which student wins five awards, 6 choices for which awards they win and 39 choices for who wins the remaining award. Thus there are ( ways the awards can be given out such that a student can win exactly four awards. (c There are 0 6 total number of choices of how to give out the six awards. We subtract off the mumber of ways that one student wins six awards (0, that one student wins five awards 1
2 (0 ( 6 (39 and the number of ways one student can win four awards 0 ( 6 39 to get ( ( ( ways the awards can be given out such that a student can win at most three awards.. A bridge hand consists of 13 cards from a standard card deck. How many bridge hands are there with (a exactly spades? (b cards if one suit, three cards of two suits and two cards of the fourth suit? (c 10 cards of one suit? (a There are ( ( 13 choices of the spades and 39 8 choices of the 8 other cards. Thus there are ( 13 ( 39 8 total hands with exactly spades. (b There are twelve choices for which suits get which numbers (,1,1. There are ( ( ( 13 ( 3 3 and 13 choices for which ranks are chosen in the different suits. Thus there are ( ( ( ( total choices. (c There are choices of the suit which gets 10 cards, ( choices of the cards in that suit and ( 39 3 choices of the remaining 3 cards. Thus there are ( ( total choices. and from chapter of Ross problems 3,,6,9,1,17 and 37 (which are copied below.
3 3. Two dice are thrown. Let E be the event that the sum of the dice is odd; let F be the event that at least one of the dice lands on 1; and let G be the event that the sum is five. Describe the events EF, E F, F G, EF C and EF G EF is the event that one dice lands on 1 and the other lands on an even number so the sum is odd. E F is the event that either the sum of the two dice is odd or one die lands on 1 and the other die is odd. F G is the event that one die lands on 1 and the sum is five so the other lands on. EF C is the event that the sum of the dice is odd and neither lands on 1. EG is the same as G (if the sum is five then it is odd so EF G = F G which is the event that one die lands on 1 while the other lands on.. A system is composed of components, each of which is either working or failed. Consider an experiment that consists of observing the status of each component, and let the outcome of the experiment be given by the vector (x 1, x, x 3, x, x, where x i is equal to 1 if component i is working and is equal to 0 if component i is failed. (a How many outcomes are in the sample space. (b Suppose that the system will work if components 1 and are both working, or if components 3 and are both working, or if components 1,3 and are all working. Let W be the event that the system will work. Specify all the outcomes in W. (c Let A be the event that components and are both failed. how many outcomes are contained in the event A? (d Write out all the outcomes in the event AW. (a 3. Each of five components can be either 0 or 1. (b W consists of all eight vectors where both components 1 and are working (1, 1, 0, 0, 0 (1, 1, 0, 0, 1 (1, 1, 0, 1, 0 (1, 1, 0, 1, 1 (1, 1, 1, 0, 0 (1, 1, 1, 0, 1 (1, 1, 1, 1, 0 and (1, 1, 1, 1, 1. It also consists of six additional elements where both components 3 and are working (0, 0, 1, 1, 0 (0, 0, 1, 1, 1 (0, 1, 1, 1, 0 (0, 1, 1, 1, 1 (1, 0, 1, 1, 0 (1, 0, 1, 1, 1 and one element where components 1,3 and are working. (1, 0, 1, 0, 1 (c 8. A is the event that both components and have failed so components 1, and 3 are free to be either working or failed. (d The outcomes in the event AW are (1, 1, 0, 0, 0 and (1, 1, 1, 0, 0. 3
4 6. A hospital administrator codes incoming patients suffering gunshot wounds according to whether they have insurance (coding 1 if they do and 0 if they do not and according to their condition, which is rated as good (g, fair (f or serious (s. Consider an experiment that consists of determining the type of the coding of such a patient. (a Give the sample space of the experiment. (b Let A be the event that the patient is in serious condition. Specify the outcomes in A. (c Let B be the event that the patient is uninsured. outcomes in B. (d Give all the outcomes in the event B C A. (a S = {(i, j : i {0, 1} and j {g, f, s}}. (b A = {(0, s, (1, s} (c B = {(0, g, (0, f, (0, s} (d B C A = {(1, s} Specify the 9. A retail establishment accepts either the American Express or the VISA credit card. A total of percent of its customers carry an American Express card, 61 percent carry a VISA card, and 11 percent carry both. What percent of its customers carry a credit card the establishment will accept? Let V be the event that the customer carries VISA and A be the event that they carry American Express. We want to find P (A V. From the problem we see that P (A =., P (V =.61 and P (A V =.11 and plug it into the equation P (A V = P (A + P (V P (A V to get P (A V = = An elementary school is offering 3 language classes: one in Spanish, one in French and one in German. These classes are open to any of the 100 students in the school. There are 8 students in the Spanish class, 6 in the French class, and 16 in the German class. There are 1 students in both Spanish and French, that are in both Spanish and German, and 6 that are in both French and German. In addition, there are students taking all 3 classes.
5 (a If a student is chosen randomly, what is the probability that he or she is not in any of these classes? (b If a student is chosen randomly, what is the probability that he or she is taking exactly one language class? (c If students are chosen randomly, what is the probability that at least one is taking a language class. Let S be the event that a student is taking Spanish, let G be the event that a student is taking German and let F be the event that a student is taking French. (a We can use inclusion exclusion to find the probability a student is taking at least one class. P (S G F = P (S + P (G + P (F P (SG P (SF P (F G + P (SF G = =.. Then P ((SF G C = 1 P (SF G =. so there are 0 taking at least one class. (b There are 10 students in Spanish and French but not German, students in Spanish and German but not French, and students in German and French but not Spanish. Thus there are 16 students taking exactly two classes and two taking all three. Thus there are 3 students taking exactly one language class and P (a student is taking exactly one class =.3. (c There are ( ( 100 choices of two students. Of those 0 have both students not taking a language class so ( ( have at least one student taking a language class. Thus the probability that at least one of the two is taking a language class is ( 0 ( 100 ( If eight castles (that is rooks are randomly placed on a chessboard compute the probability that none of the rooks can capture any of the others. That is, compute the probability that no row or file contains more than one rook.
6 If we have already placed down i rooks with no two rooks in the same row or column then there are 8 i possible choices for the row and 8 i possible choices for the column so there are (8 i possible choices for where to put the i + 1st rook. There are 6 possible squares to place the first rook, 9 places to place the second, 36 for the third, for the fourth all the way to 1 square for the eighth. Thus there are (6(9(36((16(9((1 ordered ways to arrange the rooks. (The problem isn t specific we will assume that no two rooks are allowed on the same space. There are (6(63(6(61(60(9(8(7 possible ordered ways to arrange the rooks. Thus the probability that no two rooks are in the same row or column is (6(9(36((16(9((1 (6(63(6(61(60(9(8(7 37. An instructor gives her class a set of 10 problems with the information that the final exam will consist of a random selection of of them. If a student has figured out how to do 7 of the problems, what is the probability that he or she will answer correctly (a all five problems; (b at least four of the problems? (a There are ( 10 possible exams the instructor can give. There are exams that consist only of the seven problems the student has ( 7 figured out. Thus P (the student has figured out all problems = ( 7 ( 10. (b First we calculate the number of possible exams where the student has figured out exactly four problems. There are ( 7 choices of problems the student has figured out. For each of these there 3 choices of the problem the student hasn t figured out. Adding in the ( 7 possible exams that the student figured out five problems we get that there are ( ( possible exams where the student has figured out at least four problems. Thus P (the student has figured out at least problems = 3( ( ( 10. 6
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Statistics 100A Homework 1 Solutions
Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
Homework 2 Solutions
CSE 21 - Winter 2012 Homework #2 Homework 2 Solutions 2.1 In this homework, we will consider ordinary decks of playing cards which have 52 cards, with 13 of each of the four suits (Hearts, Spades, Diamonds
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment.
Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2
Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
High School Statistics and Probability Common Core Sample Test Version 2
High School Statistics and Probability Common Core Sample Test Version 2 Our High School Statistics and Probability sample test covers the twenty most common questions that we see targeted for this level.
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Section 5-3 Binomial Probability Distributions
Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
Hooray for the Hundreds Chart!!
Hooray for the Hundreds Chart!! The hundreds chart consists of a grid of numbers from 1 to 100, with each row containing a group of 10 numbers. As a result, children using this chart can count across rows
MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)
Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS
EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the
SOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Question 1 Formatted: Formatted: Formatted: Formatted:
In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You
2urbo Blackjack 21.99. 2 9 Hold their face value
2urbo Blackjack Type of Game The game of 2urbo Blackjack utilizes a player-dealer position and is a California game. The player-dealer shall collect all losing wagers, pay all winning wagers, and may not
Math Board Games. For School or Home Education. by Teresa Evans. Copyright 2005 Teresa Evans. All rights reserved.
Math Board Games For School or Home Education by Teresa Evans Copyright 2005 Teresa Evans. All rights reserved. Permission is given for the making of copies for use in the home or classroom of the purchaser
A permutation can also be represented by describing its cycles. What do you suppose is meant by this?
Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs
Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.
Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus
MAKING MATH MORE FUN BRINGS YOU FUN MATH GAME PRINTABLES FOR HOME OR SCHOOL
MAKING MATH MORE FUN BRINGS YOU FUN MATH GAME PRINTABLES FOR HOME OR SCHOOL THESE FUN MATH GAME PRINTABLES are brought to you with compliments from Making Math More Fun at and Math Board Games at Copyright
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Rules of core casino games in Great Britain
Rules of core casino games in Great Britain June 2011 Contents 1 Introduction 3 2 American Roulette 4 3 Blackjack 5 4 Punto Banco 7 5 Three Card Poker 9 6 Dice/Craps 11 2 1 Introduction 1.1 This document
Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know
Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012
Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 202. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments
Bayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
Session 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game.
POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game. 1.0 Rules 1.1 POKER LOTTO is governed by the Rules Respecting Lottery Games of
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
Chapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
Ch. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
Poker. 10,Jack,Queen,King,Ace. 10, Jack, Queen, King, Ace of the same suit Five consecutive ranks of the same suit that is not a 5,6,7,8,9
Poker Poker is an ideal setting to study probabilities. Computing the probabilities of different will require a variety of approaches. We will not concern ourselves with betting strategies, however. Our
Probability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
A Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
MATHS ACTIVITIES FOR REGISTRATION TIME
MATHS ACTIVITIES FOR REGISTRATION TIME At the beginning of the year, pair children as partners. You could match different ability children for support. Target Number Write a target number on the board.
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
BASIC RULES OF CHESS
BASIC RULES OF CHESS Introduction Chess is a game of strategy believed to have been invented more then 00 years ago in India. It is a game for two players, one with the light pieces and one with the dark
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?
Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined
Hoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Week 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
Tasks to Move Students On
Maths for Learning Inclusion Tasks to Move Students On Part 1 Maths for Learning Inclusion (M4LI) Tasks to Move Students On Numbers 1 10 Structuring Number Maths for Learning Inclusion (M4LI) Tasks to
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
How to Play. Player vs. Dealer
How to Play You receive five cards to make your best four-card poker hand. A four-card Straight is a Straight, a four-card Flush is a Flush, etc. Player vs. Dealer Make equal bets on the Ante and Super
The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter
Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
Linear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
Math Meets the Bookies: or How to win Football Pools
Math Meets the Bookies: or How to win Football Pools Football Pools Given n games (matches) to be played by 2n teams, a forecast is an n-tuple consisting of a prediction for each of the n matches. In a
Grade 6 Math Circles Mar.21st, 2012 Probability of Games
University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Mar.21st, 2012 Probability of Games Gambling is the wagering of money or something of
Number boards for mini mental sessions
Number boards for mini mental sessions Feel free to edit the document as you wish and customise boards and questions to suit your learners levels Print and laminate for extra sturdiness. Ideal for working
Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
Curriculum Design for Mathematic Lesson Probability
Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.
Third Grade Math Games
Third Grade Math Games Unit 1 Lesson Less than You! 1.3 Addition Top-It 1.4 Name That Number 1.6 Beat the Calculator (Addition) 1.8 Buyer & Vendor Game 1.9 Tic-Tac-Toe Addition 1.11 Unit 2 What s My Rule?
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels:
How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels: LUCKY MONEY numbers are drawn from two sets of numbers. Four numbers are drawn from one set of 47 numbered white balls
Thursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics
Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3
The Bellevue Center for Obesity & Weight Management. Program Director: Manish Parikh, MD WEIGHT LOSS SURGERY INFORMATION SEMINAR
Wednesday, January 7, 2015 Wednesday, February 4, 2015 Wednesday, March 4, 2015 Wednesday, April 1, 2015 Wednesday, May 13, 2015 Wednesday, June 3, 2015 Wednesday, July 1, 2015 Wednesday, August 5, 2015
WEIGHT LOSS SURGERY INFORMATION SEMINAR
Wednesday, January 6, 2016 Wednesday, February 3, 2016 Wednesday, March 2, 2016 Wednesday, April 6, 2016 Wednesday, May 4, 2016 Wednesday, June 1, 2016 Wednesday, July 6, 2016 Wednesday, August 3, 2016
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
University of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
Ready, Set, Go! Math Games for Serious Minds
Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
Homework 20: Compound Probability
Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting
Combinatorics 3 poker hands and Some general probability
Combinatorics 3 poker hands and Some general probability Play cards 13 ranks Heart 4 Suits Spade Diamond Club Total: 4X13=52 cards You pick one card from a shuffled deck. What is the probability that it
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median
Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a
Mental Questions. Day 1. 1. What number is five cubed? 2. A circle has radius r. What is the formula for the area of the circle?
Mental Questions 1. What number is five cubed? KS3 MATHEMATICS 10 4 10 Level 8 Questions Day 1 2. A circle has radius r. What is the formula for the area of the circle? 3. Jenny and Mark share some money
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
Math Common Core Sampler Test
Math Common Core Sampler Test This sample test reviews the top 20 questions we have seen on the 37 assessment directly written for the Common Core Curriculum. This test will be updated as we see new questions
Exam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
Name: Exam Style Questions Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser You may use tracing paper if needed Guidance 1. Read each question carefully before you begin answering
