IPv6 Address Planning. MENOG 11 Amman 30 th September 9 th October 2012 Philip Smith
|
|
|
- Baldwin Harris
- 10 years ago
- Views:
Transcription
1 IPv6 Address Planning MENOG 11 Amman 30 th September 9 th October 2012 Philip Smith 1
2 Address Planning p IPv6 address space available to each network operator is very large compared with IPv4 n Design a scalable plan n Be aware of industry current practices n Separation of infrastructure and customer addressing n Distribution of address space according to function 2
3 Why Create an Addressing Plan? p The options for an IPv4 addressing plan were severely limited: n Because of scarcity of addresses n Every address block has to be used efficiently p IPv6 allows for a scalable addressing plan: n Security policies are easier to implement n Addresses are easier to trace n Enables more efficient network management 3
4 Nibble Boundaries p IPv6 offers network operators more flexibility with addressing plans n Network addressing can now be done on nibble boundaries p For ease of operation n Rather than making maximum use of a very scarce resource p With the resulting operational complexity p A nibble boundary means subdividing address space based on the address numbering n Each number in IPv6 represents 4 bits n Which means that IPv6 addressing can be done on 4-bit boundaries 4
5 Nibble Boundaries example p Consider the address block 2001:db8:0:10::/61 n The range of addresses in this block are: 2001:0db8:0000:0010:0000:0000:0000:0000 to 2001:0db8:0000:0017:ffff:ffff:ffff:ffff n Note that this subnet only runs from 0010 to n The adjacent block is 2001:db8:0:18::/ :0db8:0000:0018:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff:ffff n The address blocks don t use the entire nibble range 5
6 Nibble Boundaries example p Now consider the address block 2001:db8:0:10::/60 n The range of addresses in this block are: 2001:0db8:0000:0010:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff:ffff n Note that this subnet uses the entire nibble range, 0 to f n Which makes the numbering plan for IPv6 simpler p This range can have a particular meaning within the ISP block (for example, infrastructure addressing for a particular PoP) 6
7 Addressing Plans Infrastructure p Network Operators should procure a /32 from their RIR p Address block for infrastructure n /48 allows 65k subnets in the backbone p Address block for router loop-back interfaces n Number all loopbacks out of one infrastructure /64 n /128 per loopback p Point-to-point links n /64 reserved for each, address as a /127 p LANs n /64 for each LAN 7
8 Addressing Plans Customer p Customers get one /48 n Unless they have more than 65k subnets in which case they get a second /48 (and so on) p In typical deployments today: n Several ISPs are giving small customers a /56 and single LAN end-sites a /64, e.g.: /64 if end-site will only ever be a LAN /56 for small end-sites (e.g. home/office/small business) /48 for large end-sites n This is another very active discussion area n Observations: p Don t assume that a mobile endsite needs only a /64 p Some operators are distributing /60s to their smallest customers!! 8
9 Deployable Address Plan p Documentation n IPv4 addresses are probably short enough to memorise n IPv6 addresses are unlikely to be memorable at all p Document the address plan n What is used for infrastructure n What goes to customers n Flat file, spreadsheet, database, etc n But documentation is vital n Especially when coming to populating the DNS later on 9
10 Addressing Tools p Examples of IP address planning tools: n NetDot netdot.uoregon.edu (recommended!!) n HaCi sourceforge.net/projects/haci n IPAT nethead.de/index.php/ipat n freeipdb home.globalcrossing.net/~freeipdb/ p Examples of IPv6 subnet calculators: n ipv6gen code.google.com/p/ipv6gen/ n sipcalc 10
11 Deployable Address Plan p Pick the first /48 for our infrastructure n Reason: keeps the numbers short n Short numbers: less chance of transcription errors n Compare: 2001:db8:ef01:d35c::1/128 with 2001:db8::1/128 For Loopback interface addresses p Out of this /48, pick the first /64 for loopbacks n Reason: keeps the numbers short n Some operators use first /64 for anycast services 11
12 Deployable Address Plan p Pick the second /48 for point-to-point links to customers n Addresses not a trusted part of Operator s infrastructure p Divide the /48 between PoPs n e.g. 10 PoPs split into /52s 4096 links per /52 n Gives /64s for customer links p /64 per link, number as /127 as previously n Adjust number of /48s to suit PoP size (one /48 per PoP?) n Aggregate per router or per PoP and carry in ibgp p Alternative is to use unnumbered interfaces 12
13 Deployable Address Plan p For the infrastructure /48: n First /64 for loopbacks n Maybe reserve the final /60 for the NOC p Gives 16 possible subnets for the Network Operations Centre (part of the Infrastructure) n Remaining /64s used for internal pointto-point links p More than any network needs today 13
14 Example: Loopback addresses p 2001:db8:0::/48 is used for infrastructure p Out of this, 2001:db8:0:0::/64 is used for loopbacks p Network Operator has 20 PoPs n Scheme adopted is 2001:db8::XXYY/128 n Where X is the PoP number (1 through FF) n Where Y is the router number (1 through FF) n Scheme is good for 255 PoPs with 255 routers per PoP, and keeps addresses small/short 14
15 Example: Loopback addresses p Loopbacks in PoP 1: CR1 2001:db8::101/128 CR2 2001:db8::102/128 BR1 2001:db8::103/128 BR2 2001:db8::104/128 AR1 2001:db8::110/128 AR2 2001:db8::111/128 AR3 2001:db8::112/128 AR4 2001:db8::113/128 etc Loopbacks in PoP 10: CR1 2001:db8::a01/128 CR2 2001:db8::a02/128 BR1 2001:db8::a03/128 BR2 2001:db8::a04/128 AR1 2001:db8::a10/128 AR2 2001:db8::a11/128 AR3 2001:db8::a12/128 AR4 2001:db8::a13/128 etc 15
16 Example: Backbone Point-to-Point links p ISP has 20 PoPs n Scheme adopted is 2001:db8:0:XXYY::Z/64 n Where: p XX is the PoP number (01 through FF) p YY is the LAN number (when YY is 00 through 0F) p YY is the P2P link number (when YY is 10 through FF) p Z is the interface address p /64 is reserved, but the link is numbered as a /127 n Scheme is good for 16 LANs and 240 backbone PtP links per PoP, and for 255 PoPs 16
17 Example: Backbone Point-to-Point links p PtP & LANs in PoP 1: LAN1 2001:db8:0:100::/64 LAN2 2001:db8:0:101::/64 LAN3 2001:db8:0:102::/64 PtP1 2001:db8:0:110::/64 PtP2 2001:db8:0:111::/64 PtP3 2001:db8:0:112::/64 PtP4 2001:db8:0:113::/64 PtP5 2001:db8:0:114::/64 etc p PtP & LANs in PoP 14: LAN1 2001:db8:0:e00::/64 LAN2 2001:db8:0:e01::/64 LAN3 2001:db8:0:e02::/64 LAN4 2001:db8:0:e03::/64 LAN5 2001:db8:0:e04::/64 PtP1 PtP2 PtP3 etc 2001:db8:0:e10::/ :db8:0:e11::/ :db8:0:e12::/64 17
18 Links to Customers (1) p Some Network Operators use unnumbered IPv4 interface links n So replicate this in IPv6 by using unnumbered IPv6 interface links n This will not require one /48 to be taken from the ISP s /32 allocation 18
19 Links to Customers (2) p Other Network Operators use global unicast addresses n So set aside the second /48 for this purpose p And divide the /48 amongst the PoPs n Or set aside a single/48 per PoP (depending on network size) n Each /48 gives possible customer links, assuming a /64 for each link p Scheme used: n 2001:db8:00XX::/48 where XX is the PoP number n Good for 255 PoPs with point-to-point links each 19
20 Example p Customer PtP links n PoP1 p Reserved 2001:db8:1:0::/64 p Customer1 2001:db8:1:1::/64 p Customer2 2001:db8:1:2::/64 p Customer3 2001:db8:1:3::/64 p Customer4 2001:db8:1:4::/64 n PoP12 p Reserved 2001:db8:c:0::/64 p Customer1 2001:db8:c:1::/64 p Customer2 2001:db8:c:2::/64 p Customer3 2001:db8:c:3::/64 n etc 20
21 Example: Customer Allocations p Master allocation documentation would look like this: n 2001:db8:0::/48 Infrastructure n 2001:db8:1::/48 PtP links to customers (PoP1) n 2001:db8:2::/48 PtP links to customers (PoP2) n 2001:db8:3::/48 PtP links to customers (PoP3) n 2001:db8:100::/48 Customer 1 assignment n 2001:db8:ffff::/48 Customer assignment p Infrastructure and Customer PtP links would be documented separately as earlier 21
22 Addressing Plans Customer p Geographical delegations to Customers: n Network Operator subdivides /32 address block into geographical chunks n E.g. into /36s p Region 1: 2001:db8:1xxx::/36 p Region 2: 2001:db8:2xxx::/36 p Region 3: 2001:db8:3xxx::/36 p etc n Which gives 4096 /48s per region n For Operational and Administrative ease n Benefits for traffic engineering if Network Operator multihomes in each region 22
23 Addressing Plans Customer p Sequential delegations to Customers: n After carving off address space for network infrastructure, Network Operator simply assigns address space sequentially n E.g: p Infrastructure: 2001:db8:0::/48 p Customer P2P: 2001:db8:1::/48 p Customer 1: p Customer 2: p etc 2001:db8:2::/ :db8:3::/48 n Useful when there is no regional subdivision of network and no regional multihoming needs 23
24 Addressing Plans Traffic Engineering p Smaller providers will be single homed n The customer portion of the ISP s IPv6 address block will usually be assigned sequentially p Larger providers will be multihomed n Two, three or more external links from different providers n Traffic engineering becomes important n Sequential assignments of customer addresses will negatively impact load balancing 24
25 Addressing Plans Traffic Engineering p ISP Router loopbacks and backbone point-topoint links make up a small part of total address space n And they don t attract traffic, unlike customer address space p Links from ISP Aggregation edge to customer router needs one /64 n Small requirements compared with total address space n Some ISPs use IPv6 unnumbered p Planning customer assignments is a very important part of multihoming n Traffic engineering involves subdividing aggregate into pieces until load balancing works 25
26 Unplanned IP addressing p ISP fills up customer IP addressing from one end of the range: 2001:db8::/ ISP Customer Addresses p Customers generate traffic n Dividing the range into two pieces will result in one /33 with all the customers and the ISP infrastructure the addresses, and one /33 with nothing n No loadbalancing as all traffic will come in the first /33 n Means further subdivision of the first /33 = harder work 26
27 Planned IP addressing p If ISP fills up customer addressing from both ends of the range: 2001:db8::/ ISP Customer Addresses Customer Addresses p Scheme then is: n First customer from first /33, second customer from second /33, third from first /33, etc p This works also for residential versus commercial customers: n Residential from first /33 n Commercial from second /33 27
28 Planned IP Addressing p This works fine for multihoming between two upstream links (same or different providers) p Can also subdivide address space to suit more than two upstreams n Follow a similar scheme for populating each portion of the address space p Consider regional (geographical) distribution of customer delegated address space p Don t forget to always announce an aggregate out of each link 28
29 Addressing Plans Advice p Customer address assignments should not be reserved or assigned on a per PoP basis n Follow same principle as for IPv4 n Subnet aggregate to cater for multihoming needs n Consider geographical delegation scheme n ISP ibgp carries customer nets n Aggregation within the ibgp not required and usually not desirable n Aggregation in ebgp is very necessary p Backbone infrastructure assignments: n Number out of a single /48 p Operational simplicity and security n Aggregate to minimise size of the IGP 29
30 Summary p Defined structure within IPv6 addressing is recommended n Greater flexibility than with IPv4 n Possible to come up with a simple memorable scheme p Documentation vitally important! 30
IPv6 Addressing. ISP Training Workshops
IPv6 Addressing ISP Training Workshops 1 Where to get IPv6 addresses p Your upstream ISP p Africa n AfriNIC http://www.afrinic.net p Asia and the Pacific n APNIC http://www.apnic.net p North America n
IPv6 Address Planning
eip604_v1.0 APNIC elearning: IPv6 Address Planning Contact: [email protected] Overview Where to Get IPv6 Addresses Addressing Plans ISP Infrastructure Addressing Plans Customer Example Address Plan Addressing
Address Scheme Planning for an ISP backbone Network
Address Scheme Planning for an ISP backbone Network Philip Smith Consulting Engineering, Office of the CTO Version 0.1 (draft) LIST OF FIGURES 2 INTRODUCTION 3 BACKGROUND 3 BUSINESS MODEL 3 ADDRESS PLAN
Simple Multihoming. ISP/IXP Workshops
Simple Multihoming ISP/IXP Workshops 1 Why Multihome? Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WAN media (physical failure,
Transitioning to BGP. ISP Workshops. Last updated 24 April 2013
Transitioning to BGP ISP Workshops Last updated 24 April 2013 1 Scaling the network How to get out of carrying all prefixes in IGP 2 Why use BGP rather than IGP? p IGP has Limitations: n The more routing
Simple Multihoming. ISP Workshops. Last updated 30 th March 2015
Simple Multihoming ISP Workshops Last updated 30 th March 2015 1 Why Multihome? p Redundancy n One connection to internet means the network is dependent on: p Local router (configuration, software, hardware)
DD2491 p1 2008. Load balancing BGP. Johan Nicklasson KTHNOC/NADA
DD2491 p1 2008 Load balancing BGP Johan Nicklasson KTHNOC/NADA Dual home When do you need to be dual homed? How should you be dual homed? Same provider. Different providers. What do you need to have in
Module 12 Multihoming to the Same ISP
Module 12 Multihoming to the Same ISP Objective: To investigate various methods for multihoming onto the same upstream s backbone Prerequisites: Module 11 and Multihoming Presentation The following will
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith SANOG 12 6th-14th August 2008 Kathmandu 1 Presentation Slides Available on ftp://ftp-eng.cisco.com /pfs/seminars/sanog12-multihoming.pdf And on the
ISP Case Study. UUNET UK (1997) ISP/IXP Workshops. ISP/IXP Workshops. 1999, Cisco Systems, Inc.
ISP Case Study UUNET UK (1997) ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 Acknowledgements Thanks are due to UUNET UK for allowing the use of their configuration information and network
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith 26th July - 4th August 2006 Karachi 1 Presentation Slides Available on ftp://ftp-eng.cisco.com /pfs/seminars/sanog8-multihoming.pdf And on the SANOG8
Advanced BGP Policy. Advanced Topics
Advanced BGP Policy George Wu TCOM690 Advanced Topics Route redundancy Load balancing Routing Symmetry 1 Route Optimization Issues Redundancy provide multiple alternate paths usually multiple connections
BGP Multihoming. Why Multihome? Why Multihome? Why Multihome? Why Multihome? Why Multihome? Redundancy. Reliability
Why Multihome? BGP Multihoming ISP/IXP Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WN media (physical failure, carrier failure)
Introduction to The Internet
Introduction to The Internet ISP Workshops Last updated 5 September 2014 1 Introduction to the Internet p Topologies and Definitions p IP Addressing p Internet Hierarchy p Gluing it all together 2 Topologies
Introduction to Routing
Introduction to Routing How traffic flows on the Internet Philip Smith [email protected] RIPE NCC Regional Meeting, Moscow, 16-18 18 June 2004 1 Abstract Presentation introduces some of the terminologies used,
IPv6 for AT&T Broadband
IPv6 for AT&T Broadband Chris Chase, AT&T Labs Sept 15, 2011 AT&T Broadband ~15 million subscribers Legacy DSL, PPP subscribers, ATM aggregation Not many CPE IPv6 capable Customer owned, unmanaged CPE
Multihoming: An Overview
Multihoming: An Overview & a brief introduction to GSE(8+8) Lixia Zhang IAB BOF on IPv6 Multihoming RIPE 2006 Customer network 1 1.1.16.0/20 Single Home Global Routing Table...... 1.1.0.0/16 2.2.0.0/16.......
Introduction to The Internet. ISP/IXP Workshops
Introduction to The Internet ISP/IXP Workshops 1 Introduction to the Internet Topologies and Definitions IP Addressing Internet Hierarchy Gluing it all together 2 Topologies and Definitions What does all
Load balancing and traffic control in BGP
DD2491 p2 2009/2010 Load balancing and traffic control in BGP Olof Hagsand KTH /CSC 1 Issues in load balancing Load balancing: spread traffic on several paths instead of a single. Why? Use resources better
HP Networking BGP and MPLS technology training
Course overview HP Networking BGP and MPLS technology training (HL046_00429577) The HP Networking BGP and MPLS technology training provides networking professionals the knowledge necessary for designing,
Subnetting IPv4 and IPv6
Subnetting IPv4 and IPv6 Advanced Networking: Routing & Switching 1 Chapter 9 Copyleft 2013 Hacklab Cosenza (http://hlcs.it) Released under Creative Commons License 3.0 By-Sa Cisco name, logo and materials
Developing an IPv6 Addressing Plan Guidelines, Rules, Best Practice
Developing an IPv6 Addressing Plan Guidelines, Rules, Best Practice Ron Broersma DREN Chief Engineer SPAWAR Network Security Manager [email protected] Introduction IPv6 deployment includes: obtaining
Top-Down Network Design
Top-Down Network Design Chapter Five Designing a Network Topology Copyright 2010 Cisco Press & Priscilla Oppenheimer Topology A map of an internetwork that indicates network segments, interconnection points,
Load balancing and traffic control in BGP
DD2491 p2 2011 Load balancing and traffic control in BGP Olof Hagsand KTH CSC 1 Issues in load balancing Load balancing: spread traffic on several paths instead of a single. Why? Use resources better Can
BGP Multihoming Techniques. Philip Smith <[email protected]> APRICOT 2013 Singapore 19 th February 1 st March 2013
BGP Multihoming Techniques Philip Smith APRICOT 2013 Singapore 19 th February 1 st March 2013 Presentation Slides p Will be available on n http://thyme.apnic.net/ftp/seminars/ APRICOT2013-Multihoming.pdf
Euro6IX project and Italian IPv6 Task Force
Pisa, 11/05/05 Background information Telecom Italia Lab is the research department of Telecom Italia Group Working on IPv6 since 1995 and actively contributing to its development and standardization (FC
CS 457 Lecture 19 Global Internet - BGP. Fall 2011
CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with
Residential IPv6 IPv6 a t at S wisscom Swisscom a, n an overview overview Martin Gysi
Residential IPv6 at Swisscom, an overview Martin Gysi What is Required for an IPv6 Internet Access Service? ADSL L2 platform, IPv6 not required VDSL Complex Infrastructure is Barrier to Cost-efficient
Campus IPv6 connection Campus IPv6 deployment
Campus IPv6 connection Campus IPv6 deployment Campus Address allocation, Topology Issues János Mohácsi NIIF/HUNGARNET Copy Rights This slide set is the ownership of the 6DISS project via its partners The
ISP & IXP Design. Philip Smith APNIC 34 21 st 31 st August 2012
ISP & IXP Design Philip Smith APNIC 34 21 st 31 st August 2012 1 ISP & IXP Network Design p PoP Topologies and Design p Backbone Design p Upstream Connectivity & Peering p Addressing p Routing Protocols
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith , Seoul, South Korea August 2003 1 Presentation Slides Available on ftp://ftp-eng.cisco.com/pfs/seminars/ 2 Preliminaries Presentation has many configuration
256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes
IP Addressing With the exception of multicast addresses, Internet addresses consist of a network portion and a host portion. The network portion identifies a logical network to which the address refers,
WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know
WHITE PAPER Understanding IP Addressing: Everything You Ever Wanted To Know Understanding IP Addressing: Everything You Ever Wanted To Know CONTENTS Internet Scaling Problems 1 Classful IP Addressing 3
ISP Systems Design. ISP Workshops. Last updated 24 April 2013
ISP Systems Design ISP Workshops Last updated 24 April 2013 1 Agenda p DNS Server placement p Mail Server placement p News Server placement p Services network design p Services Network Security 2 ISP Services
Building a small Data Centre
Building a small Data Centre Cause we re not all Facebook, Google, Amazon, Microsoft Karl Brumund, Dyn RIPE71 1 Dyn what we do DNS, email, Internet Intelligence from where 28 sites, 100s of probes, clouds
BGP and Traffic Engineering with Akamai. Caglar Dabanoglu Akamai Technologies AfPIF 2015, Maputo, August 25th
BGP and Traffic Engineering with Akamai Caglar Dabanoglu Akamai Technologies AfPIF 2015, Maputo, August 25th AGENDA Akamai Intelligent Platform Peering with Akamai Traffic Engineering Summary Q&A The Akamai
Multihoming and Multi-path Routing. CS 7260 Nick Feamster January 29. 2007
Multihoming and Multi-path Routing CS 7260 Nick Feamster January 29. 2007 Today s Topic IP-Based Multihoming What is it? What problem is it solving? (Why multihome?) How is it implemented today (in IP)?
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith PacNOG 2 Workshop Apia, Samoa 18-24 June 2006 PacNOG 2 Workshops 1 BGP Multihoming Techniques Why Multihome? Definition & Options Preparing the Network
Introduction to IP v6
IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation
Introducing Basic MPLS Concepts
Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding
For internal circulation of BSNLonly
E3-E4 E4 E&WS Overview of MPLS-VPN Overview Traditional Router-Based Networks Virtual Private Networks VPN Terminology MPLS VPN Architecture MPLS VPN Routing MPLS VPN Label Propagation Traditional Router-Based
Subnetting. TELE301 Laboratory Manual. 1 In-Class Exercises... 3. 2 Subnetting in IPv6... 4
Subnetting TELE301 Laboratory Manual Contents 1 In-Class Exercises............................. 3 2 Subnetting in IPv6............................. 4 This lab is actually run as a class-tutorial. Thus,
Building Nameserver Clusters with Free Software
Building Nameserver Clusters with Free Software Joe Abley, ISC NANOG 34 Seattle, WA, USA Starting Point Discrete, single-host authoritative nameservers several (two or more) several (two or more) geographically
IPv6, Perspective from small to medium ISP
IPv6, Perspective from small to medium ISP April 13 th, 2010 INET Conference, Hong Kong Christian Dwinantyo Overview Some myths and facts about IPv6 Implementation Strategy Before you begin Case study:
Highly Available Service Environments Introduction
Highly Available Service Environments Introduction This paper gives a very brief overview of the common issues that occur at the network, hardware, and application layers, as well as possible solutions,
Internet Exchange Points (IXPs) Scalable Infrastructure Workshop
Internet Exchange Points (IXPs) Scalable Infrastructure Workshop Objectives p To be able to explain what an Internet Exchange Point (IXP) is p To be able to explain why ISPs participate in IXPs p To understand
VLSM & IP ADDRESSING EXAMPLE QUESTIONS with answers;
VLSM & IP ADDRESSING EXAMPLE QUESTIONS with answers; 1 Given the network address of 112.44.0.0 and the network mask of 255.255.0.0 Would the two stations with addresses 112.44.22.19/16 and 112.44.23.2/16
Unicast Reverse Path Forwarding
Unicast Reverse Path Forwarding This feature module describes the Unicast Reverse Path Forwarding (RPF) feature, which helps to mitigate problems caused by malformed or forged IP source addresses passing
Cisco on Cisco Best Practices Cisco IP Addressing Policy
Cisco on Cisco Best Practices All contents are Copyright 1992-2009 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 13 TABLE OF CONTENTS 1 INTRODUCTION 3 2
Advanced IP Addressing
Advanced IP Addressing CS-765 A Aspects Of Systems Administration Spring-2005 Instructure: Jan Schauman Stevens Institute Of Technology, NJ. Prepared By: Modh, Jay A. M.S. NIS SID: 999-14-0352 Date: 05/02/2005
NETE-4635 Computer Network Analysis and Design. Designing a Network Topology. NETE4635 - Computer Network Analysis and Design Slide 1
NETE-4635 Computer Network Analysis and Design Designing a Network Topology NETE4635 - Computer Network Analysis and Design Slide 1 Network Topology Design Themes Hierarchy Redundancy Modularity Well-defined
Chapter 4 Connecting to the Internet through an ISP
Chapter 4 Connecting to the Internet through an ISP 1. According to Cisco what two things are essential to gaining access to the internet? a. ISPs are essential to gaining access to the Internet. b. No
Internet Routing Protocols Lecture 04 BGP Continued
Internet Routing Protocols Lecture 04 BGP Continued Advanced Systems Topics Lent Term, 008 Timothy G. Griffin Computer Lab Cambridge UK Two Types of BGP Sessions AS External Neighbor (EBGP) in a different
Network Level Multihoming and BGP Challenges
Network Level Multihoming and BGP Challenges Li Jia Helsinki University of Technology [email protected] Abstract Multihoming has been traditionally employed by enterprises and ISPs to improve network connectivity.
ISP Network Design. ISP Workshops. Last updated 16 September 2013
ISP Network Design ISP Workshops Last updated 16 September 2013 1 ISP Network Design p PoP Topologies and Design p Backbone Design p Upstream Connectivity & Peering p Addressing p Routing Protocols p Security
We Are HERE! Subne\ng
TELE 302 Network Design Lecture 21 Addressing Strategies Source: McCabe 12.1 ~ 12.4 Jeremiah Deng TELE Programme, University of Otago, 2013 We Are HERE! Requirements analysis Flow Analysis Logical Design
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith NANOG 41 14th - 16th October 2007 Albuquerque, New Mexico 1 Presentation Slides Available on ftp://ftp-eng.cisco.com /pfs/seminars/nanog41-multihoming.pdf
BGP Best Practices for ISPs Prefix List, AS PATH filters, Bogon Filters, Anycast, Mailing Lists, INOC DBA
BGP Best Practices for ISPs Prefix List, AS PATH filters, Bogon Filters, Anycast, Mailing Lists, INOC DBA. Gaurab Raj Upadhaya [email protected] Packet Clearing House What are Best Practices Established or
VLSM and CIDR Malin Bornhager Halmstad University
VLSM and CIDR Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Objectives Classless routing VLSM Example of a VLSM calculation 2 Classless routing CIDR (Classless
BGP Attributes and Path Selection
BGP Attributes and Path Selection ISP Workshops Last updated 29 th March 2015 1 BGP Attributes BGP s policy tool kit 2 What Is an Attribute?... Next Hop AS Path MED...... p Part of a BGP Update p Describes
Introduction to ISIS. ISP/IXP Workshops
Introduction to ISIS ISP/IXP Workshops 1 IS-IS Standards History ISO 10589 specifies OSI IS-IS routing protocol for CLNS traffic A Link State protocol with a 2 level hierarchical architecture Type/Length/Value
Uli Bornhauser - Peter Martini - Martin Horneffer Scalability of ibgp Path Diversity Concepts
Uli Bornhauser - Peter Martini - Martin Horneffer Scalability of ibgp Path Diversity Concepts 10.05.2011 p. 1 Scalability of ibgp Path Diversity Concepts - Computer Science 4, University of Bonn - Networking
ISP & IXP Design. Philip Smith MENOG 11 Amman 30 th September 9 th October 2012
ISP & IXP Design Philip Smith MENOG 11 Amman 30 th September 9 th October 2012 1 ISP & IXP Network Design p PoP Topologies and Design p Backbone Design p Upstream Connectivity & Peering p Addressing p
PREPARING AN IPV6 ADDRESS PLAN MANUAL
PREPARING AN IP6 ADDRESS PLAN MANUAL PREPARING AN IP6 ADDRESS PLAN MANUAL ersion 2, 18 September 2013 CONTENTS 1. Introduction... 3 1.1. For Whom is this Document Intended?... 3 2. Structure of IPv6 Addresses...
Basic IPv6 WAN and LAN Configuration
Basic IPv6 WAN and LAN Configuration This quick start guide provides basic IPv6 WAN and LAN configuration information for the ProSafe Wireless-N 8-Port Gigabit VPN Firewall FVS318N. For complete IPv6 configuration
Examination. IP routning på Internet och andra sammansatta nät, DD2491 IP routing in the Internet and other complex networks, DD2491
Examination IP routning på Internet och andra sammansatta nät, DD2491 IP routing in the Internet and other complex networks, DD2491 Date: December 15 2009 14:00 18:00 1. No help material is allowed - You
The Internet is Flat: A brief history of networking over the next ten years. Don Towsley UMass - Amherst
The Internet is Flat: A brief history of networking over the next ten years Don Towsley UMass - Amherst 1 What does flat mean? The World Is Flat. A Brief History of the Twenty-First Century, Thomas Friedman
(Refer Slide Time: 02:17)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,
BGP and Traffic Engineering with Akamai. Christian Kaufmann Akamai Technologies MENOG 14
BGP and Traffic Engineering with Akamai Christian Kaufmann Akamai Technologies MENOG 14 The Akamai Intelligent Platform The world s largest on-demand, distributed computing platform delivers all forms
IPV6 FOR INTERNET SERVICE PROVIDERS STATE/LESSONS/STILL TO COME
IPV6 FOR INTERNET SERVICE PROVIDERS STATE/LESSONS/STILL TO COME Aaron Hughes, CEO 6connect [email protected] RIPE70 PERCEPTION OF IPV6 IMPLEMENTATIONS Network People We dual stacked the network years
Introduction. Internet Address Depletion and CIDR. Introduction. Introduction
Introduction Internet Address Depletion and A subnet is a subset of class A, B, or C networks IP addresses are formed of a network and host portions network mask used to separate the information Introduction
Simplify Your Route to the Internet:
Expert Reference Series of White Papers Simplify Your Route to the Internet: Three Advantages of Using LISP 1-800-COURSES www.globalknowledge.com Simplify Your Route to the Internet: Three Advantages of
IP Addressing Introductory material.
IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport
Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS
Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,
IPv6 and 4-byte ASN Update
IPv6 and 4-byte ASN Update Philip Smith PacNOG 8 Pohnpei, FSM 22nd-27th November 2010 1 IPv6 Update 2 2004 Today Resurgence in demand for IPv4 address space 5% address space still unallocated
Differentiated Services
March 19, 1998 Gordon Chaffee Berkeley Multimedia Research Center University of California, Berkeley Email: [email protected] URL: http://bmrc.berkeley.edu/people/chaffee 1 Outline Architecture
How To Make A Network Address Prefix Smaller
CSC521 Communication Protocols 網 路 通 訊 協 定 Ch.9 Classless And Subnet Address Extensions (CIDR) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Review Of Relevant Facts 3. Minimizing Network Numbers
APNIC elearning: BGP Attributes
APNIC elearning: BGP Attributes Contact: [email protected] erou04_v1.0 Overview BGP Attributes Well-known and Optional Attributes AS Path AS Loop Detection ibgp and ebgp Next Hop Next Hop Best Practice
Campus LAN at NKN Member Institutions
Campus LAN at NKN Member Institutions RS MANI [email protected] 1/7/2015 3 rd Annual workshop 1 Efficient utilization Come from: Good Campus LAN Speed Segregation of LANs QoS Resilient Access Controls ( L2 and
BGP Multihoming Techniques
BGP Multihoming Techniques Philip Smith , Oakland 2001, Cisco Systems, Inc. All rights reserved. 1 Presentation Slides Available on NANOG Web site www.nanog.org/mtg-0110/smith.html Available
Internet Protocol version 4 Part I
Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents
IPv6 over IPv4/MPLS Networks: The 6PE approach
IPv6 over IPv4/MPLS Networks: The 6PE approach Athanassios Liakopoulos Network Operation & Support Manager ([email protected]) Greek Research & Technology Network (GRNET) III Global IPv6 Summit Moscow, 25
Subnetting Study Guide
Subnetting Study Guide by Boson Software, LLC An octet is a binary number of 8 bits, with the lowest possible number being 00000000 and the highest possible number being 11111111, or 28. The binary number
CS551 External v.s. Internal BGP
CS551 External v.s. Internal BGP Bill Cheng http://merlot.usc.edu/cs551-f12 1 Exterior vs. Interior World vs. me EGP vs. IGP Little control vs. complete administrative control BGP (and GGP, Hello, EGP)
Routing with OSPF. Introduction
Routing with OSPF Introduction The capabilities of an internet are largely determined by its routing protocol. An internet's scalability, its ability to quickly route around failures, and the consumption
ISP Network Design. Point of Presence Topologies. ISP Network Design. PoP Topologies. Modular PoP Design. PoP Design
ISP Network Design PoP Topologies and Design Backbone Design ISP Network Design ISP/IXP ISP Systems Design Addressing Routing Protocols Security Out of Band Management Operational Considerations 1 2 PoP
IPv6 Addressing and Subnetting
APNIC elearning: IPv6 Addressing and Subnetting Contact: [email protected] eip602_v1.0 Overview IPv6 Address Text Representation IPv6 Addressing Structure IPv6 Address Management Hierarchy Local Addresses
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India [email protected] 2 Department of Information Technolgy,
Chapter 49 Border Gateway Protocol version 4 (BGP-4)
Chapter 49 Border Gateway Protocol version 4 (BGP-4) Introduction... 1-3 Overview of BGP-4... 1-3 BGP Operation... 1-5 BGP Attributes... 1-6 BGP Route Selection... 1-8 Classless Inter-domain Routing (CIDR)
BGP as an IGP for Carrier/Enterprise Networks
BGP as an IGP for Carrier/Enterprise Networks Presented by: Kevin Myers, SENIOR NETWORK ENGINEER IP ArchiTECHS MANAGED SERVICES Background Kevin Myers 15 + years in IT/Network Engineering Designed and
VXLAN Bridging & Routing
VXLAN Bridging & Routing Darrin Machay [email protected] CHI-NOG 05 May 2015 1 VXLAN VM-1 10.10.10.1/24 Subnet A ESX host Subnet B ESX host VM-2 VM-3 VM-4 20.20.20.1/24 10.10.10.2/24 20.20.20.2/24 Load
Deploying IPv6 at Scale As an ISP. Clinton Work Member of the TELUS team October 2015
Deploying IPv6 at Scale As an ISP Clinton Work Member of the TELUS team October 2015 Agenda n The key questions of IPv6 deployments n Why? n Who? n What? n Where? n When? n How? n Key learnings from TELUS
IP Subnetting for the Masses Or How a 12 year old kid can subnet the most complex network.
IP Subnetting for the Masses Or How a 12 year old kid can subnet the most complex network. Joe Richker Page 1 8/8/2008 IP subnetting is the most feared part of working with TCP/IP for many people. The
