Mechanically stabilized layers in road construction

Size: px
Start display at page:

Download "Mechanically stabilized layers in road construction"

Transcription

1 Mechanically stabilized layers in road construction Zikmund Rakowski, Jacek Kawalec Tensar International, UK, Technical University of Silesia, Poland Abstract: Effective and economical technologies are more and more import ant for road construction. A concept of mechanically stabilized layer is presented in the paper. The technology for the most efficient distribution of stress under top asphalt layers is applied and quantified. The Technology allows to save reasonable amount of granular material not reducing but even increasing road service life. INTRODUCTION: The use of geogrids in road construction, introduced in 80-ties of XX century by Netlon, becomes a standard for many projects around the world. Since that time rapid increase of different type of materials manufactured world-wide for road applications is observed as well as number of road projects with geosynthetics in use. The problem faced up by designers is how to correctly select proper geogrid from all available materials for real improvement of the structure. Quite often there is no link between physical parameters of the geogrid and their efficiency. Commonly used specifications are describing parameters which are not relevant with mechanism of interaction between geogrid and aggregate. Unfortunately, clear classification based on differential performance of different geogrids quite often is not considered as the most useful one. As final result many geogrid applications in roads do not shows any improvement to the structure with time. To avoid that situation paper discuss the most important parameters for effective mechanical stabilization of grains provided by geogrid. GENERAL CLASSIFICATION OF MATERIALS There is several classifications of geosynthetics where the simplest one describes different type of products: Nonwoven geotextiles Woven geotextiles Geonets Low height geocells Geogrids

2 Geomembranes Geomats Geocomposities From all groups listed above material usable for mechanical stabilization are geogrids. The other materials has different function and should not be used for this application. An exception from this are geocomposities but only those where the main active component is geogrid. Looking closer on geogrids we can find that there is few different ways of manufacturing them with different impact on reinforcing mechanism. CROW 157 from the Netherlands [5] has taken a first step to try to characterize the benefit expected from a material and has produced a chart (Fig. 1) which indicates the expected benefits based on the manufacturing process. This chart shows that there is no simply equal status between different materials from performance point of view. Understanding of differences is a key to economical design and satisfactory use of geosynthetics. Figure 1. Chart to quantify the benefits of geosynthetics in unbound layers in terms of reduced base thickness Next, very important issue is proper identification of function of reinforcement according to application. As mentioned earlier, the most suitable materials for reinforcement are geogrids and further discussion will concentrate on them. Table presented below shows two completely different groups of application and as result different conditions for geogrid in the construction.

3 Table 1. Application differentiation according to timing and load direction A. Load applied temporary at reinforcement depth, mainly perpendicular to geogrid in plane Mechanically stabilized layers under roads, railways, runways, etc., Subgrade reinforcement under industrial floors Embankment foundations on weak soil Asphalt concrete reinforcement Protection layers for linear structures constructed over mining activity areas Reinforcement of stone-pillows under shallow foundations B. Load applied permanent to at reinforcement depth, parallel to geogrid in plane Slope reinforcement Retaining walls Bridge abutments designed as earth structures As there are different applications presented above, the circumstances for reinforcing material are also quite opposite. Generally for applications listed under column A good interlocking is a critical parameter whilst for applications listed under column B the most important parameter is tensile strength of the reinforcement. Applications listed under column A requires maximum interaction between aggregate and geogrid at the very beginning of deformation. For those applications the most important feature is stabilization of grain within grid aperture. Due to short time of single load impulse on geogrid, even if counted in millions cycles, naturally reduced with time during subsoil consolidation, the problem of polymer creeping for those applications is irrelevant. The stability of the aperture and general stiffness of the grid at very low strains has a critical impact on successful or unsuccessful grain stabilization. Long term strength with creep influence should be considered only for those application where load parallel to geogrid in plane applies with the same value during whole life of the structure. This mentioned diversification is very important for proper understanding of the mechanism of grain stabilization and should be analyzed at one of first steps during design work. Unfortunately analysis of many projects and work specifications shows that this phenomena is very rarely considered by designers. As the result there are many projects observed where improper reinforcemet are specified for mechanically stabilized layers what causes application failures in time. Good understanding of differentiation of mechanisms helps to avoid mistakes in specification. MECHANISMS The consideration of how geosynthetics could provide a benefit in terms of reinforcement to the granular pavement layer began with work by Giroud et al [1] with geotextiles and then moved on to the additional benefits provided by geogrids in 1984, again by Giroud et al [2]. The paper by Jenner et al. [3] describes the lessons learnt from research and full

4 scale projects from 1981 through to 2000 with particular reference to the identification of the mechanismss that provide the reinforcement function. In most pavement construction the efficient reinforcement mechanism is one which can be mobilised without undue deformation of the surface. This mechanism is one of constraint of the aggregate particles in the apertures of the geogrids and is termed interlock. (Fig. 2) [4]. The other mechanism which has been considered is the tensioned membrane where the geosynthetic material is deformed by channelised traffic so that it develops its tensile strength to act as a membrane supporting the aggregate layer. If the traffic is channelised and the material is anchored to each side of the loaded path then this mechanism could be mobilized but it requires large deformations to develop the necessary strength and resistance. Fig 3. Hence, interlock is the critical mechanism for efficient reinforcement [4]. Figure 2. Grain interlock mechanism Figure 3. Tensioned membrane mechanism PRINCIPLES OF MECHANICALLY STABILIZED LAYERS (MSL) The Mechanically Stabilized Layer (MSL) in road construction is based on perfect interaction between well graded aggregate interlocked in appropriate in size and shape, stiff aperture of the geogrid. For this reason MSL can be design only with grids for which an nterlocking mechanismm is appropriate to describe their function. It s important to recognize that also for some of geogrids the tensioned membrane is the real mechanism. For those grids, due to weak aperturee stability under load there are no odds for effective

5 MSL. One of reasons is lack of aperture stiffness in any direction different than MD and CMD as shown on figure 4 [6]. Figure 4. Example of apperture deformation which makes material unsuitable for MSL There is a strong relationship between multi-directional stiffness of the aperture and MSL efficiency. The most appropriate geogrid for MSL seems to be triaxial one where naturally load distribution is in true with mechanics more optimal (see figure 5). Biaxial geogrids have tensile stiffness predominantly in two directions. Triaxial geogrids have three principal directions of stiffness, which is further enhanced by their rigid triangular geometry. This produces a significantly different structure than any other geogrid and provides high stiffness through 360 degrees what has strong impact for MSL conditions. Figure 5. Radial load distribution under wheel is typical condition for Mechanically Stabilized Layer (MSL) CONFINEMENT EFFECT For economical design of Mechanically Stabilized Layer (MSL) very important is to determine optimal thickness of aggregate acting with geogrid. The best interaction occurs at the bottom of aggregate layer over geogrid where grains are interlocked in grid apertures. This layer is defined as the Fully Confined Zone (see figure 6). With distance increase from geogrid aggregate confinement effect is reduced and this layer is defined as Transition Zone with Partial Confinement. Above Transition Zone next layer of aggregate

6 is free from geogrid influence and defined as Unconfined Zone. Aggregate in Unconfined Zone for properly designed MSL should be reinforced again at bottom of this layer. Thickness of Fully Confined and Transition Zones is an individual parameter determined for individual type of geogrid for action with individual aggregate. There is no single similarity between different groups of geosynthetics classified in accordance to manufacturing process and as consequence every design of MSL must be done according to full knowledge about geogrid and aggregate for use in application. Any change in material both in geogrid and aggregate require redesign of MSL. Figure 6. The confinement effect within aggregate layer interlocked with geogrid CONCLUSIONS The use of geogrid for Mechanically Stabilized Layer (MSL) could rapidly improve circumstances for aggregate used for both base and sub-base in road construction. Proper selection of geogrid and aggregate is the key to optimal design of effective thickness what has a strong impact for road lifecycle extension. Not every geosynthetic may be used in MSL, due to relatively small thickness of the structure and limitation in deformation at depth of geogrid any material acting as tension membrane is not relevant for Mechanically Stabilized Layer. There is strong economical need for using MSL solutions in roads due to cost reduction and road life increase. REFERENCES [1] Giroud, J. P., Noiray, L., (1981), Geotextile-Reinforced Unpaved Road Design. Journal of the Geotechnical division, ASCE, Vol. 107, No. GT9, Proc. Paper [2] Giroud, J.P., Ah-Line, C., Bonaparte, R., (1984), Design of Unpaved Road and Trafficked Areas with Geogrids. Polymer Grid Reinforcement, Thomas Telford.

7 [3] Jenner, C. G., Paul, J., (2000), Lessons learned from 20 years experience of geosynthetic reinforcement on pavement foundations. Second European Geosynthetics Conference, Bologna. pp [4] Jenner, C, G. (2007) The Reinforcement Of The Granular Layers Of Roads And Railways, Railway Engineering Conference, London [5] CROW Publicatie 157 (2002), Dunne asfaltverhardingen: dimensionering en herontwerp [6] Report NB-209/RB-7/2006 (2007) Tests of geo-grids reinforcement effectiveness in geo-mattresses integrated in the foundation of embankment on soft subsoil, Technical University of Silesia,

SKER HUESKER HUESKER geogrid HUESKER HUESKER for HUESKERHUES SKER HUESKER HUESKER HUESKERHUES SKER HUESKER HUESKER HUESKER HUESKER HUESKERHUES

SKER HUESKER HUESKER geogrid HUESKER HUESKER for HUESKERHUES SKER HUESKER HUESKER HUESKERHUES SKER HUESKER HUESKER HUESKER HUESKER HUESKERHUES rhuesker HUESKER Fortrac HUESKER HUESKER HUESKER HUESKERr rhuesker Flexible HUESKER HUESKER low-extension HUESKER HUESKER HUESKERr SKER HUESKER HUESKER geogrid HUESKER HUESKER for HUESKERHUES SKER HUESKERHUES

More information

Stabilenka HUESKER. and Separation. Engineering with Geosynthetics SKER HUESKER HUESKER HUESKER HUESKERHUES

Stabilenka HUESKER. and Separation. Engineering with Geosynthetics SKER HUESKER HUESKER HUESKER HUESKERHUES HUESKER Engineering with Geosynthetics rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr rhuesker HUESKER Woven HUESKER HUESKER Fabrics HUESKER HUESKERr SKER HUESKER HUESKER HUESKER HUESKERHUES rhuesker

More information

rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr HUESKER HUESKER HUESKER HUESKERHUES Product- Portfolio HUESKER Engineering with Geosynthetics

rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr HUESKER HUESKER HUESKER HUESKERHUES Product- Portfolio HUESKER Engineering with Geosynthetics HUESKER Engineering with Geosynthetics rhuesker HUESKER Product- HUESKER HUESKER HUESKER HUESKERr SKER HUESKER Portfolio HUESKER HUESKER HUESKER HUESKERHUES Engineering with Geosynthetics HUESKER Synthetic

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Reinforcement HUESKER. HaTelit. Engineering with geosynthetics

Reinforcement HUESKER. HaTelit. Engineering with geosynthetics HUESKER Engineering with geosynthetics rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr SKER HUESKER HUESKER Asphalt HUESKER HUESKER HUESKERHUES Reinforcement - the answer to reflective cracking in asphalt

More information

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices

More information

Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective

Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective FHWA NATIONAL GEOTECHNICAL PROGRAM www.fhwa.dot.gov/engineering/geotech Why Geotechnical Instrumentation? Provide warning

More information

RMS Guide for design of concrete pavements in areas of settlement. Version 1.0. Roads and Maritime Services www.rms.nsw.gov.au

RMS Guide for design of concrete pavements in areas of settlement. Version 1.0. Roads and Maritime Services www.rms.nsw.gov.au Guide for design of concrete pavements in areas of settlement Version 1.0 RMS Guide for design of concrete pavements in areas of settlement Version 1.0 Roads and Maritime Services www.rms.nsw.gov.au Title:

More information

USE OF GEOSYNTHETICS FOR FILTRATION AND DRAINAGE

USE OF GEOSYNTHETICS FOR FILTRATION AND DRAINAGE USE OF GEOSYNTHETICS FOR FILTRATION AND DRAINAGE Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Functions of a Filter Retain particles of the base

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

LABORATORY MODEL TESTS TO EFFECT OF DENSITY TO FILL MATERIAL ON THE PERFORMANCE OF A MODEL REINFORCED SOIL WALL

LABORATORY MODEL TESTS TO EFFECT OF DENSITY TO FILL MATERIAL ON THE PERFORMANCE OF A MODEL REINFORCED SOIL WALL International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 216, pp. 365 372, Article ID: IJCIET_7_3_37 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL. Featuring Highland Stone. anchorwall.com

RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL. Featuring Highland Stone. anchorwall.com RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL 11 Featuring Highland Stone anchorwall.com TABLE OF CONTENTS 2 TABLE OF CONTENTS BEFORE YOU BEGIN............................

More information

LESSONS LEARNED FROM 10 YEARS OF LEAK DETECTION SURVEYS ON GEOMEMBRANES

LESSONS LEARNED FROM 10 YEARS OF LEAK DETECTION SURVEYS ON GEOMEMBRANES LESSONS LEARNED FROM 10 YEARS OF LEAK DETECTION SURVEYS ON GEOMEMBRANES B. FORGET, A.L. ROLLIN and T. JACQUELIN SOLMERS INC., 1471 Lionel-Boulet Boulevard, Suite 22, Varennes J3X 1P7, Quebec, Canada SUMMARY

More information

Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance

Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance Rongzong Wu, David Jones, Hui Li and John Harvey University of California Pavement Research Center Prepared

More information

Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand

Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand M. S. Dixit Research Scholar, Department of Civil Engineering, Government College of Engineering, Aurangabad (Maharashtra State),

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS. A SHORT GUIDE (revised version)

EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS. A SHORT GUIDE (revised version) EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS A SHORT GUIDE (revised version) by Dr Fred Foubert (Centexbel), secretary to CEN/TC 189 Geosynthetics Important note: This short guide means to be an introduction

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

SECTION 32 32 23 CONCRETE SEGMENTAL RETAINING WALL SYSTEM

SECTION 32 32 23 CONCRETE SEGMENTAL RETAINING WALL SYSTEM Anchor [coarse-split products] SECTION 32 32 23 CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1 GENERAL 1.01 SUMMARY A. Section Includes 1. Concrete segmental retaining wall units 2. Geosynthetic reinforcement

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

Interpretation of clogging effects on the hydraulic behavior of ion treated geotextiles

Interpretation of clogging effects on the hydraulic behavior of ion treated geotextiles 9 th International Conference on Geosynthetics, Brazil, 2010 Interpretation of clogging effects on the hydraulic behavior of ion treated geotextiles Lee, K. W. Department of Civil Engineering, Dongseo

More information

EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS

EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS EUROPEAN AND INTERNATIONAL GEOTEXTILE STANDARDS A SHORT GUIDE (updated version 2014) by Dr. Fred Foubert (Centexbel), secretary to CEN/TC 189 Geosynthetics IMPORTANT NOTE: This short guide means to be

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

1. ASTM C 140 - Sampling and Testing Concrete Masonry Units 2. ASTM C 1372 Standard Specification for Dry-Cast Segmental Retaining Wall Units

1. ASTM C 140 - Sampling and Testing Concrete Masonry Units 2. ASTM C 1372 Standard Specification for Dry-Cast Segmental Retaining Wall Units SPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS PART 1: GENERAL 1.01 Description A. Work shall consist of furnishing materials, labor, equipment and supervision to install a segmental retaining wall

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

SECTION 3.3 - PAVEMENT DESIGN

SECTION 3.3 - PAVEMENT DESIGN SECTION 3.3-3.3.1 GENERAL 3.3.2 SUBSURFACE DRAINAGE 3.3.3 DETERMINATION OF DESIGN TRAFFIC 3.3.4 SUBGRADE EVALUATION 3.3.5 PAVEMENT THICKNESS 3.3.5.1 GRANULAR PAVEMENTS WITH THIN BITUMINOUS SURFACING 3.3.5.2

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone GEOSYNTHETIC SOIL REINFORCEMENT Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone DESIGN MANUAL & KEYWALL OPERATING GUIDE GEOSYNTHETIC SOIL REINFORCEMENT Keystone retaining walls

More information

Lecture Notes CT 4860 Structural Pavement Design. Design of Flexible Pavements

Lecture Notes CT 4860 Structural Pavement Design. Design of Flexible Pavements Lecture Notes CT 4860 Structural Pavement Design Design of Flexible Pavements Prof.dr.ir. A.A.A. Molenaar Delft, March 2007 Table of contents Preface 3 1. Introduction 4 2. Major defect types in flexible

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall

More information

CHAPTER 6 SETTLEMENT ANALYSES

CHAPTER 6 SETTLEMENT ANALYSES CHAPTER 6 SETTLEMENT ANALYSES This chapter provides information to use when analyzing the potential for failure due to settlement at an Ohio waste containment facility. It is important to account for settlement

More information

the French experience

the French experience VLLW disposal and management of large volume of slightly contaminated materials the French experience Nicolas Solente Very Low Level Waste disposal in France The CIRES facility in Morvilliers VLLW waste

More information

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS December 2014 CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS 1. DESCRIPTION... 1 1.1 General... 1 1.2 Definitions... 1 1.3 Referenced Standard Construction Specifications...

More information

The Most Advanced Name in Drainage Systems. Geotextile Products

The Most Advanced Name in Drainage Systems. Geotextile Products The Most Advanced Name in Drainage Systems Geotextile Products ADS MEETs YOUR Geotextile NEEDS Advanced Drainage Systems, Inc. (ADS) single wall and N12 dual wall pipe have become the industry standard

More information

Oil and Gas Containment Systems

Oil and Gas Containment Systems FRONT COVER Oil and Gas Containment Systems FACING THE CHALLENGE Oil and natural gas production is one of the most hazardous and complex industries in the world. In addition to typical day-to-day business

More information

Optimised Design for Soil Nailed Walls 1

Optimised Design for Soil Nailed Walls 1 Optimised Design for Soil Nailed Walls 1 J A R Ortigao 1 and E M Palmeira 2 1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 2 University of Brasília, Brasília, Brazil INTRODUCTION The first

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

APPENDIX B. I. Background Information

APPENDIX B. I. Background Information APPENDIX B GUIDELINES FOR IDENTIFYING AND REPAIRING LOCALIZED AREAS OF DISTRESS IN AC PAVEMENTS PRIOR TO CAPITAL PREVENTIVE MAINTENANCE OR REHABILITATION REPAIRS I. Background Information A. AC Pavement

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 199, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Drainage Composites. The ready-made solution to sub soil drainage

Drainage Composites. The ready-made solution to sub soil drainage Drainage Composites The ready-made solution to sub soil drainage The Ready-Made Solution to Sub Soil Drainage Drainage Composites are prefabricated subsurface-drainage products which directly replace conventional

More information

Product Guide Specification

Product Guide Specification Reef Industries, Inc. 9209 Almeda Genoa Rd. Houston, Texas 77075 Toll Free (800) 231-6074 Phone (713) 507-4251 Fax (713) 507-4295 Web Site www.reefindustries.com E-Mail ri@reefindustries.com Product Guide

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

SKER HUESKER HUESKER HUESKER HUESKER HUESKERHUES

SKER HUESKER HUESKER HUESKER HUESKER HUESKERHUES rhuesker HUESKER HaTelit HUESKER HUESKER HUESKER HUESKERr SKER HUESKER HUESKER Asphalt HUESKER HUESKER HUESKERHUES SKER HUESKERHUES HUESKERr SKER HUESKERHUES rhueskerreinforcement HUESKERr Long-term retardation

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Vintage TM unit segmental retaining wall (SRW)

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

GRI-GT13(a) Specification Geotextile Separation for Roadways (ASTM Test Method Based)

GRI-GT13(a) Specification Geotextile Separation for Roadways (ASTM Test Method Based) GRI-GT13(a) Specification Geotextile Separation for Roadways (ASTM Test Method Based) placed between subgrade soil and an overlying aggregate layer separation prevents mixing and intrusion meant for firm

More information

ROAD CONSTRUCTION. Pavement Base Reinforcement Subgrade Stabilization

ROAD CONSTRUCTION. Pavement Base Reinforcement Subgrade Stabilization ROAD CONSTRUCTION Pavement Base Reinforcement Subgrade Stabilization TM Road Construction applications have specific needs and objectives. No one understands that better than Road construction applications

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

100.02 Civil engineering Fibertex Geotextiles

100.02 Civil engineering Fibertex Geotextiles C O N S T R U C T I O N 100.02 Civil engineering C O N S T R Constructing with Fibertex offers a full range of nonwoven geotextiles designed for use in many different foundation structures within civil

More information

CHAPTER 7 ASPHALT PAVEMENTS

CHAPTER 7 ASPHALT PAVEMENTS CHAPTER 7 ASPHALT PAVEMENTS 207 7.1 Introduction: Flexible pavements consist of one or more asphalt layers and usually also a base. Mostly the base is composed of unbound (granular) materials but also

More information

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline

More information

Liner system design for tailings impoundments and heap leach pads

Liner system design for tailings impoundments and heap leach pads Liner system design for tailings impoundments and heap leach pads John F. Lupo, Ph.D., P.E. AMEC E&E TAILINGS & MINE WASTE 08, VAIL Liner Systems Liner systems Environmental containment of process solutions

More information

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand Discovery ANALYSIS The International Daily journal ISSN 2278 5469 EISSN 2278 5450 2015 Discovery Publication. All Rights Reserved Effect of grain size, gradation and relative density on shear strength

More information

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

PAVEMENT STRUCTURE DESIGN GUIDELINES

PAVEMENT STRUCTURE DESIGN GUIDELINES PAVEMENT STRUCTURE DESIGN GUIDELINES Technical Circular T- 01/15 (Replaces Technical Circular T-01/04) Final Update: Jan. 26, 2015 Geotechnical, Materials and Pavement Engineering TABLE OF CONTENTS 1.0

More information

2.0 External and Internal Forces act on structures

2.0 External and Internal Forces act on structures 2.0 External and Internal Forces act on structures 2.1 Measuring Forces A force is a push or pull that tends to cause an object to change its movement or shape. Magnitude, Direction, and Location The actual

More information

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

More information

Strain Measurement in Pavements with a Fibre Optics Sensor Enabled Geotextile

Strain Measurement in Pavements with a Fibre Optics Sensor Enabled Geotextile Strain Measurement in Pavements with a Fibre Optics Sensor Enabled Geotextile Olivier Artières 1, Matteo Bacchi 2, Paolo Bianchini 1, Pierre Hornych 3 and Gerrit Dortland 1 1 TenCate Geosynthetics France,

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope Introduction Background

An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope Introduction Background An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope By Dov Leshchinsky Copyright 2001, ADAMA Engineering, Inc. All Rights Reserved Introduction Geosynthetic reinforced soil structures

More information

WATERVIEW CONNECTION PROJECT. Ground Settlement WATERVIEW CONNECTION TEAM

WATERVIEW CONNECTION PROJECT. Ground Settlement WATERVIEW CONNECTION TEAM WATERVIEW CONNECTION PROJECT Ground Settlement WATERVIEW CONNECTION TEAM Settlement What is it? Settlement is the lowering of ground level caused by a volume change or movement within the soil Shrinking

More information

AN INTERFACE PULLOUT FORMULA FOR EXTENSIBLE SHEET REINFORCEMENT

AN INTERFACE PULLOUT FORMULA FOR EXTENSIBLE SHEET REINFORCEMENT Technical Paper by S. Sobhi and J.T.H. Wu AN INTERFACE PULLOUT FORMULA FOR EXTENSIBLE SHEET REINFORCEMENT ABSTRACT: Pullout tests have been widely used to evaluate soil-reinforcement interface properties

More information

PERFORMANCE TESTING OF BITUMINOUS MIXES USING FALLING WEIGHT DEFLECTOMETER

PERFORMANCE TESTING OF BITUMINOUS MIXES USING FALLING WEIGHT DEFLECTOMETER ABSTRACT NO. 6 PERFORMANCE TESTING OF BITUMINOUS MIXES USING FALLING WEIGHT DEFLECTOMETER Prof Praveen Kumar Dr G D Ransinchung Lt. Col. Mayank Mehta Nikhil Saboo IIT Roorkee IIT Roorkee IIT Roorkee IIT

More information

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1: BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN DRA FOR SAFETY D1-1 ANNEX D1 BASIC CONSIDERATIONS

More information

Pavement Design. Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION. 1005 Terminal Way, Suite 125 Reno, Nevada 89502

Pavement Design. Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION. 1005 Terminal Way, Suite 125 Reno, Nevada 89502 Pavement Design Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION ENGINEERS,, INC. I 1005 Terminal Way, Suite 125 Reno, Nevada 89502 Topics Introduction Design Factors Pavement Types Fundamentals

More information

Design of diaphragm and sheet pile walls. D-Sheet Piling. User Manual

Design of diaphragm and sheet pile walls. D-Sheet Piling. User Manual Design of diaphragm and sheet pile walls D-Sheet Piling User Manual D-SHEET PILING Design of diaphragm and sheet pile walls User Manual Version: 14.1.34974 31 July 2014 D-SHEET PILING, User Manual Published

More information

GRI Standard Practice GT7 * Determination of the Long-Term Design Strength of Geotextiles

GRI Standard Practice GT7 * Determination of the Long-Term Design Strength of Geotextiles Geosynthetic Institute 475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441 GEI GRI GSI GAI GCI GII adopted -1989 Rev. 1 1992 Rev. 2 (editorial) 2012 GRI Standard Practice

More information

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China Advanced Materials Research Vols. 163-167 (2011) pp 1147-1156 Online available since 2010/Dec/06 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.163-167.1147

More information

Aggregates for Path Construction

Aggregates for Path Construction Aggregates for Path Construction Technical Information Note No. 7 October 2011 About Sustrans Sustrans makes smarter travel choices possible, desirable and inevitable. We re a leading UK charity enabling

More information

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS?

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS? Ioannis Anastasopoulos National Technical University of

More information

DATA SHEET. Code: 9285. Product: MacDRAIN N 105M

DATA SHEET. Code: 9285. Product: MacDRAIN N 105M Code: 9285 Product: MacDRAIN N 105M 3-D structure with on one side a nonwoven geotextile and a waterproofing geomembrane on the other side Weight : 410 gr/m^2 (EN ISO 9864) Thickness @ 2 kpa : 5,0 mm (EN

More information

GEOTEXTILES IN ROAD CON- STRUCTION, MAINTENANCE AND EROSION CONTROL

GEOTEXTILES IN ROAD CON- STRUCTION, MAINTENANCE AND EROSION CONTROL GEOTEXTILES IN ROAD CON- STRUCTION, MAINTENANCE AND EROSION CONTROL Textiles were first applied to roadways in the days of the Pharaohs Even they struggled with unstable soils which rutted or washed away

More information

Fortrac. Fortrac 3D. HaTelit. Stabilenka. Robutec. Comtrac. Fornit. Duogrid. Ringtrac. NaBento. Incomat. HaTe. SoilTain

Fortrac. Fortrac 3D. HaTelit. Stabilenka. Robutec. Comtrac. Fornit. Duogrid. Ringtrac. NaBento. Incomat. HaTe. SoilTain Fortrac Fortrac 3D HaTelit Stabilenka Robutec Comtrac Fornit Duogrid Ringtrac NaBento Incomat HaTe SoilTain SKER HUESKER Geosynthetics HUESKER HUESKER HUESKER HUESKERHUES Product rhuesker Overview HUESKER

More information

DESIGN GUIDELINES FOR EARTH RETENTION

DESIGN GUIDELINES FOR EARTH RETENTION DESIGN GUIDELINES FOR EARTH RETENTION Strata Systems, Inc. 380 Dahlonega Rd., Suite 200 Cumming, GA 30040 USA www.geogrid.com TABLE OF CONTENTS MECHANICS OF RETAINING WALLS... 3 THE STRATAWEB SOLUTION...4

More information

Unit Price Averages Reports

Unit Price Averages Reports Unit Price Averages Reports 12/7/2015 UNIT PRICE AVERAGES REPORT Disclaimer The information provided in the following Unit Price Averages Report is only for the use of Alberta Infrastructure & Transportation

More information

MSE Wall Engineering A New Look at Contracting, Design, and Construction. Presented by: James M. Schmidt, P.E., P.Eng. 1 Daniel L. Harpstead, P.E.

MSE Wall Engineering A New Look at Contracting, Design, and Construction. Presented by: James M. Schmidt, P.E., P.Eng. 1 Daniel L. Harpstead, P.E. MSE Wall Engineering A New Look at Contracting, Design, and Construction Presented by: James M. Schmidt, P.E., P.Eng. 1 Daniel L. Harpstead, P.E. 2 ABSTRACT Poor performance of mechanically stabilized

More information

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge

More information

Drained and Undrained Conditions. Undrained and Drained Shear Strength

Drained and Undrained Conditions. Undrained and Drained Shear Strength Drained and Undrained Conditions Undrained and Drained Shear Strength Lecture No. October, 00 Drained condition occurs when there is no change in pore water pressure due to external loading. In a drained

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

Caltrans non-standard Special Provisions Pervious Concrete. David Akers Feb 28, 2012

Caltrans non-standard Special Provisions Pervious Concrete. David Akers Feb 28, 2012 Caltrans non-standard Special Provisions Pervious Concrete David Akers Feb 28, 2012 Section Paragraph Content 19 RSS 19-5.03B Changes title of the section 19-5.03B USAGE NOTES FOR PERVIOUS CONCRETE AND

More information

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

More information

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL 7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction

More information

Introduction. Eurocodes. Specification. Cost

Introduction. Eurocodes. Specification. Cost Introduction Eurocodes Specification Cost Structural Eurocodes BS EN 1990 (EC0): BS EN 1991 (EC1): Basis of structural design Actions on Structures BS EN 1992 (EC2): BS EN 1993 (EC3): BS EN 1994 (EC4):

More information

THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS

THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS Chapter 11 Slope Stabiliza bilization and Stability of Cuts and Fills THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS are 1) to create space for the road template and driving surface; 2) to balance material

More information

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance Abstract Testing and appraisal of polymer effect as an additive on asphalt mixture performance Hamid Sabbagh mollahosseini*,golazin Yadollahi**, Ershad Amoosoltani*** *, ***Executive of Engineering and

More information

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Steve Macklin Principal Engineering Geologist GHD Melbourne 1. Introduction, scope of Part 1 2. Terminology

More information

Civil Engineering and Architecture (CEA) Detailed Outline

Civil Engineering and Architecture (CEA) Detailed Outline Civil Engineering and Architecture (CEA) Detailed Outline Unit 1: Overview of Civil Engineering and Architecture (23 days) Lesson 1.1: History of Civil Engineering and Architecture 1. Many features of

More information

COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2

COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2 (PREVIEW) SP 36 (Part 2) : 1988 COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2 IS 1893 : 1979 (Reaffirmed 1987) CODE OF PRACTICE FOR SUBSURFACE INVESTIGATION FOR FOUNDATIONS 1.1 This code deals

More information

3. Amend the following: Item 410 Traffic Compacted Surface, Type C to Item 446 Cold Patch.

3. Amend the following: Item 410 Traffic Compacted Surface, Type C to Item 446 Cold Patch. To Prospective Bidders: CITY OF TOLEDO, OHIO PARKSIDE AREA SSO ELIMINATION PHASE 2 GRAVITY RELIEF SEWER NO. 2011 Addendum No. 2 December 8, 2011 Information disclosed and/or questions raised since issuing

More information

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission Proceedings of the 4th European Young Geotechnical Engineers Conference (EYGEC), Durham, UK Osman, A.S. & Toll, D.G. (Eds.) 05 ISBN 978-0-9933836-0 DEM modelling of the dynamic penetration process on Mars

More information

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

More information