CHAPTER 6: ACID-BASE AND DONOR-ACCEPTOR CHEMISTRY

Size: px
Start display at page:

Download "CHAPTER 6: ACID-BASE AND DONOR-ACCEPTOR CHEMISTRY"

Transcription

1 82 Chapter 6 Acid-ase and Donor-Acceptor Chemistry CATER 6: ACID-ASE AD DR-ACCETR CEMISTRY 6.1 Acid ase Definition a. Alr 3 r Lewis b. Cl 4 C 3 C Lewis, rønsted-lowry c. i 2+ 3 Lewis d. Cl 3 Lewis e. S 2 Cl 3 Lewis f. C 3 7 C Lewis, rønsted-lowry 6.2 Acid ase Definition a. Xe 3 Lewis This is not a rønsted-lowry reaction since the product connectivity is [Xe 3 ()]. b. t Xe 4 Lewis c. 2 Se 4 C 2 5 Lewis, rønsted-lowry d. [C 3 g( 2 )] + S Lewis This reaction likely occurs via the following steps: [C 3 g( 2 )] + S [C 3 g(s)] + 2 [C 3 g(s)] + 2 [C 3 gs] While a rønsted-lowry reaction occurs in the second step, the species listed in roblem 6.2d are involved in the initial Lewis acid-base reaction. e. C 3 C (benzyl) 3 Lewis, rønsted-lowry f. Cl S 2 Lewis 6.3 Al 3+ is acidic: [Al( 2 ) 6 ] [Al( 2 ) 5 ()] The hydronium ions react with the basic bicarbonate to form C 2 : 3 + (aq) + C 3 (aq) 2 2 (l) + C 2 (g) With pk a values of 5.0 for [Al( 2 ) 6 ] 3+, 6.4 for 2 C 3, and 2.0 for S 4, the p is about 3, low enough to convert the bicarbonate to C 2.

2 Chapter 6 Acid-ase and Donor-Acceptor Chemistry An increase in conductivity suggests that ions are formed: r 3 + K r 4 + K a. The ions are [r 6 ] and [r 4 ] + : 2 Cs[r 6 ] + [r 4 ][Sb 2 11 ] 3 r CsSb 6 b. [r 6 ] : h (this complex features a stereochemically inactive nonbonding pair on the central r atom. See A. R. Mahjoub, X. Zhang, K. Seppelt, Chem. Eur. J. 1995, 1, 261.) [r 4 ] + : C 2v c. [r 4 ] + acts as a Lewis acid, accepting. r S 4 3 S S 4 and form enough ions to allow conductance in the pure acids. 6.7 Gas-phase basicity is defined as G for + (g) (g) + (g), while proton affinity is for the same reaction. Since G T S, and S is undoubtedly positive for these reactions (where one mole of gaseous reactant is converted to two moles of gaseous products), it makes sense that the gas-phase basicities in Table 6.6 are less positive than the corresponding proton affinities. 6.8 These data suggest the following basicity ranking for these ketones: < < 3 C C 3 3 C 2 C C 2 C 3 h h A convenient way to rationalize this basicity ranking is to examine the conjugate acids via resonance arguments. ne resonance form features a positive charge on the carbonyl carbon (structure, right). Since benzophenone can further delocalize this positive charge into its phenyl groups, the conjugate acid of benzophenone is the most stabilized of the three acids, leading to benzophenone being the strongest base. Since an ethyl group is slightly more electron-releasing than a methyl group, the conjugate acid of diethylketone is slightly more stabilized relative to the conjugate acid of acetone (structure is more effectively stabilized in the conjugate acid of diethylketone relative to A, the conjugate acid of acetone). Acetone is R R R consequently the weakest base among these ketones. A 6.9 These data indicate that triphenylphosphine ( h 3 ) is more basic than triphenylamine ( h 3 ) in the gas phase. n the sole basis of electronics, triphenylamine would be expected to be more basic by virtue of the higher electronegativity of relative to, leading to the center being more electron rich than the center. owever, the origin of the observed gas-phase basicity ranking must be the varying abilities of these atoms to accommodate the tetrahedral geometries of the conjugate acids. The larger covalent radius of relative to results in longer C(phenyl) bonds than C(phenyl) bonds, resulting in less steric strain between the phenyl rings in R

3 84 Chapter 6 Acid-ase and Donor-Acceptor Chemistry [h 3 ] relative to [h 3 ]. The conjugate acid [h 3 ] has less steric hindrance than [h 3 ], and h 3 is more basic The data are graphed below. Diethylether Dimethylether Ethanol Methanol Water pk a of Conjugate Acid in Water Gas-hase asicity (kj mol -1 ) a. The gas-phase and aqueous basicity data correlate poorly. The strongest base in aqueous solution ( 2 ) is the weakest base in the gas phase. While basicity in water increases as Me 2 < Et 2 < Me < Et < 2, the basicity in the gas-phase increases as 2 < Me < Et < Me 2 < Et 2. b. The ethers are the strongest gas-phase bases within this series on the basis of the electronic impact of two electron-releasing alkyl groups bound to the oxygen atom compared to one group (R) or no alkyl groups ( 2 ). The oxygen atoms of these ethers are relatively electron rich as a result. owever, the ethers are the weakest bases in water of this series; their conjugate acids have fewer sites for hydrogen bonding with 2 relative to the conjugate acids of alcohols and water. The poorer ability of the conjugate acids of the ethers to be solvated by water renders these ethers very poor bases in aqueous solution. c. As shown in the graph and the basicity rankings above, the ethyl molecule is more basic than the methyl molecule in both the gas-phase and in aqueous solution. This is undoubtedly an inductive effect; the more electron-releasing ethyl group renders Et 2 and Et more basic than Me 2 and Me, respectively, in both phases. d. 2 is the strongest base in water of this series on the basis of the excellent ability of its conjugate acid ( 3 + ) to be solvated by water via hydrogen bonding. It is the weakest gas-phase base within this series as a consequence of the relatively poor inductive effect of compared to methyl and ethyl in increasing electron density at the oxygen atom.

4 Chapter 6 Acid-ase and Donor-Acceptor Chemistry This 3 affinity trend is strongly correlated to the inductive ability of the groups bound to sulfur. These data suggest that the electron-releasing ability of substituents in sulfoxides ( R 2 S) increases as R h Me n u cyclo-(c 2 ). A resonance argument can be employed to further rationalize the relatively low 3 affinities of h 2 S and hsme. The phenyl group permits delocalization of the formal positive charge at the oxygen in structure C (below), rendering this oxygen atom less Lewis basic than when alkyl groups which cannot enable this attenuation of the positive formal charge are present instead of phenyl groups. S 3 S 3 S 3 ther resonance forms with further delocalization of positive charge into phenyl rings A C 6.12 a. According the the authors, a reference acid should be a strong enough Lewis acid to react with most common bases; form 1:1 acid-base adducts; have spectroscopic characteristics that can be monitored to observe variations in the strength of Lewis bases when reactions are conducted; and should not undergo side reactions while acting as a Lewis acid. b. Lewis basicity towards the zinc(ii) reference is governed significantly by the steric hindrance created at the nitrogen upon complexation. The bases quinuclidine and pyridine, both of which feature insignificant geometric changes at nitrogen upon binding, were found more Lewis basic than all primary, secondary, and tertiary amines examined with the zinc(ii) reference. This is not the case when assessing Lewis basicity via 3 affinities. or example, the 3 affinity for pyridine ( kj mol ) is less than for some tertiary amines (for example, the 3 affinity of Me 3 is kj mol ). c. The importance of steric hindrance is reflected in the trends observed. When acyclic amines are considered, the less hindered primary amines were generally the strongest Lewis bases. A clear trend was not observed with secondary and tertiary amines, but secondary amines were found stronger bases than tertiary amines when bases with the same alkyl group were examined. Among alicyclic amines, the trend is opposite in that quinuclidine (tertiary) was found stronger than the secondary amine piperidine. The authors state the relative order of the Lewis basicity for acyclic amines as primary > secondary > tertiary, but an inverted order for alicyclic amines ( tertiary > secondary primary (acyclic) ) a. The frustrated Lewis pair of the sterically encumbered (t-c 4 9 ) 3, in combination with the highly Lewis acidic (C 6 5 ) 3, binds 2 to give a linkage. t u t u t u C 6 5 b. This complex has been characterized by single crystal X-ray crystallography (figure at right). C 6 5 C 6 5

5 86 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 6.14 a. The reaction coordinate diagram is below. The van der Waals complex is hypothesized to be stabilized via significant pi-stacking between the aromatic rings of the borane and the secondary amine. In the transition state, the bond has fully formed, and the proton is beginning to form a C bond with the previously aromatic ring of the amine. The formal positive charge of the hydrogenated intermediate (not shown on the ispo carbon of the amine) is stabilized by resonance. C 6 5 C 6 5 C 6 5 t u C 6 5 van der Waals complex (12.3 kcal/mol) TS 15.7 kcal/mol t u C 6 5 C 6 5 t u ydrogenated Intermediate (4.8 kcal/mol) t u h C 6 5 C C 6 5 rustrated Lewis air and ydrogen (0.0 kcal/mol) [h( t u) 2 ][(C 6 5 ) 3 ] (-10.0 kcal/mol) [(C 5 11 )( t u) 2 ][(C 6 5 ) 3 ] (Relative energy unspecified) b. As proposed in the reference, the phenyl ring of the amine in the van der Waals complex rotates towards the boron atom. The hydrogen molecule is then split in this cavity formed by the borane and the phenyl ring of the secondary amine. The hydride bonds to the boron, and the proton binds to the para carbon of the amine phenyl ring. c. The activation barrier for hydrogenation of the phenyl ring of the secondary amine is higher than that for formation of [h(tu) 2 ][(C 6 5 ) 3 ], which is considered the resting state for this reaction. Therefore the rate of the hydrogenation reaction is exceedingly low in pentane at ambient temperature, but viable in refluxing toluene. d. The salt [ i r 2 h][(c 6 5 ) 3 ] forms when the more basic i r 2 h is employed. It is hypothesized that i r 2 h is sufficiently basic to not allow formation of the areneborane van der Waals complex necessary to permit hydrogenation of the aromatic ring of the amine The distance in the complex 2b is pm, longer than the corresponding bond in free (115.1 pm). ond lengthening is expected since likely uses its * orbital (its LUM) to accept electron density from the phosphine. opulation of an orbital that is antibonding with respect to the bond will result in a longer bond distance. It is also noteworthy that the LUM of features greater orbital contribution from the nitrogen atom relative to the oxygen atom, and the nitrogen atom binds to the phosphorous atom in 2b. a. Complex 2b has strong radical character at oxygen, and reacts with 1,4-cyclohexadiene via a hydrogen-atom abstraction pathway to afford benzene.

6 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 87 (C 6 5 ) 2 (C 6 5 ) 2 + Resonance stabilzed radical (C 6 5 ) 2 Complex 2b also reacts with the stronger C bond of toluene, with hydrogen-atom abstraction followed by radical coupling to form an C bond. (C 6 5 ) 2 + (C 6 5 ) 2 2 C (C 6 5 ) C (C 6 5 ) 2 (C 6 5 ) 2 2 C b. While the radical formed upon hydrogen-atom abstraction from the C 3 group of toluene is resonance stabilized, C coupling involving a carbon atom in the ring would lead to a nonaromatic product (one such product is shown at right). Coupling at the primary carbon results in the retention of aromaticity in the product (left). (C 6 5 ) 2 vs. (C 6 5 ) 2 C a. The pk a for the water/sc pair is much smaller than for the water/c pair. The hydrogen bonding between water and SC is predicted as much stronger. b. The hydrogen bond donors that have the smallest pk a with nitriles are Cl 4 and I. c. (C) 3 C has the smallest pk a with organic sulfides among the organic acids. d. Classification on the basis of estimated pk a values from the Slide Rule and the criteria in Section 6.5.1: Amines (medium strong), triphosphines (medium strong), sulfoxides (medium), ketones (medium/medium weak), and nitro compounds (medium weak).

7 88 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 6.17 a. The structure has the r atoms in a staggered structure, resulting in S 6 symmetry. b. It is convenient to visualize this using tetrahedral, sp 3 hybridized As. An sp 3 orbital on each As points inward toward the benzene ring. If the hybrid lobes have opposite signs of their wave functions, they fit the symmetry of the π orbitals of the benzene ring to form bonding and antibonding molecular orbitals. The bonding interaction is shown. As As 6.18 a. The very high electronegativity of in comparison with Al pulls the bonding pair very close to. This increases the repulsion between the bonding pairs and causes the large angle. The steric bulk of the AlCl 3 and Cl 3 is not considered an important factor in dictating the large angle. b. The dative bond between Cl 3 and AlCl 3 likely employs a nonbonding donor orbital of Cl 3. The donation of electron density from a nonbonding orbital of Cl 3 would not be expected to significantly impact the bond order a. The methyl groups in (C 3 ) 3 S 3 donate electrons to the nitrogen, making (C 3 ) 3 a stronger Lewis base and strengthening and shortening the S bond. (C 3 ) 3 S 3 3 S 3 S pm pm S b. The greater concentration of electrons in the S bond of (C 3 ) 3 S 3 increases electron-electron (bp-bp) repulsions, opening up the S bond in comparison with 3 S a. The polarity of the Xe bonds concentrates electrons on the fluorine atoms, which act as the centers of Lewis basicity. As shown in the reference, which provides the structure of [Cd(Xe 2 )]( 4 ) 2, the Xe Cd bond is strongly bent at the fluorine and the geometry around xenon is nearly linear, with an Xe bond angle of b. The 4 ion is smaller than As 6, and the charge per fluorine is also greater in 4, making 4 the stronger Lewis base. In addition, the higher oxidation state of cadmium(ii) in [Cd(Xe 2 )]( 4 ) 2 enables stronger interaction with the fluorines in 4 than occurs between the silver(i) ion and As 6 in [Ag(Xe 2 )]As 6.

8 Chapter 6 Acid-ase and Donor-Acceptor Chemistry An energy level diagram for - is below. The M is the π* orbital. onding with + depends on which end of the π* orbital carries more electron density. Calculation shows slightly more electron density on, making the more likely (bent) molecule. This is consistent with the energy of the nitrogen 2p subshell ( ev) relative that of the oxygen 2p subshell ( ev); the nitrogen 2p orbitals should contribute more to these π* orbitals relative to the oxygen 2p orbitals. roblem 6.43 asks for calculation of the molecular orbitals of both and to address this question from an alternate perspective. 2p 2p 2p 2p 2p 2p 2s 2s 2s 2s 6.22 a. This is similar to the effects described in Section for I 2. r 2 forms charge-transfer complexes with donor solvents such as methanol. b. The 500 nm band (π* *) should shift to shorter wavelength (higher energy) because the difference in energy between the π* and * orbitals is greater in r 2 C 3 than in r Al 3 + Al 4. The a +, Al 4 salt can dissolve in. When 3 is added, it has a stronger attraction for the fluoride ions, with the reaction Al Al Soft metal ions do not combine with oxygen as strongly as hard metal ions, so reactions such as 2 g 2 g + 2 (g) 2 Cu 2 Cu + 2 (g) 2 Ag 2 4 Ag + 2 (g) Cu + C Cu + C(g) 2 Cu + C 2 Cu + C 2 (g) are more easily carried out. Reduction of some of the softer metals can be carried out with relatively low temperatures (campfires); some think use of rocks containing ores could have led to accidental reduction to the metals and discovery of the smelting process. arder metals such as iron require much higher temperatures for the reduction process.

9 90 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 6.25 g is a much softer metal, and combines with the soft sulfide ion more strongly. Zinc and cadmium are more borderline metals, and combine with all the anions with more nearly equal facility When any of these salts vaporize, the vapor phase consists of molecules. When they are in the solid state, they are ionic, with some covalent properties. The liquid state is between the two, and can be made up of ions, covalent molecules, or something between these two extremes. If the liquid is molecular, vaporization should be easier (molecules in the liquid phase being converted to molecules in the vapor phase). If the liquid is mostly ionic, vaporization is more difficult. Using this criterion, the most ionic liquids should be Zn 2 and Cd 2, and the most molecular liquids should be g 2 and gcl 2. n a more general view, mercury, as the softest metal in the series, forms the more molecular compounds and zinc, as the hardest, forms the more ionic compounds. Cadmium forms the most molecular compound with the borderline bromide a. pyridine + 3 : = E py E 3 C py C 3 = [(1.17)(9.88) + (6.40)(1.62)] = 21.9 kcal/mol or 91.6 kj/mol. This predicted value is roughly 13% less exothermic than the experimental value of -105 kj/mol. pyridine + (C 3 ) 3 : = E py E (C3 ) 3 C py C (C3 ) 3 = [(1.17)(6.14) + (6.40)(1.70)] = 18.1 kcal/mol, or 75.7 kj/mol. This predicted value is more exothermic than the experimental values of -64 and kj/mol, respectively. b. luorine is electron-withdrawing, and C 3 electron-releasing. Therefore, in 3 carries a greater positive charge and interacts more strongly with Lewis bases such as pyridine. c. The harder acid 3 interacts more strongly with the borderline base pyridine : = E 3 E 3 C 3 C 3 = [(1.36)(9.88) + (3.46)(1.62)] = 19.0 kcal/mol, or 79.5 kj/mol 3 + (C 3 ) 3 : = E 3 E (C3 ) 3 C 3 C (C3 ) 3 = [(1.36)(6.14) + (3.46)(1.70)] = 14.2 kcal/mol, or 59.4 kj/mol The order is pyridine + 3 > > pyridine + (C 3 ) 3 > 3 + (C 3 ) 3. The change from 3 to (C 3 ) 3 is larger than the change from pyridine to 3.

10 Chapter 6 Acid-ase and Donor-Acceptor Chemistry Absolute hardness parameters: I A C (C 3 ) The difference between the M of pyridine (9.3) and the LUM of 3 ( 3.5) is smaller than the other possible interaction, so this pair has the largest, in spite of the difference in hardness. y comparison with the nitrogen compounds, (C 3 ) 3 is expected to have an absolute hardness lower than that of 3, approximately CsI and Li fit asalo s principle that ions of similar size and equal (but opposite) charge form the least soluble salts. Cs and LiI have ionic sizes that are very different, and they do not fit as well into an ionic lattice. In addition, CsI and Li are soft soft and hard hard combinations, which combine better than the hard soft LiI and soft hard Cs The following reaction is unlikely since C is soft and is hard. 3 C C 3 3 C + C 3 The second reaction is is more likely. Adding the carbonyl oxygen makes C harder, and C in C 3 and the atom are soft. 3 C C C 3 3 C C + C a. Solubilities: MgS 4 > CaS 4 > SrS 4 > as 4 Electrostatic forces predict the reverse order due to cation sizes (the charge density of Mg 2+ is greater than that of the larger a 2+ ), but the larger cations fit better with the large sulfate anion in the crystals. ydration of the cations is the strongest for Mg 2+, weakest for a 2+, agreeing with the solubility order. b. Solubilities: bcl 2 > br 2 > bi 2 > bs As a moderately soft cation, b 2+ has stronger interactions with the softer anions (hardness order: Cl > r > I > S 2 ). In addition, hydration of the anions is largest for the chloride, smallest for sulfide, based on size The order is Al C W (see igure 13.17). The oxygen of C is the harder end of this molecule and bonds with the harder Al atom; carbon and W engage in a soft soft interaction.

11 92 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 6.34 a. Te 2 is the strongest acid, because Te is more electronegative than either Sn or Sb. Therefore, the hydrogen is more positive and acidic. b. 3 is the strongest base because is more electronegative than either or Sb. c. (C 3 ) 3 is the strongest base in the gas phase because the methyl groups contribute electron density to the nitrogen. In solution, the order is scrambled, probably due to solvation (Section 6.3.6). d. 4-Methylpyridine > pyridine > 2-methylpyridine. Again, the methyl group adds electron density to the. owever, with methyl in the 2 position, steric hindrance makes bonding to Me 3 more difficult In general, oxide ion reacts with water to form hydroxide: In 2 3, the small, hard 3+ holds on to the oxide ions strongly. As a result, () , and the solution is very weakly acidic (pk a = 9.25). In Al 2 3, the Al 3+ ion is larger and softer. It can form either [Al() 4 ] (acting as an acid) or [Al( 2 ) 6 ] 3+ (acting as a base), depending on the other species in solution. Sc 3+ is still larger and softer, so it combines better with water than with hydroxide ion. The result is the reaction Sc [Sc( 2 ) 6 ] a. Ca Ca Calcium has a lower electronegativity than hydrogen, so Ca 2 is Ca 2+ ( ) 2 and the hydride ions react with water. b. r r romine is more electronegativite than hydrogen, so the hydrogen is strongly positive and is readily transferred to the lone pair of water. c. 2 S S Sulfur is slightly more electronegative than hydrogen, and the positive hydrogen in 2 S can dissociate to a small extent. d. C no reaction. The C bond is almost nonpolar; the interaction between the oxygen atom of water and this C bond required for hydrogen ion transfer is exceedingly weak > (C 3 ) 3 > (C 2 5 ) 3 > (C 6 2 (C 3 ) 3 ) 3 Alkyl groups are electron-donating and increase the electron density on and reduce the attraction for the lone pair of 3. The bulky mesityl groups render (C 6 2 (C 3 ) 3 ) 3 less Lewis acidic on the basis of the steric hindrance introduced when these boron centers adopt the required tetrahedral geometry upon complexation of a. C 3 2 is a stronger base on the basis of the electron-releasing ability of the methyl group. b. Although 2-methylpyridine is the stronger base with smaller acid molecules, the methyl group interferes with adduct formation with trimethylboron (-strain) and the pyridine-trimethylboron dative bond is stronger.

12 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 93 c. Trimethylboron forms a stronger adduct with ammonia because the three phenyl rings of triphenylboron cannot bend back readily to allow the boron to become tetrahedral (-strain) a. With the acids listed in order of increasing acidity: 3 As 4 2 S 3 2 S 4 Mn 4 pk a (9-7n) pk a (8-5n) pk a (exp) b. With the acids listed in order of increasing acidity: Cl Cl 2 Cl 3 Cl 4 pk a (9-7n) pk a (8-5n) pk a (exp) Dimethylamine acts as weak base in water, with a very small amount of provided by the reaction (C 3 ) (C 3 ) Acetic acid is a stronger acid than water, so dimethylamine acts as a stronger base, and the reaction (C 3 ) 2 + Ac (C 3 ) Ac goes to completion. 2-utanone is a neutral solvent; there is no significant acid-base reaction with dimethylamine Sb 5 in reacts to increase the + concentration and decrease 0 : Sb Sb 6. These ions then can react with alkenes a. As the Lewis acids 3 and Cl 3 interact with 3, the geometry around boron changes from planar to trigonal pyramidal; however, in accord with the LC model the nonbonded and Cl Cl distances are nearly constant, suggesting that these atoms remain in contact with each other. ecause these nonbonded distances remain essentially constant, the boron halogen distance must increase as the distortion from trigonal geometry occurs. ecause of the strength of the bond, a consequence of the large electronegativity difference between and and the small size of the fluorine atom, more energy is required to distort 3 from planarity than to similarly distort Cl 3. (Calculations in support of this argument are presented in the reference.) The consequence of this energy requirement is that 3 is a weaker Lewis base than Cl 3 toward 3. The article does not address the relative Lewis basicity of r 3, but a similar argument could apply for this compound. b. This article does not consider the LC model but focuses on ab initio calculations on the adducts X 3 3. These calculations show a higher bond dissociation energy in the Cl 3 adduct than in the 3 adduct. Although many factors are involved, an important issue is that Cl 3 has a lower energy LUM that is able to interact more strongly with the donor orbital of 3, giving a stronger covalent interaction (and stronger bond) in Cl 3 3.

13 94 Chapter 6 Acid-ase and Donor-Acceptor Chemistry 6.43 a. The energy diagram and the orbitals are shown below. 2p 2p 2p 2p 2p 2p 2s 2s 2s 2s The M is the π*, with greater concentration of electron density on. This orbital can overlap with the empty + 1s orbital, forming, a bent molecule. b. Calculations predict that is more stable than, with the energy of the M lower than the energy of the M. The M and M-1 of and, respectively, two of the nine molecular orbitals of these species arising from the valence orbitals, are shown below. M M 1

14 Chapter 6 Acid-ase and Donor-Acceptor Chemistry LUM M M 1 M 2 r 2 r 2 C 3 C 3 The interaction of the M of the methanol and the LUM of the r 2 results in the adduct LUM and M 2 orbitals, respectively. The geometry shown features the r 2 at approximately a trigonal angle ( r is 113 and C r is 106 in a M3 calculation) a. or orbitals of 3 and 3, see igures 5.32 and 5.30, respectively. b. The bonding molecular orbital, shown below, is polarized toward the more electronegative nitrogen; the matching antibonding orbital, which has a node between the boron and nitrogen atoms, is polarized toward the boron a. The sketch below is a first approximation of the postulated interaction responsible for the halogen bond with acetylene.

15 96 Chapter 6 Acid-ase and Donor-Acceptor Chemistry The donor orbital of acetylene is a pi-bonding orbital The acceptor orbital of r 2 is its * orbital b. A key orbital to look for is one in which the adjacent lobes of the pi-bonding orbital of acetylene, shown an a, and the * orbital of r 2 have merged into a larger lobe (occupied by an electron pair) that links the two molecules. This bonding orbital should have a matching antibonding orbital (empty) at higher energy.

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Brønsted-Lowry Acids and Bases

Brønsted-Lowry Acids and Bases Brønsted-Lowry Acids and Bases 1 According to Brønsted and Lowry, an acid-base reaction is defined in terms of a proton transfer. By this definition, the reaction of Cl in water is: Cl(aq) + Cl (aq) +

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

INTDUCTIN T LEWIS ACID-BASE CEMISTY DEINITINS Lewis acids and bases are defined in terms of electron pair transfers. A Lewis base is an electron pair donor, and a Lewis acid is an electron pair acceptor.

More information

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding

More information

The strength of the interaction

The strength of the interaction The strength of the interaction Host Guest Supramolecule (host-guest complex) When is the host capable to recognize the guest? How do we define selectivity Which element will we use to design the host

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

Use the Force! Noncovalent Molecular Forces

Use the Force! Noncovalent Molecular Forces Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated

More information

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water. Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

SN2 Ionic Substitution Reactions

SN2 Ionic Substitution Reactions SN2 Ionic Substitution Reactions Chem 14D Winter 2005 SN2 Ionic Substitution Reactions Substitution can occur in organic compounds that have an electronegative atom or group bonded to an sp 3 hybridized

More information

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+ Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base INTRDUCTIN T INIC MECANISMS PART I: FUNDAMENTALS F BRNSTED-LWRY ACID-BASE CEMISTRY YDRGEN ATMS AND PRTNS IN RGANIC MLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

ACID and BASES - a Summary

ACID and BASES - a Summary AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Arrhenius Definition. Chapter 15 Acids and Bases. Brønsted-Lowry Concept. Brønsted-Lowry Concept. Conjugate Acid-Base Pairs

Arrhenius Definition. Chapter 15 Acids and Bases. Brønsted-Lowry Concept. Brønsted-Lowry Concept. Conjugate Acid-Base Pairs John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 15 Acids and Bases Arrhenius Definition Arrhenius: any substance which ionizes in water to produce: Protons

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.

Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period. hem 150 Answer Key roblem et 2 1. omplete the following phrases: Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.

More information

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

CHAPTER 5: MOLECULAR ORBITALS

CHAPTER 5: MOLECULAR ORBITALS Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases CAPTER Acids, Bases and Salts Properties of Aqueous Solutions of Acids and Bases Strong and Weak Acids Acids are substances that generate in aqueous solutions. Strong acids ionize 0% in water. That is,

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

Chemical Bonds and Groups - Part 1

Chemical Bonds and Groups - Part 1 hemical Bonds and Groups - Part 1 ARB SKELETS arbon has a unique role in the cell because of its ability to form strong covalent bonds with other carbon atoms. Thus carbon atoms can join to form chains.

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8 HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how

More information

18 electron rule : How to count electrons

18 electron rule : How to count electrons 18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

More information

OCTET RULE Generally atoms prefer electron configurations with 8 valence electrons. - Filled s and p subshells

OCTET RULE Generally atoms prefer electron configurations with 8 valence electrons. - Filled s and p subshells TYPES EMIAL BDIG 1 Ionic Bonding - Bond between ions whose charges attract each other - ne atom gives electrons and one atom takes electrons. Example a + l - ionic bond ovalent Bonding - two atoms each

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Chemistry Diagnostic Questions

Chemistry Diagnostic Questions Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to

More information

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme

Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme AQA Qualifications A-level Chemistry Paper (7405/): Inorganic and Physical Chemistry Mark scheme 7405 Specimen paper Version 0.5 MARK SCHEME A-level Chemistry Specimen paper 0. This question is marked

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

Chapter 2 - Polar Covalent Bonds; Acids and Bases

Chapter 2 - Polar Covalent Bonds; Acids and Bases Chapter 2 - Polar Covalent Bonds; Acids and Bases For questions 1-10 give the letter of the term that best matches the given definition. a. Brønsted-Lowry Acid f. Ionic Bond b. Brønsted-Lowry Base g. Covalent

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

Resonance Structures Arrow Pushing Practice

Resonance Structures Arrow Pushing Practice Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized

More information

Hybrid Molecular Orbitals

Hybrid Molecular Orbitals Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule

More information