Experiences of numerical simulations on a PC cluster Antti Vanne December 11, 2002
|
|
|
- Ashlyn Horn
- 9 years ago
- Views:
Transcription
1 xperiences of numerical simulations on a P cluster xperiences of numerical simulations on a P cluster ecember
2 xperiences of numerical simulations on a P cluster Introduction eowulf concept Using commodity off the shelf hardware to build a massively parallel computer Nodes run in a dedicated network only one node master node is connected to the LN igure Nodes run open source software Linux rees OS PVM MPI irst eowulf node X in at the enter of xcellence in Space ata and Information Sciences SIS
3 xperiences of numerical simulations on a P cluster eowulf network configuration LN HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIH JIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJIJ KIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIKIK LILILILILILILILILILILILILILILILILILILILIL MIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIM NININININININININININININININININININININ OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO PIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIP QIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQIQ RIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIRIR SISISISISISISISISISISISISISISISISISISISIS TITITITITITITITITITITITITITITITITITITITIT UIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIU VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIV WIWIWIWIWIWIWIWIWIWIWIWIWIWIWIWIWIWIWIWIW XIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIXIX YIYIYIYIYIYIYIYIYIYIYIYIYIYIYIYIYIYIYIYIY ZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZIZ [I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[I[ \I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\ ]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I]I] ^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^ _I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_ ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ` Hub thernet
4 xperiences of numerical simulations on a P cluster Hardware x ujitsusiemens Primergy Servers with one Hz Pentium processor node Memory master node MHz SRM slave nodes MHz SRM Storage SSI disk in the master node Network Intel TXPIX igabit copper ethernet NIs Switch HP Procurve L with two T L modules igabit ethernet
5 xperiences of numerical simulations on a P cluster Software OS Linux pre kernel OpenS a Redhat derivative Slave nodes are diskless startup is done via PX and OS is on NS easy to maintain and upgrade MPIH Message Passing Interface MPI implementation callable from ortran and Job scheduling NU Queue luster monitoring anglia luster Toolkit cc c and bsoft compilers
6 xperiences of numerical simulations on a P cluster anglia luster Toolkit luster view
7 xperiences of numerical simulations on a P cluster Mathematical software tlas LS Lapack sequential linear algebra libraries ScaLPK and PLS Parallel versions subsets of LS and Lapack ense and band matrices supported Petsc P solver includes basic matrix algebra operations and linear and nonlinear equation solvers supports both sparse and dense matrices eatures also interfaces to several other packages SuperLU Matlab oth Petsc and Scalapack use MPI library for communications
8 xperiences of numerical simulations on a P cluster Writing parallel code More or less complicated than sequential code depending on the used library MPI write everything from scratch Highlevel libraries Petsc ScaLPK libraries take care of the data distribution and communication Tradeoff between development time and execution time
9 xperiences of numerical simulations on a P cluster ode example Matlab versus Petsc called from for iint TiiMTiidtT_aMduiiˆ TiiU\L\Tii end for i int i { MatMult pu[i] tmpn ui VecPointwiseMulttmpN tmpn tmpn uiˆ MatMultM tmpn tmpn Muiˆ VecXPYdt dt T_a tmpn dtt_a Muiˆ MatMultddM pt[i] tmpn pt[i] Ti MT dtt_a Muiˆ SLSSolveslesL pt[i] tmpn int its SLSSolveslesU tmpn pt[i] int its }
10 xperiences of numerical simulations on a P cluster Performance epends heavily on application Imbalances in data distribution among the nodes result in surprising calculation times Parallel versions of three different numerical simulations bioheat transfer equation using M aerosol size distribution estimation using SIRfilter and ultrasound wavefield simulation using ultra weak variational formulation uwvf
11 xperiences of numerical simulations on a P cluster ioheat equation solver using M computation domain and thermal dose y m Ω I Ω II Ω III Ω IV x m
12 xperiences of numerical simulations on a P cluster ioheat equation solver using M calculation times N N N N t s t s of processors of nodes x
13 xperiences of numerical simulations on a P cluster erosol size estimation SIRfilter calculation times t s t s of processors of particles in SIR x
14 xperiences of numerical simulations on a P cluster Helmholtz UWV solver domain consisting of tetrahedra fkhz t s UWV p of processors
15 xperiences of numerical simulations on a P cluster onclusions eowulf clusters are costeffective alternatives to traditional parallel computers for memorybound problems Network latency is TH problem for matrix calculations Special NIs Myrinet SI latencies compare to b ethernet latency cost typically more than per node heaper option for low bandwidth network could be I b irewire for small or middlesize clusters or easily parallelizing problems clusters of nondedicated desktop computers can be used
Mathematical Libraries on JUQUEEN. JSC Training Course
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries on JUQUEEN JSC Training Course May 10, 2012 Outline General Informations Sequential Libraries, planned Parallel Libraries and Application Systems:
Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin. http://www.dell.com/clustering
Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin Reza Rooholamini, Ph.D. Director Enterprise Solutions Dell Computer Corp. [email protected] http://www.dell.com/clustering
Cluster Implementation and Management; Scheduling
Cluster Implementation and Management; Scheduling CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Cluster Implementation and Management; Scheduling Spring 2013 1 /
CMS Tier-3 cluster at NISER. Dr. Tania Moulik
CMS Tier-3 cluster at NISER Dr. Tania Moulik What and why? Grid computing is a term referring to the combination of computer resources from multiple administrative domains to reach common goal. Grids tend
Mathematical Libraries and Application Software on JUROPA and JUQUEEN
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUROPA and JUQUEEN JSC Training Course May 2014 I.Gutheil Outline General Informations Sequential Libraries Parallel
Improved LS-DYNA Performance on Sun Servers
8 th International LS-DYNA Users Conference Computing / Code Tech (2) Improved LS-DYNA Performance on Sun Servers Youn-Seo Roh, Ph.D. And Henry H. Fong Sun Microsystems, Inc. Abstract Current Sun platforms
Recommended hardware system configurations for ANSYS users
Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range
The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation
The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation Mark Baker, Garry Smith and Ahmad Hasaan SSE, University of Reading Paravirtualization A full assessment of paravirtualization
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Building an Inexpensive Parallel Computer
Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University
Cluster Computing at HRI
Cluster Computing at HRI J.S.Bagla Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019. E-mail: [email protected] 1 Introduction and some local history High performance computing
Are Blade Servers Right For HEP?
Are Blade Servers Right For HEP? Rochelle Lauer Yale University Physics Department [email protected] c 2002 Rochelle Lauer:1 Outline Blade Server Evaluation Why and How The HP BL Blade Servers The
MOSIX: High performance Linux farm
MOSIX: High performance Linux farm Paolo Mastroserio [[email protected]] Francesco Maria Taurino [[email protected]] Gennaro Tortone [[email protected]] Napoli Index overview on Linux farm farm
PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN
1 PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN Introduction What is cluster computing? Classification of Cluster Computing Technologies: Beowulf cluster Construction
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
Linux clustering. Morris Law, IT Coordinator, Science Faculty, Hong Kong Baptist University
Linux clustering Morris Law, IT Coordinator, Science Faculty, Hong Kong Baptist University PII 4-node clusters started in 1999 PIII 16 node cluster purchased in 2001. Plan for grid For test base HKBU -
Best practices for efficient HPC performance with large models
Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,
Analysis and Implementation of Cluster Computing Using Linux Operating System
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661 Volume 2, Issue 3 (July-Aug. 2012), PP 06-11 Analysis and Implementation of Cluster Computing Using Linux Operating System Zinnia Sultana
Lecture 1: the anatomy of a supercomputer
Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers of the future may have only 1,000 vacuum tubes and perhaps weigh 1½ tons. Popular Mechanics, March 1949
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
LS DYNA Performance Benchmarks and Profiling. January 2009
LS DYNA Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center The
- An Essential Building Block for Stable and Reliable Compute Clusters
Ferdinand Geier ParTec Cluster Competence Center GmbH, V. 1.4, March 2005 Cluster Middleware - An Essential Building Block for Stable and Reliable Compute Clusters Contents: Compute Clusters a Real Alternative
Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
Cluster Computing in a College of Criminal Justice
Cluster Computing in a College of Criminal Justice Boris Bondarenko and Douglas E. Salane Mathematics & Computer Science Dept. John Jay College of Criminal Justice The City University of New York 2004
Introduction to Linux and Cluster Basics for the CCR General Computing Cluster
Introduction to Linux and Cluster Basics for the CCR General Computing Cluster Cynthia Cornelius Center for Computational Research University at Buffalo, SUNY 701 Ellicott St Buffalo, NY 14203 Phone: 716-881-8959
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Chapter 7: Distributed Systems: Warehouse-Scale Computing. Fall 2011 Jussi Kangasharju
Chapter 7: Distributed Systems: Warehouse-Scale Computing Fall 2011 Jussi Kangasharju Chapter Outline Warehouse-scale computing overview Workloads and software infrastructure Failures and repairs Note:
Copyright 1999-2011 by Parallels Holdings, Ltd. All rights reserved.
Parallels Virtuozzo Containers 4.0 for Linux Readme Copyright 1999-2011 by Parallels Holdings, Ltd. All rights reserved. This document provides the first-priority information on Parallels Virtuozzo Containers
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
VTrak 15200 SATA RAID Storage System
Page 1 15-Drive Supports over 5 TB of reliable, low-cost, high performance storage 15200 Product Highlights First to deliver a full HW iscsi solution with SATA drives - Lower CPU utilization - Higher data
Cloud Computing through Virtualization and HPC technologies
Cloud Computing through Virtualization and HPC technologies William Lu, Ph.D. 1 Agenda Cloud Computing & HPC A Case of HPC Implementation Application Performance in VM Summary 2 Cloud Computing & HPC HPC
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department
FLOW-3D Performance Benchmark and Profiling. September 2012
FLOW-3D Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: FLOW-3D, Dell, Intel, Mellanox Compute
Overlapping Data Transfer With Application Execution on Clusters
Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm [email protected] [email protected] Department of Computer Science Department of Electrical and Computer
HPC Software Requirements to Support an HPC Cluster Supercomputer
HPC Software Requirements to Support an HPC Cluster Supercomputer Susan Kraus, Cray Cluster Solutions Software Product Manager Maria McLaughlin, Cray Cluster Solutions Product Marketing Cray Inc. WP-CCS-Software01-0417
System Requirements G E N E R A L S Y S T E M R E C O M M E N D A T I O N S
System Requirements General Requirements These requirements are common to all platforms: A DVD drive for installation. If you need to install the software using CD-ROM media, please contact your local
CATS-i : LINUX CLUSTER ADMINISTRATION TOOLS ON THE INTERNET
CATS-i : LINUX CLUSTER ADMINISTRATION TOOLS ON THE INTERNET Jiyeon Kim, Yongkwan Park, Sungjoo Kwon, Jaeyoung Choi {heaven, psiver, lithmoon}@ss.ssu.ac.kr, [email protected] School of Computing, Soongsil
1. Simulation of load balancing in a cloud computing environment using OMNET
Cloud Computing Cloud computing is a rapidly growing technology that allows users to share computer resources according to their need. It is expected that cloud computing will generate close to 13.8 million
Using the Windows Cluster
Using the Windows Cluster Christian Terboven [email protected] aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster
Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015
Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015 Xian Shi 1 bio I am a second-year Ph.D. student from Combustion Analysis/Modeling Lab,
Introduction to High Performance Cluster Computing. Cluster Training for UCL Part 1
Introduction to High Performance Cluster Computing Cluster Training for UCL Part 1 What is HPC HPC = High Performance Computing Includes Supercomputing HPCC = High Performance Cluster Computing Note: these
Building a Top500-class Supercomputing Cluster at LNS-BUAP
Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad
Performance Guide. 275 Technology Drive ANSYS, Inc. is Canonsburg, PA 15317. http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494
Performance Guide ANSYS, Inc. Release 12.1 Southpointe November 2009 275 Technology Drive ANSYS, Inc. is Canonsburg, PA 15317 certified to ISO [email protected] 9001:2008. http://www.ansys.com (T) 724-746-3304
A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures
11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the
Logically a Linux cluster looks something like the following: Compute Nodes. user Head node. network
A typical Linux cluster consists of a group of compute nodes for executing parallel jobs and a head node to which users connect to build and launch their jobs. Often the compute nodes are connected to
Power-Aware High-Performance Scientific Computing
Power-Aware High-Performance Scientific Computing Padma Raghavan Scalable Computing Laboratory Department of Computer Science Engineering The Pennsylvania State University http://www.cse.psu.edu/~raghavan
Storage Virtualization from clusters to grid
Seanodes presents Storage Virtualization from clusters to grid Rennes 4th october 2007 Agenda Seanodes Presentation Overview of storage virtualization in clusters Seanodes cluster virtualization, with
Building a Private Cloud with Eucalyptus
Building a Private Cloud with Eucalyptus 5th IEEE International Conference on e-science Oxford December 9th 2009 Christian Baun, Marcel Kunze KIT The cooperation of Forschungszentrum Karlsruhe GmbH und
HP Smart Array Controllers and basic RAID performance factors
Technical white paper HP Smart Array Controllers and basic RAID performance factors Technology brief Table of contents Abstract 2 Benefits of drive arrays 2 Factors that affect performance 2 HP Smart Array
Parallels Plesk Automation
Parallels Plesk Automation Contents Compact Configuration: Linux Shared Hosting 3 Compact Configuration: Mixed Linux and Windows Shared Hosting 4 Medium Size Configuration: Mixed Linux and Windows Shared
Building Clusters for Gromacs and other HPC applications
Building Clusters for Gromacs and other HPC applications Erik Lindahl [email protected] CBR Outline: Clusters Clusters vs. small networks of machines Why do YOU need a cluster? Computer hardware Network
P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE
1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France
Efficient Load Balancing using VM Migration by QEMU-KVM
International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert
Mitglied der Helmholtz-Gemeinschaft JUROPA Linux Cluster An Overview 19 May 2014 Ulrich Detert JuRoPA JuRoPA Jülich Research on Petaflop Architectures Bull, Sun, ParTec, Intel, Mellanox, Novell, FZJ JUROPA
Stateless Compute Cluster
5th Black Forest Grid Workshop 23rd April 2009 Stateless Compute Cluster Fast Deployment and Switching of Cluster Computing Nodes for easier Administration and better Fulfilment of Different Demands Dirk
Configuring and Launching ANSYS FLUENT 16.0 - Distributed using IBM Platform MPI or Intel MPI
Configuring and Launching ANSYS FLUENT 16.0 - Distributed using IBM Platform MPI or Intel MPI Table of Contents BEFORE YOU PROCEED... 1 Launching FLUENT Using Shared Memory... 2 Configuring FLUENT to run
benchmarking Amazon EC2 for high-performance scientific computing
Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received
Computing Service Provision in P2P Clouds
Computing Service Provision in P2P Clouds Ghislain FOUODJI TASSE Supervisor: DR. Karen BRADSHAW Department of Computer Science Rhodes University Research Statement Leverage advantages of cloud computing
GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources
GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources Jack Dongarra University of Tennessee and Oak Ridge National Laboratory 2/25/2006 1 Overview Grid/NetSolve
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage
White Paper Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage A Benchmark Report August 211 Background Objectivity/DB uses a powerful distributed processing architecture to manage
SOFTWARE TECHNOLOGIES
SOFTWARE TECHNOLOGIES (September 2, 2015) BUS3500 - Abdou Illia, Fall 2015 1 LEARNING GOALS Identify the different types of systems software. Explain the main functions of operating systems. Know the various
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
Cloud Storage. Parallels. Performance Benchmark Results. White Paper. www.parallels.com
Parallels Cloud Storage White Paper Performance Benchmark Results www.parallels.com Table of Contents Executive Summary... 3 Architecture Overview... 3 Key Features... 4 No Special Hardware Requirements...
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Cluster performance, how to get the most out of Abel. Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013
Cluster performance, how to get the most out of Abel Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013 Introduction Architecture x86-64 and NVIDIA Compilers MPI Interconnect Storage Batch queue
MPI / ClusterTools Update and Plans
HPC Technical Training Seminar July 7, 2008 October 26, 2007 2 nd HLRS Parallel Tools Workshop Sun HPC ClusterTools 7+: A Binary Distribution of Open MPI MPI / ClusterTools Update and Plans Len Wisniewski
IOS110. Virtualization 5/27/2014 1
IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to
CS 294-73 (CCN 27156) CS 194-73 (CCN 26880) Software Engineering for Scientific Computing. Lecture 1: Introduction
CS 294-73 (CCN 27156) CS 194-73 (CCN 26880) Software Engineering for Scientific Computing http://www.eecs.berkeley.edu/~colella/cs294fall2015/ [email protected] [email protected] Lecture 1: Introduction
Easier - Faster - Better
Highest reliability, availability and serviceability ClusterStor gets you productive fast with robust professional service offerings available as part of solution delivery, including quality controlled
Installing & Using KVM with Virtual Machine Manager COSC 495
Installing & Using KVM with Virtual Machine Manager COSC 495 1 Abstract:. There are many different hypervisors and virtualization software available for use. One commonly use hypervisor in the Linux system
Getting Started with HC Exchange Module
Getting Started with HC Exchange Module HOSTING CONTROLLER WWW.HOSTINGCONROLLER.COM HOSTING CONTROLLER Contents Introduction...1 Minimum System Requirements for Exchange 2013...1 Hardware Requirements...1
Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer
Res. Lett. Inf. Math. Sci., 2003, Vol.5, pp 1-10 Available online at http://iims.massey.ac.nz/research/letters/ 1 Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer
The CNMS Computer Cluster
The CNMS Computer Cluster This page describes the CNMS Computational Cluster, how to access it, and how to use it. Introduction (2014) The latest block of the CNMS Cluster (2010) Previous blocks of the
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Microsoft Windows Server 2003 with Internet Information Services (IIS) 6.0 vs. Linux Competitive Web Server Performance Comparison
April 23 11 Aviation Parkway, Suite 4 Morrisville, NC 2756 919-38-28 Fax 919-38-2899 32 B Lakeside Drive Foster City, CA 9444 65-513-8 Fax 65-513-899 www.veritest.com [email protected] Microsoft Windows
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
