I/O intensive applications: what are the main differences in the design of the HPC filesystems vs the MapReduce ones?

Size: px
Start display at page:

Download "I/O intensive applications: what are the main differences in the design of the HPC filesystems vs the MapReduce ones?"

Transcription

1 I/O intensive applications: what are the main differences in the design of the HPC filesystems vs the MapReduce ones? Matthieu Dorier, Radu Marius Tudoran Master 2 Research ENS Cachan - Brittany extension December 16,

2 1 Introduction In this report, a comparison is drawn between HPC filesystems and the ones specific for MapReduce (MR) applications. The starting point of the report will be the four papers [13, 6, 9, 11] proposed. The first article [13], analyzes the possibility of using a parallel filesystem for MR storage instead of using the standard filesystem used with Hadoop [3]. This adaptation is done by implementing a shim layer, and shows comparable performances with HDFS. The second article [9] compares the performance of PVFS, a parallel filesystem, and HDFS, when two different workloads are run in a concurrent manner, each of them being usually specific to one of the filesystems. A comparison between the MR programing model and parallel databases is done in the third article [11], which tries to lower the growing interest of MR applications, while the last paper [6] just describes a successful installation of Hadoop. The problematics raised in the papers will be discussed above, by also comparing them to other publications, and having as goal the highlighting of the specificities of each type of filesystem. 2 Enriched API in DFS MapReduce applications require to process large files in parallel in a write-once-read-many scheme. Thus distributed filesystems (DSF) such as HDFS are designed to run on computation nodes, unlike parallel filesystems that usually run on dedicated nodes, and are part of the application. This deployment scheme lets DFS expose the data localization. Using Hadoop, Yahoo! s implementation of MapReduce, a java interface called FileSystem and a set of abstract classes handling streams let the user implement its own filesystem or select the one he wants to use through configuration files. Thus, several DFS have been adapted to Hadoop, such as CloudStore (previously KosmosFS) or Amazon S3. Specific parameters such as the chunk size and the replication policy can also be tuned in order to fit the need of the central component of the MapReduce framework: the scheduler. In this model, the filesystem becomes part of the entire application and is tuned to fit its precise needs. 3 Parallel Filesystems and HPC The major use of IO in HPC is for checkpointing. Scientific applications featuring timevarying datasets or data-mining programs including iterative optimization solvers often backup their entire dataset in the filesystem in order to be able to restart in case of failure. In this context having a computation driven by data locality makes no sense. If a failure occurs in a node that used its own local storage capability for checkpointing, its data is lost. Thus, clusters usually provide a set-aside storage area where a parallel filesystem, such as PVFS [4], GPFS [12] or Luster, is deployed. Multiple dedicated IO nodes act as IO servers and expose a POSIX-like mount point to the application. While distributed filesystems are deployed for the purpose of a single application, parallel filesystems for HPC are shared between all the users of the cluster. Thus users can book computation nodes on a cluster, but they cannot control or even predict their IO bandwidth. HPC applications are usually based on a main loop featuring a computation intensive phase, a communication phase and a checkpointing phase. A classical pattern consists in writing one file per process per backup, leading to a huge number of files written at the same time in the filesystem. As HPC infrastructures grow toward petascale capabilities, IO become a bottleneck and a high standard deviation in the time to write a file is noticed. Thus, MPI-IO, 2

3 the IO part of the Message Passing Interface standard, offers the ability to write big files in a collective manner, with several optimization with respect to the filesystem. As an example, MPI-IO/GPFS, an optimized version of MPI-IO on top of GPFS, is presented in [1]. While more information are provided by the application regarding the file layout, MPI-IO also adapt the IO patterns with respect to the knowledge he has of the filesystem. In MPI-IO/GPFS (as in other MPI-IO implementation [14]), such adaptation are conducted through IO agents, namely MPI tasks that are acting as IO adaptation layer to provide - data shipping: avoids multiple tasks to access a single chunk in the filesystem by binding IO agents to chunks and make IO agents read/write entire chunks; - prefetching: when a task tries to access a set of small parts of a file, big chunks are loaded instead in order to avoid multiple expensive access; - data sieving: when the access is sparse with respect to single processes but dense with respect to all, the entire file is loaded and the multiple IO operations are replaced by communications between IO agents; - double buffering: used for large access in order to overlap write requests from tasks with effective IO access to the filesystem. Moreover, MPI IO calls are usually hidden behind high performance data formats such as HDF5 or NetCDF, allowing to keep in the files a high level of semantics by embedding metadata and by arranging datasets in an efficient layout. 4 Failures and replication patterns The way failures are considered in HPC systems or in distributed systems (DS) in which MR programing model can be applied, is one of the key differences between the two. In HPC systems failures are an abnormal, also rare (even though when scaling this tends not to be true) events, while in the case of MR applications, failures are normal and are taken into account in the design of the application. The main mechanism for HPC to deal with failures is the checkpointing and rollback. Powerful algorithms [8] were constructed in order to optimize these mechanisms. But checkpointing always requires heavy access to the filesystem. In HPC systems, data availability is ensured by RAIDs and by additional bits to verify data consistency and in some cases to recover some damaged bits. One of the main problems nowadays is the bit flipping that is increasing year by year, because of the diminishing of the voltage used and the newly silicon layers, and becomes a big concerne for HPC systems. As an open question on how to adept to this situation, HPC systems have as alternatives the usage of more complex data schema for detecting/recovering bit errors, or to consider the replication techniques that are used by DFSs. We have seen [13] that it is possible to provide replication for Parallel FS but there is still work to be done in order to adept this to the HPC needs. On the other hand, the main approach to ensure data reliability and availability in DFS is the replication. Data is stored in more than one data node (in general three, but five is also popular for more sensible data), hence if one node crash or is not available, the DFS rapidly retrieves the data from another location. The cost for persistent storage is very low so having several physical copies is not expensive[7]. DFSs like GFS[7], HDFS[3], BlobSeerFS[10], all use data replication and have monitor mechanisms for maintaining the replication number. 5 Parallel Databases vs. MapReduce In article [11] a comparison between parallel DBMS (DataBases Management Services) and the very popular programing model MapReduce (MR) [5], invented by Google, is made. The 3

4 authors of the article compare the performances of two pdbms, Vertica and DBMS-X, with the Hadoop [3] system, which is an open source implementation of the MR model. Based on the results presented, on five different benchmarks, in which the pdbmss outperform Hadoop they conclude that the SQL programing model based on pdbms should be considered superior to the MR one. They sustain this by also arguing that DB in general have a 25 year advantage, so the model is greatly tuned. However, as drawbacks to pdb, they report the installation of the system to be more difficult compared to Hadoop. Also the initial upload of the data in the system is not that easy. A comparison is done between the fixed data schema that is imposed in DB with the more flexible approach offered by MR systems. Defending the DBs, they talk about the need for a custom parser that must be provided due to this freedom offered by MR model. The indexing capabilities of DB is also highlight, especially in the context of multiple indexes per table that are used by the the query optimizer. Hadoop (together with HDFS) is still young compared to databases, thus it is still possible to considerably improve the performance of such systems, in particular regarding I/O performance, by providing more efficient storage services and even enhance the capability of such system with respect to concurrent access semantics. Recent studies, like the one proposed by Nicolae et al [10], showed that Hadoop pipelines can be improved, up to 40% in efficiency, by providing a shim layer similar to the one discussed in article [13], for a different DFS (here BSFS). Although HDFS is write-once-read-many, a file system like BSFS can provide a more flexible access semantics, since it is fully concurrent. There also exists scientific applications that require a pipeline of MR phases that would not fit to the SQL modeling language. More, recent cloud storage systems, like Microsoft AZURE[2], offer extremely interesting properties for the stored data that can be compared to the power of indexes from DBs. Tables, not to be confused with tables from relational DBs, one of the three storage mechanism from Azure, offer total freedom in the records stored, and offer keys ids similar with indexes. Hence, MR programs could be optimized to reach very high performances, without being restricted to a specific schema and without developing dedicated parsers. 6 Discussion In this report, we have compared the main differences in the design of HPC-efficient parallel filesystems and MapReduce filesystems. While distributed filesystems often run on computation area, they can provide data localization in order to avoid high bandwidth usage, as well as replication capability. In fact, failures are considered as part of the system and are taken into account in the design itself of the system. Parallel filesystems run on storage areas and are usually well suited for MPI-based applications. Unlike DFS, chunk sizes in PFS are usually small to fit the need of fine grain access for parallel applications. Finally, let us mention that recent developments in cloud computing, in particular at Amazon EC2 services, allow the users to rent resources from both types: HPC-efficient and/or MapReduce-efficient, thus we may converge toward a joint usage of both workloads, leading a high demand in this field to build efficient yet generic distributed filesystems. 4

5 References [1] Azure: [2] Hadoop: [3] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur. PVFS: A parallel file system for Linux clusters. In Proceedings of the 4th annual Linux Showcase & Conference-Volume 4, page 28. USENIX Association, [4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. [5] M. Dunn. Parallel I/O Testing for Hadoop. [6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. [7] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and Franck Cappello. Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications. Technical report, INRIA-Illinois Joint Laboratory on PetaScale Computing. [8] E. Molina-Estolano, M. Gokhale, C. Maltzahn, J. May, J. Bent, and S. Brandt. Mixing Hadoop and HPC Workloads on Parallel Filesystems. [9] B. Nicolae, D. Moise, G. Antoniu, L. Boug, and M. Dorier. BlobSeer: Bringing High Throughput under Heavy Concurrency to Hadoop Map/Reduce Applications. IPDPS, [10] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. StoneBraker. A comparison of approaches to large-scale data analysis. [11] Jean pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice Koniges. Mpi-io gpfs, an optimized implementation of mpi-io on top of gpfs. In In Proceedings of Supercomputing 2001, [12] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters. In Proceedings of the First USENIX Conference on File and Storage Technologies, pages Citeseer, [13] W. Tantisiriroj, S. Patil, and G. Gibson. Data-intensive le systems for Internet services: A rose by any other name. [14] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in ROMIO. frontiers, page 182,

Performance Analysis of Mixed Distributed Filesystem Workloads

Performance Analysis of Mixed Distributed Filesystem Workloads Performance Analysis of Mixed Distributed Filesystem Workloads Esteban Molina-Estolano, Maya Gokhale, Carlos Maltzahn, John May, John Bent, Scott Brandt Motivation Hadoop-tailored filesystems (e.g. CloudStore)

More information

Mixing Hadoop and HPC Workloads on Parallel Filesystems

Mixing Hadoop and HPC Workloads on Parallel Filesystems Mixing Hadoop and HPC Workloads on Parallel Filesystems Esteban Molina-Estolano *, Maya Gokhale, Carlos Maltzahn *, John May, John Bent, Scott Brandt * * UC Santa Cruz, ISSDM, PDSI Lawrence Livermore National

More information

Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela

Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance

More information

HDFS Space Consolidation

HDFS Space Consolidation HDFS Space Consolidation Aastha Mehta*,1,2, Deepti Banka*,1,2, Kartheek Muthyala*,1,2, Priya Sehgal 1, Ajay Bakre 1 *Student Authors 1 Advanced Technology Group, NetApp Inc., Bangalore, India 2 Birla Institute

More information

Mixing Hadoop and HPC Workloads on Parallel Filesystems

Mixing Hadoop and HPC Workloads on Parallel Filesystems Mixing Hadoop and HPC Workloads on Parallel Filesystems Esteban Molina-Estolano 1, Maya Gokhale 2, Carlos Maltzahn 1, John May 2, John Bent 3, and Scott Brandt 1 1 UC Santa Cruz 2 Lawrence Livermore National

More information

HFAA: A Generic Socket API for Hadoop File Systems

HFAA: A Generic Socket API for Hadoop File Systems HFAA: A Generic Socket API for Hadoop File Systems Adam Yee University of the Pacific Stockton, CA adamjyee@gmail.com Jeffrey Shafer University of the Pacific Stockton, CA jshafer@pacific.edu ABSTRACT

More information

CHAIO: Enabling HPC Applications on Data-Intensive File Systems

CHAIO: Enabling HPC Applications on Data-Intensive File Systems CHAIO: Enabling HPC Applications on Data-Intensive File Systems Hui Jin, Jiayu Ji, Xian-He Sun Department of Computer Science Illinois Institute of Technology {hjin6, jji3, sun}@iit.edu Yong Chen Department

More information

The Google File System

The Google File System The Google File System By Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (Presented at SOSP 2003) Introduction Google search engine. Applications process lots of data. Need good file system. Solution:

More information

Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl

Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind

More information

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14

Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14 Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul

More information

BlobSeer: Enabling Efficient Lock-Free, Versioning-Based Storage for Massive Data under Heavy Access Concurrency

BlobSeer: Enabling Efficient Lock-Free, Versioning-Based Storage for Massive Data under Heavy Access Concurrency BlobSeer: Enabling Efficient Lock-Free, Versioning-Based Storage for Massive Data under Heavy Access Concurrency Gabriel Antoniu 1, Luc Bougé 2, Bogdan Nicolae 3 KerData research team 1 INRIA Rennes -

More information

Distributed File Systems

Distributed File Systems Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.

More information

Distributed File Systems

Distributed File Systems Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)

More information

Analysis and Optimization of Massive Data Processing on High Performance Computing Architecture

Analysis and Optimization of Massive Data Processing on High Performance Computing Architecture Analysis and Optimization of Massive Data Processing on High Performance Computing Architecture He Huang, Shanshan Li, Xiaodong Yi, Feng Zhang, Xiangke Liao and Pan Dong School of Computer Science National

More information

Jeffrey D. Ullman slides. MapReduce for data intensive computing

Jeffrey D. Ullman slides. MapReduce for data intensive computing Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very

More information

THE HADOOP DISTRIBUTED FILE SYSTEM

THE HADOOP DISTRIBUTED FILE SYSTEM THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,

More information

Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000

Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Alexandra Carpen-Amarie Diana Moise Bogdan Nicolae KerData Team, INRIA Outline

More information

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes

More information

BlobSeer: Towards efficient data storage management on large-scale, distributed systems

BlobSeer: Towards efficient data storage management on large-scale, distributed systems : Towards efficient data storage management on large-scale, distributed systems Bogdan Nicolae University of Rennes 1, France KerData Team, INRIA Rennes Bretagne-Atlantique PhD Advisors: Gabriel Antoniu

More information

Research on Job Scheduling Algorithm in Hadoop

Research on Job Scheduling Algorithm in Hadoop Journal of Computational Information Systems 7: 6 () 5769-5775 Available at http://www.jofcis.com Research on Job Scheduling Algorithm in Hadoop Yang XIA, Lei WANG, Qiang ZHAO, Gongxuan ZHANG School of

More information

Cloud Computing at Google. Architecture

Cloud Computing at Google. Architecture Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale

More information

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)

CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model

More information

Accelerating and Simplifying Apache

Accelerating and Simplifying Apache Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly

More information

Hadoop Architecture. Part 1

Hadoop Architecture. Part 1 Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,

More information

HPC Computation on Hadoop Storage with PLFS

HPC Computation on Hadoop Storage with PLFS HPC Computation on Hadoop Storage with PLFS Chuck Cranor, Milo Polte, Garth Gibson CMU-PDL-12-115 November 2012 Parallel Data Laboratory Carnegie Mellon University Pittsburgh, PA 15213-3890 Abstract In

More information

On the Duality of Data-intensive File System Design: Reconciling HDFS and PVFS

On the Duality of Data-intensive File System Design: Reconciling HDFS and PVFS On the Duality of Data-intensive File System Design: Reconciling HDFS and PVFS Wittawat Tantisiriroj Seung Woo Son Swapnil Patil Carnegie Mellon University Samuel J. Lang Argonne National Laboratory Garth

More information

Data Semantics Aware Cloud for High Performance Analytics

Data Semantics Aware Cloud for High Performance Analytics Data Semantics Aware Cloud for High Performance Analytics Microsoft Future Cloud Workshop 2011 June 2nd 2011, Prof. Jun Wang, Computer Architecture and Storage System Laboratory (CASS) Acknowledgement

More information

Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment

Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,

More information

Snapshots in Hadoop Distributed File System

Snapshots in Hadoop Distributed File System Snapshots in Hadoop Distributed File System Sameer Agarwal UC Berkeley Dhruba Borthakur Facebook Inc. Ion Stoica UC Berkeley Abstract The ability to take snapshots is an essential functionality of any

More information

Lustre * Filesystem for Cloud and Hadoop *

Lustre * Filesystem for Cloud and Hadoop * OpenFabrics Software User Group Workshop Lustre * Filesystem for Cloud and Hadoop * Robert Read, Intel Lustre * for Cloud and Hadoop * Brief Lustre History and Overview Using Lustre with Hadoop Intel Cloud

More information

Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique

Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique Mahesh Maurya a, Sunita Mahajan b * a Research Scholar, JJT University, MPSTME, Mumbai, India,maheshkmaurya@yahoo.co.in

More information

Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2

Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2 Load Rebalancing for File System in Public Cloud Roopa R.L 1, Jyothi Patil 2 1 PDA College of Engineering, Gulbarga, Karnataka, India rlrooparl@gmail.com 2 PDA College of Engineering, Gulbarga, Karnataka,

More information

Introduction to Hadoop

Introduction to Hadoop Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction

More information

Distributed Metadata Management Scheme in HDFS

Distributed Metadata Management Scheme in HDFS International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 Distributed Metadata Management Scheme in HDFS Mrudula Varade *, Vimla Jethani ** * Department of Computer Engineering,

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

Hadoop & its Usage at Facebook

Hadoop & its Usage at Facebook Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System dhruba@apache.org Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture

More information

R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5

R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 uskenbaevar@gmail.com, 2 abu.kuandykov@gmail.com,

More information

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop

More information

Hadoop & its Usage at Facebook

Hadoop & its Usage at Facebook Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System dhruba@apache.org Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction

More information

Large Scale Distributed File System Survey

Large Scale Distributed File System Survey Large Scale Distributed File System Survey Yuduo Zhou Indiana University Bloomington yuduo@indiana.edu ABSTRACT Cloud computing, one type of distributed systems, is becoming very popular. It has demonstrated

More information

Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010

Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010 Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More

More information

Data-Intensive Computing with Map-Reduce and Hadoop

Data-Intensive Computing with Map-Reduce and Hadoop Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan humbetov@gmail.com Abstract Every day, we create 2.5 quintillion

More information

Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com

Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc hairong@yahoo-inc.com What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data

More information

Apache Hadoop FileSystem and its Usage in Facebook

Apache Hadoop FileSystem and its Usage in Facebook Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System dhruba@apache.org Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs

More information

Big Data Management in the Clouds and HPC Systems

Big Data Management in the Clouds and HPC Systems Big Data Management in the Clouds and HPC Systems Hemera Final Evaluation Paris 17 th December 2014 Shadi Ibrahim Shadi.ibrahim@inria.fr Era of Big Data! Source: CNRS Magazine 2013 2 Era of Big Data! Source:

More information

Performance Evaluation for BlobSeer and Hadoop using Machine Learning Algorithms

Performance Evaluation for BlobSeer and Hadoop using Machine Learning Algorithms Performance Evaluation for BlobSeer and Hadoop using Machine Learning Algorithms Elena Burceanu, Irina Presa Automatic Control and Computers Faculty Politehnica University of Bucharest Emails: {elena.burceanu,

More information

Introduction to Hadoop

Introduction to Hadoop 1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools

More information

Improving Scalability Of Storage System:Object Storage Using Open Stack Swift

Improving Scalability Of Storage System:Object Storage Using Open Stack Swift Improving Scalability Of Storage System:Object Storage Using Open Stack Swift G.Kathirvel Karthika 1,R.C.Malathy 2,M.Keerthana 3 1,2,3 Student of Computer Science and Engineering, R.M.K Engineering College,Kavaraipettai.

More information

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS

A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

HDFS scalability: the limits to growth

HDFS scalability: the limits to growth Konstantin V. Shvachko HDFS scalability: the limits to growth Konstantin V. Shvachko is a principal software engineer at Yahoo!, where he develops HDFS. He specializes in efficient data structures and

More information

CS2510 Computer Operating Systems

CS2510 Computer Operating Systems CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction

More information

CS2510 Computer Operating Systems

CS2510 Computer Operating Systems CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction

More information

MapReduce Jeffrey Dean and Sanjay Ghemawat. Background context

MapReduce Jeffrey Dean and Sanjay Ghemawat. Background context MapReduce Jeffrey Dean and Sanjay Ghemawat Background context BIG DATA!! o Large-scale services generate huge volumes of data: logs, crawls, user databases, web site content, etc. o Very useful to be able

More information

- Behind The Cloud -

- Behind The Cloud - - Behind The Cloud - Infrastructure and Technologies used for Cloud Computing Alexander Huemer, 0025380 Johann Taferl, 0320039 Florian Landolt, 0420673 Seminar aus Informatik, University of Salzburg Overview

More information

Cloud Computing based on the Hadoop Platform

Cloud Computing based on the Hadoop Platform Cloud Computing based on the Hadoop Platform Harshita Pandey 1 UG, Department of Information Technology RKGITW, Ghaziabad ABSTRACT In the recent years,cloud computing has come forth as the new IT paradigm.

More information

Where We Are. References. Cloud Computing. Levels of Service. Cloud Computing History. Introduction to Data Management CSE 344

Where We Are. References. Cloud Computing. Levels of Service. Cloud Computing History. Introduction to Data Management CSE 344 Where We Are Introduction to Data Management CSE 344 Lecture 25: DBMS-as-a-service and NoSQL We learned quite a bit about data management see course calendar Three topics left: DBMS-as-a-service and NoSQL

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu

CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB

More information

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware

Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after

More information

Will They Blend?: Exploring Big Data Computation atop Traditional HPC NAS Storage

Will They Blend?: Exploring Big Data Computation atop Traditional HPC NAS Storage Will They Blend?: Exploring Big Data Computation atop Traditional HPC NAS Storage Ellis H. Wilson III 1,2 Mahmut Kandemir 1 Garth Gibson 2,3 1 Department of Computer Science and Engineering, The Pennsylvania

More information

Reduction of Data at Namenode in HDFS using harballing Technique

Reduction of Data at Namenode in HDFS using harballing Technique Reduction of Data at Namenode in HDFS using harballing Technique Vaibhav Gopal Korat, Kumar Swamy Pamu vgkorat@gmail.com swamy.uncis@gmail.com Abstract HDFS stands for the Hadoop Distributed File System.

More information

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop

Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE

More information

Wrangler: A New Generation of Data-intensive Supercomputing. Christopher Jordan, Siva Kulasekaran, Niall Gaffney

Wrangler: A New Generation of Data-intensive Supercomputing. Christopher Jordan, Siva Kulasekaran, Niall Gaffney Wrangler: A New Generation of Data-intensive Supercomputing Christopher Jordan, Siva Kulasekaran, Niall Gaffney Project Partners Academic partners: TACC Primary system design, deployment, and operations

More information

HDFS Under the Hood. Sanjay Radia. Sradia@yahoo-inc.com Grid Computing, Hadoop Yahoo Inc.

HDFS Under the Hood. Sanjay Radia. Sradia@yahoo-inc.com Grid Computing, Hadoop Yahoo Inc. HDFS Under the Hood Sanjay Radia Sradia@yahoo-inc.com Grid Computing, Hadoop Yahoo Inc. 1 Outline Overview of Hadoop, an open source project Design of HDFS On going work 2 Hadoop Hadoop provides a framework

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

THE EXPAND PARALLEL FILE SYSTEM A FILE SYSTEM FOR CLUSTER AND GRID COMPUTING. José Daniel García Sánchez ARCOS Group University Carlos III of Madrid

THE EXPAND PARALLEL FILE SYSTEM A FILE SYSTEM FOR CLUSTER AND GRID COMPUTING. José Daniel García Sánchez ARCOS Group University Carlos III of Madrid THE EXPAND PARALLEL FILE SYSTEM A FILE SYSTEM FOR CLUSTER AND GRID COMPUTING José Daniel García Sánchez ARCOS Group University Carlos III of Madrid Contents 2 The ARCOS Group. Expand motivation. Expand

More information

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh

Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets

More information

Introduction to Big Data! with Apache Spark" UC#BERKELEY#

Introduction to Big Data! with Apache Spark UC#BERKELEY# Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"

More information

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com

Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee dhruba@apache.org dhruba@facebook.com Hadoop, Why? Need to process huge datasets on large clusters of computers

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card

More information

Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems

Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems Processing of massive data: MapReduce 2. Hadoop 1 MapReduce Implementations Google were the first that applied MapReduce for big data analysis Their idea was introduced in their seminal paper MapReduce:

More information

Implement Hadoop jobs to extract business value from large and varied data sets

Implement Hadoop jobs to extract business value from large and varied data sets Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to

More information

Big Data and Hadoop with components like Flume, Pig, Hive and Jaql

Big Data and Hadoop with components like Flume, Pig, Hive and Jaql Abstract- Today data is increasing in volume, variety and velocity. To manage this data, we have to use databases with massively parallel software running on tens, hundreds, or more than thousands of servers.

More information

CLOUD COMPUTING USING HADOOP TECHNOLOGY

CLOUD COMPUTING USING HADOOP TECHNOLOGY CLOUD COMPUTING USING HADOOP TECHNOLOGY DHIRAJLAL GANDHI COLLEGE OF TECHNOLOGY SALEM B.NARENDRA PRASATH S.PRAVEEN KUMAR 3 rd year CSE Department, 3 rd year CSE Department, Email:narendren.jbk@gmail.com

More information

A Comparison of Approaches to Large-Scale Data Analysis

A Comparison of Approaches to Large-Scale Data Analysis A Comparison of Approaches to Large-Scale Data Analysis Sam Madden MIT CSAIL with Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, and Michael Stonebraker In SIGMOD 2009 MapReduce

More information

The Inside Scoop on Hadoop

The Inside Scoop on Hadoop The Inside Scoop on Hadoop Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. Orion.Gebremedhin@Neudesic.COM B-orgebr@Microsoft.com @OrionGM The Inside Scoop

More information

Massive Data Storage

Massive Data Storage Massive Data Storage Storage on the "Cloud" and the Google File System paper by: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung presentation by: Joshua Michalczak COP 4810 - Topics in Computer Science

More information

Performance measurement of a Hadoop Cluster

Performance measurement of a Hadoop Cluster Performance measurement of a Hadoop Cluster Technical white paper Created: February 8, 2012 Last Modified: February 23 2012 Contents Introduction... 1 The Big Data Puzzle... 1 Apache Hadoop and MapReduce...

More information

Hadoop IST 734 SS CHUNG

Hadoop IST 734 SS CHUNG Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to

More information

The Hadoop Framework

The Hadoop Framework The Hadoop Framework Nils Braden University of Applied Sciences Gießen-Friedberg Wiesenstraße 14 35390 Gießen nils.braden@mni.fh-giessen.de Abstract. The Hadoop Framework offers an approach to large-scale

More information

Parallel Processing of cluster by Map Reduce

Parallel Processing of cluster by Map Reduce Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai vamadhavi04@yahoo.co.in MapReduce is a parallel programming model

More information

Introduction to Hadoop Distributed File System Vaibhav Gopal korat vgkorat@gmail.com

Introduction to Hadoop Distributed File System Vaibhav Gopal korat vgkorat@gmail.com Introduction to Hadoop Distributed File System Vaibhav Gopal korat vgkorat@gmail.com Ankush Pramod Deshmukh ankush25d@gmail.com Kumar Swamy Pamu swamy.uncis@gmail.com Abstract HDFS is a distributed file

More information

Big Data With Hadoop

Big Data With Hadoop With Saurabh Singh singh.903@osu.edu The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials

More information

System Software for High Performance Computing. Joe Izraelevitz

System Software for High Performance Computing. Joe Izraelevitz System Software for High Performance Computing Joe Izraelevitz Agenda Overview of Supercomputers Blue Gene/Q System LoadLeveler Job Scheduler General Parallel File System HPC at UR What is a Supercomputer?

More information

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012

MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012 MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte

More information

Scala Storage Scale-Out Clustered Storage White Paper

Scala Storage Scale-Out Clustered Storage White Paper White Paper Scala Storage Scale-Out Clustered Storage White Paper Chapter 1 Introduction... 3 Capacity - Explosive Growth of Unstructured Data... 3 Performance - Cluster Computing... 3 Chapter 2 Current

More information

Distributed File Systems

Distributed File Systems Distributed File Systems Alemnew Sheferaw Asrese University of Trento - Italy December 12, 2012 Acknowledgement: Mauro Fruet Alemnew S. Asrese (UniTN) Distributed File Systems 2012/12/12 1 / 55 Outline

More information

xpaaerns on Spark, Shark, Tachyon and Mesos

xpaaerns on Spark, Shark, Tachyon and Mesos xpaaerns on Spark, Shark, Tachyon and Mesos Spark Summit 2014 Claudiu Barbura Sr. Director of Engineering A>geo Agenda xpa&erns Architecture From Hadoop to BDAS & our contribu

More information

Hadoop Cluster Applications

Hadoop Cluster Applications Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday

More information

Journal of science STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Journal of science STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS) Journal of science e ISSN 2277-3290 Print ISSN 2277-3282 Information Technology www.journalofscience.net STUDY ON REPLICA MANAGEMENT AND HIGH AVAILABILITY IN HADOOP DISTRIBUTED FILE SYSTEM (HDFS) S. Chandra

More information

MapReduce for Data Warehouses

MapReduce for Data Warehouses MapReduce for Data Warehouses Data Warehouses: Hadoop and Relational Databases In an enterprise setting, a data warehouse serves as a vast repository of data, holding everything from sales transactions

More information

MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015

MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015 7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan aidhog@gmail.com Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE

More information

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS

PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS By HAI JIN, SHADI IBRAHIM, LI QI, HAIJUN CAO, SONG WU and XUANHUA SHI Prepared by: Dr. Faramarz Safi Islamic Azad

More information

CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensive Computing. University of Florida, CISE Department Prof.

CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensive Computing. University of Florida, CISE Department Prof. CIS 4930/6930 Spring 2014 Introduction to Data Science /Data Intensie Computing Uniersity of Florida, CISE Department Prof. Daisy Zhe Wang Map/Reduce: Simplified Data Processing on Large Clusters Parallel/Distributed

More information

Implementation Issues of A Cloud Computing Platform

Implementation Issues of A Cloud Computing Platform Implementation Issues of A Cloud Computing Platform Bo Peng, Bin Cui and Xiaoming Li Department of Computer Science and Technology, Peking University {pb,bin.cui,lxm}@pku.edu.cn Abstract Cloud computing

More information

Hadoop Architecture and its Usage at Facebook

Hadoop Architecture and its Usage at Facebook Hadoop Architecture and its Usage at Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System dhruba@apache.org Presented at Microsoft Research, Seattle October 16, 2009 Outline Introduction

More information

MapReduce and Hadoop Distributed File System

MapReduce and Hadoop Distributed File System MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) bina@buffalo.edu http://www.cse.buffalo.edu/faculty/bina Partially

More information

Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive

Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive E. Laxmi Lydia 1,Dr. M.Ben Swarup 2 1 Associate Professor, Department of Computer Science and Engineering, Vignan's Institute

More information