ON THE K-WINNERS-TAKE-ALL NETWORK
|
|
|
- Roland Whitehead
- 9 years ago
- Views:
Transcription
1 634 ON THE K-WINNERS-TAKE-ALL NETWORK E. Majani Jet Propulsion Laboratory California Institute of Technology R. Erlanson, Y. Abu-Mostafa Department of Electrical Engineering California Institute of Technology ABSTRACT We present and rigorously analyze a generalization of the Winner Take-All Network: the K-Winners-Take-All Network. This network identifies the K largest of a set of N real numbers. The network model used is the continuous Hopfield model. I - INTRODUCTION The Winner-Take-All Network is a network which identifies the largest of N real numbers. Winner-Take-All Networks have been developed using various neural networks models (Grossberg-73, Lippman-87, Feldman-82, Lazzaro-89). We present here a generalization of the Winner-Take-All Network: the K-Winners-Take-All (KWTA) Network. The KWTA Network identifies the K largest of N real numbers. The neural network model we use throughout the paper is the continuous Hopfield network model (Hopfield-84). If the states of the N nodes are initialized to the N real numbers, then, if the gain of the sigmoid is large enough, the network converges to the state with K positive real numbers in the positions of the nodes with the K largest initial states, and N - K negative real numbers everywhere else. Consider the following example: N = 4, K = 2. There are 6 = (~) stable states:(++-_)t, (+_+_)T, (+--+)T, ( ++)T, (_+_+)T, and (_++_)T. If the initial state of the network is (0.3, -0.4, 0.7, O.l)T, then the network will converge to (Vi,V2,V3,v4)T where Vi> 0, V2 < 0, V3 > 0, V4 < 0 ((+ _ +_)T). In Section II, we define the KWTA Network (connection weights, external inputs). In Section III, we analyze the equilibrium states and in Section IV, we identify all the stable equilibrium states of the KWTA Network. In Section V, we describe the dynamics of the KWTA Network. In Section VI, we give two important examples of the KWTA Network and comment on an alternate implementation of the KWTA Network.
2 On the K-Winners-Take-All Network 635 II - THE K-WINNERS-TAKE-ALL NETWORK The continuous Hopfield network model (Hopfield-84) (also known as the Grossberg additive model (Grossberg-88)), is characterized by a system of first order differential equations which governs the evolution of the state of the network (i = 1,..., N) : The sigmoid function g(u) is defined by: g(u) = f(g u), where G > 0 is the gain of the sigmoid, and f(u) is defined by: 1. "f/u, 0 < f'(u) < f'(o) = 1, 2. limu... +oo f( u) = 1, 3. limu... -oo f( u) = -l. The KWTA Network is characterized by mutually inhibitory interconnections Taj = -1 for i = j, a self connection Tai = a, (Ial < 1) and'an external input (identical for every node) which depends on the number K of winners desired and the size of the network N : ti = 2K - N. The differential equations for the KWTA Network are therefore: for all i, Cd~i = -Aui + (a + l)g(ui) - (tg(uj ) - t), (1) where A = N lal, -1 < a < +1, and t = 2K - N. Let us now study the equilibrium states of the dynamical system defined in (1). We already know from previous work (Hopfield-84) that the network is guaranteed to converge to a stable equilibrium state if the connection matrix (T) is symmetric (and it is here). J=l III - EQUILIBRIUM STATES OF THE NETWORK The equilibrium states u of the KWTA network are defined by I.e., for all i, for all i, dui 0 dt -, A (E. g(u~) - (2K - N)) I a+1 I a+1 g(u'!') = --u'!' + J J Let us now develop necessary conditions for a state u to be an equilibrium state of the network. Theorem 1: For a given equilibrium state u, every component ui of u can be one of at most three distinct values. (2)
3 636 Majani, Erlanson and Abu-Mostafa Proof of Theorem 1. If we look at equation (2), we see that the last term of the righthandside expression is independent of i; let us denote this term by H(u*). Therefore, the components ut of the equilibrium state u* must be solutions of the equation: g(ui) = _A_u; + H(u*). a+1 Since the sigmoid function g(u) is monotone increasing and A/(a + 1) > 0, then the sigmoid and the line a~l ut + H(u*) intersect in at least one point and at most three (see Figure 1). Note that the constant H(u*) can be different for different equilibrium states u*. The following theorem shows that the sum of the node outputs is constrained to being close to 2K - N, as desired. Theorem 2: If u* is an equilibrium state of (1), then we have: N (a+ 1)maxg(ui) < '" g(uj~) -2K +N < (a+ 1) min g(ui). (3) u~<o L..J u'!'>o j=l Proof of Theorem 2. Let us rewrite equation (2) in the following way: Aut = (a + 1)g(ui) - (Eg(uj) - (2K - N)). Since ut and g( un are of the same sign, the term (Lj g( un - (2K - N)) can neither be too large (if ut > 0) nor too low (if ui < 0). Therefore, we must have which yields (3). { (Lj g(uj) - (2K - N)) < (a + 1)g(un, (Lj g(uj) - (2K - N)) > (a + 1)g(ut), j for all ut > 0, for all ut < 0, Theorem 1 states that the components of an equilibrium state can only be one of at most three distinct values. We will distinguish between two types of equilibrium states, for the purposes of our analysis: those which have one or more components ut such that g'( un > a~l' which we categorize as type I, and those which do not (type II). We will show in the next section that for a gain G large enough, no equilibrium state of type II is stable.
4 On the K-Winners-Take-All Network 637 IV - ASYMPTOTIC STABILITY OF EQUILIBRIUM STATES We will first derive a necessary condition for an equilibrium state of (1) to be asymptotically stable. Then we will find the stable equilibrium states of the KWTA Network. IV-I. A NECESSARY CONDITION FOR ASYMPTOTIC STABILITY An important necessary condition for asymptotic stability is given in the following theorem. Theorem 3: Given any asymptotically stable equilibrium state u*, at most one of the components ut of u* may satisfy: Proof of Theorem 3. 9 '( u *) > --. A, - a+ 1 Theorem 3 is obtained by proving the following three lemmas. Lemma 1: Given any asymptotically stable equilibrium state u*, we always have for all i and j such that i # j : g'(u~) + g'(u~) Ja 2 (g'(un - g'(ujn 2 + 4g'(ung'(uj) A> a '2 J + 2. (4) Proof of Lemma l. System (1) can be linearized around any equilibrium state u* : d(u ~ u*) ~ L(u*)(u _ u*), where L(u*) = T diag (g'(ui),...,g'( un» - AI. A necessary and sufficient condition for the asymptotic stability of u* is for L(u*) to be negative definite. A necessary condition for L(u*) to be negative definite is for all 2 X 2 matrices Lij(U*) of the type * (ag'(u~)-a -g'(u~») Lij(U ) = -g,'(ut) ag'(uj):'- A ' (i # j) to be negative definite. This results from an infinitesimal perturbation of components i and j only. Any matrix Lij (u*) has two real eigenvalues. Since the largest one has to be negative, we obtain: ~ (ag'(ui) - A + ag'(uj) - A + Ja 2 (g'(ut) - g'(ujn '(Ut)g'(Uj») < 0.
5 638 Majani, Erlan80n and Abu-Mostafa Lemma 2: Equation (4) implies: min (g'(u:),g'(u1)) < 2-1. a+ (5) Proof of Lemma 2. Consider the function h of three variables:,, * _ g'(u;) + g'(u;) va 2 (g'(u;) - g'(u;))2 + 4g'(u;)g'(uj) h (a,g (ua),g (Uj)) - a If we differentiate h with respect to its third variable g'(uj), we obtain: {)h (a, g'(ut), g'(uj)) = ~ + {)g'(uj) a2g'(uj) + (2 - a2)g'(ut) 2 2va2 (g'(un-g'(uj))2 +4g'(ung'(uj) which can be shown to be positive if and only if a > -1. But since lal < 1, then if g'(u;) < g'(uj) (without loss of generality), we have: h (a,g'(ui),g'(u1)) > h(a,g'(ui),g'(ui)) = (a+ 1)g'(ut), which, with (4), yields: which yields Lemma 2. Lemma 3: If for all i # j, 9 '( Us *) < --1' A a+ min (g'(ut),g'(u1)) < 2-1, a+ then there can be at most one ui such that: Proof of Lemma 3. A g'(u~) > --. I - a+ 1 Let us assume there exists a pair (ui, uj) with i # j such that g'( ut) > 0;1 and g'(uj) > 0;1' then (5) would be violated. I
6 On the K-Winners-Take-All Network 639 IV-2. STABLE EQUILmRIUM STATES From Theorem 3, all stable equilibrium states of type I have exactly one component, (at least one and at most one) such that g' (,) ~ 0; l' Let N + be the number of components a with g'(a) < 0;1 and a > 0, and let N_ be the number of components (3 with g'(f3) < 0;1 and f3 < 0 (note that N+ + N_ + 1 = N). For a large enough gain G, g(a) and g(f3) can be made arbitrarily close to +1 and -1 respectively. Using Theorem 2, and assuming a large enough gain, we obtain: -1 < N + - K < O. N + and K being integers, there is therefore no stable equilibrium state of type I. For the equilibrium states of type II, we have for all i, ut = a(> 0) or f3( < 0) where g'(a) < 0~1 and g'(f3) < 0;1' For a large enough gain, g(a) and g(f3) can be made arbitrarily close to +1 and -1 respectively. Using theorem 2 and assuming a large enough gain, we obtain: -(a + 1) < 2(N+ - K) < (a + 1), which yields N+ = K. Let us now summarize our results in the following theorem: Theorem 4: For a large enough gain, the only possible asymptotically stable equilibrium states u of (1) must have K components equal to a > 0 and N - K components equal to f3 < 0, with { ( ) -...L + K(g(a)-g(p)-2)+N(1+g(P» g a a 0+1, g({3) -...Lf3 + K(g(a)-g(p)-2)+N(1+g(,8» Since we are guaranteed to have at least one stable equilibrium state (Hopfield-84), and since any state whose components are a permutation of the components of a stable equilibrium state, is clearly a stable equilibrium state, then we have: Theorem 5: There exist at least (~) stable equilibrium states as defined in Theorem 4. They correspond to the (~) different states obtained by the N! permutations of one stable state with K positive components and N - K positive components. (7) v - THE DYNAMICS OF THE KWTA NETWORK Now that we know the characteristics of the stable equilibrium states of the KWTA Network, we need to show that the KWTA Network will converge to the stable state which has a > 0 in the positions of the K largest initial components. This can be seen clearly by observing that for all i ;/; j : d(u' - u ) C 'dt J =.>t(ui- uj)+(a+1)(g(ui)-g(uj». If at some time T, ui(t) = uj(t), then one can show that Vt, Ui(t) = Uj(t). Therefore, for all i ;/; j, Ui(t) - Uj(t) always keeps the same sign. This leads to the following theorem.
7 640 Majani, Erlan80n and Abu-Mostafa Theorem 6: (Preservation of order) For all nodes i # j, We shall now summarize the results of the last two sections. Theorem 7: Given an initial state u-(o) and a gain G large enough, the KWTA Network will converge to a stable equilibrium state with K components equal to a positive real number (Q > 0) in the positions of the K largest initial components, and N - K components equal to a negative real number (13 < 0) in all other N - K positions. This can be derived directly from Theorems 4, 5 and 6: we know the form of all stable equilibrium states, the order of the initial node states is preserved through time, and there is guaranteed convergence to an equilibrium state. VI - DISCUSSION The well-known Winner-Take-All Network is obtained by setting K to 1. The N/2-Winners-Take-All Network, given a set gf N real numbers, identifies which numbers are above or below the mediail~ This task is slightly more complex computationally (~ O(N log(n» than that of the Winner-Take-All (~ O(N». The number of stable states is much larger, ( N) 2N N/2 ~ J21rN' i.e., asymptotically exponential in the size of the network. Although the number of connection weights is N2, there exists an alternate implementation of the KWTA Network which has O(N) connections (see Figure 2). The sum of the outputs of all nodes and the external input is computed, then negated and fed back to all the nodes. In addition, a positive self-connection (a + 1) is needed at every node. The analysis was done for a "large enough" gain G. In practice, the critical value of Gis a~i for the N/2-Winners-Take-All Network, and slightly higher for K # N/2. Also, the analysis was done for an arbitrary value of the self-connection weight a (Ial < 1). In general, if a is close to +1, this will lead to faster convergence and a smaller value of the critical gain than if a is close to -1.
8 On the K-Winners-Take-All Network 641 VII - CONCLUSION The KWTA Network lets all nodes compete until the desired number of winners (K) is obtained. The competition is ibatained by using mutual inhibition between all nodes, while the number of winners K is selected by setting all external inputs to 2K - N. This paper illustrates the capability of the continuous Hopfield Network to solve exactly an interesting decision problem, i.e., identifying the K largest of N real numbers. Acknowledgments The authors would like to thank John Hopfield and Stephen DeWeerth from the California Institute of Technology and Marvin Perlman from the Jet Propulsion Laboratory for insightful discussions about material presented in this paper. Part of the research described in this paper was performed at the Jet Propulsion Laboratory under contract with NASA. References J.A. Feldman, D.H. Ballard, "Connectionist Models and their properties," Cognitive Science, Vol. 6, pp , 1982 S. Grossberg, "Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks," Studies in Applied Mathematics, Vol. LII (52), No.3, pp , September 1973 S. Grossberg, "Non-Linear Neural Networks: Principles, Mechanisms, and Architectures," Neural Networks, Vol. 1, pp , 1988 J.J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons," Proc. Natl. Acad. Sci. USA, Vol. 81, pp , May 1984 J. Lazzaro, S. Ryckebusch, M.A. Mahovald, C.A. Mead, "Winner-Take-All Networks of O(N) Complexity," in this volume, 1989 R.P. Lippman, B. Gold, M.L. Malpass, "A Comparison of Hamming and Hopfield Neural Nets for Pattern Classification," MIT Lincoln Lab. Tech. Rep. TR-769, 21 May 1987
9 642 Majani, Erlanson and Abu-Mostafa u,1 /, Fj gure 1; I ntersecti on of si gmoj d and line, a+1 N-2K Figure 2; An Implementation of the KWTA Network,
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
WINNER-TAKE-ALL ABSTRACT
703 WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 ABSTRACT We have designed, fabricated, and
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
Chapter 7. Lyapunov Exponents. 7.1 Maps
Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average
About the inverse football pool problem for 9 games 1
Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute
Models of Cortical Maps II
CN510: Principles and Methods of Cognitive and Neural Modeling Models of Cortical Maps II Lecture 19 Instructor: Anatoli Gorchetchnikov dy dt The Network of Grossberg (1976) Ay B y f (
Lecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
A New Nature-inspired Algorithm for Load Balancing
A New Nature-inspired Algorithm for Load Balancing Xiang Feng East China University of Science and Technology Shanghai, China 200237 Email: xfeng{@ecusteducn, @cshkuhk} Francis CM Lau The University of
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:
THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
Notes on Symmetric Matrices
CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.
OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek
Two classes of ternary codes and their weight distributions
Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions
Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Recurrent Neural Networks
Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time
Note on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Reaction diffusion systems and pattern formation
Chapter 5 Reaction diffusion systems and pattern formation 5.1 Reaction diffusion systems from biology In ecological problems, different species interact with each other, and in chemical reactions, different
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
Chapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department
1 Formulating The Low Degree Testing Problem
6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIX-EXPONENTIAL DISTRIBUTIONS
Stochastic Models, 22:289 317, 2006 Copyright Taylor & Francis Group, LLC ISSN: 1532-6349 print/1532-4214 online DOI: 10.1080/15326340600649045 SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL
6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
An example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
Fixed Point Theorems
Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Local periods and binary partial words: An algorithm
Local periods and binary partial words: An algorithm F. Blanchet-Sadri and Ajay Chriscoe Department of Mathematical Sciences University of North Carolina P.O. Box 26170 Greensboro, NC 27402 6170, USA E-mail:
The Relation between Two Present Value Formulae
James Ciecka, Gary Skoog, and Gerald Martin. 009. The Relation between Two Present Value Formulae. Journal of Legal Economics 15(): pp. 61-74. The Relation between Two Present Value Formulae James E. Ciecka,
SMT 2014 Algebra Test Solutions February 15, 2014
1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
Peak load reduction for distributed backup scheduling
Peak load reduction for distributed backup scheduling Peter van de Ven joint work with Angela Schörgendorfer (Google) and Bo Zhang (IBM Research) 2002-2007 2014-2007-2011 2011-2014 2006-2007 My research
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
Manipulability of the Price Mechanism for Data Centers
Manipulability of the Price Mechanism for Data Centers Greg Bodwin 1, Eric Friedman 2,3,4, and Scott Shenker 3,4 1 Department of Computer Science, Tufts University, Medford, Massachusetts 02155 2 School
1 A duality between descents and connectivity.
The Descent Set and Connectivity Set of a Permutation 1 Richard P. Stanley 2 Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA [email protected] version of 16 August
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
A Passivity Measure Of Systems In Cascade Based On Passivity Indices
49th IEEE Conference on Decision and Control December 5-7, Hilton Atlanta Hotel, Atlanta, GA, USA A Passivity Measure Of Systems In Cascade Based On Passivity Indices Han Yu and Panos J Antsaklis Abstract
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1
LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 Henrik Niemann Jakob Stoustrup Mike Lind Rank Bahram Shafai Dept. of Automation, Technical University of Denmark, Building 326, DK-2800 Lyngby, Denmark
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
Linear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable
Chapter 1 A Pri Characterization of T m e Pairs w in Proceedings NCUR V. (1991), Vol. I, pp. 362{366. Jerey F. Gold Department of Mathematics, Department of Physics University of Utah DonH.Tucker Department
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
MATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION
TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the
OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
Network Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
A Network Flow Approach in Cloud Computing
1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
Bargaining Solutions in a Social Network
Bargaining Solutions in a Social Network Tanmoy Chakraborty and Michael Kearns Department of Computer and Information Science University of Pennsylvania Abstract. We study the concept of bargaining solutions,
A power series about x = a is the series of the form
POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to
Hydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
RINGS WITH A POLYNOMIAL IDENTITY
RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College
Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: [email protected] Ashish Tiwari
ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE
i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
