Testing Carlo Cipolla's Laws of Human Stupidity with Agent Based Modeling
|
|
|
- Liliana Brown
- 10 years ago
- Views:
Transcription
1 Testing Carlo Cipolla's Laws of Human Stupidity with Agent Based Modeling Andrea G. B. Tettamanzi and Célia da Costa Pereira Université Nice Sophia Antipolis, I3S, UMR Sophia Antipolis, France 1
2 Research Question C. Cipolla. The Basic Laws of Human Stupidity. Il Mulino, Tongue-in-cheek, but in most cultures humor is a way to tell truths that hurt without breaking social norms. If taken seriously, Cipolla's theory should enable us to make falsifiable claims. We consider Darwin's theory of evolution well corroborated. Is Cipolla's theory of human stupidity compatible with Darwin's theory of evolution? Under which assumptions do the two theories not contradict each other? We use agent-based simulation to answer these questions. 2
3 Cipolla's Theory of Human Stupidity Stupidity is the main obstacle to welfare in human societies Why is stupidity so powerful and hard to act against? Abstract model of a human agent's social behavior: X: average gain (loss) agent obtains for its actions Y: average gain (loss) agent causes to other agents with its actions H I S B 3
4 Cipolla's Five Laws of Human Stupidity 1. Any numerical estimate of the fraction σ of stupid people always and inevitably turns out to be an underestimate 2. The probability that a given person be stupid is independent of any other characteristic of that person 3. A stupid person is a person who causes losses to other persons while himself deriving no gain and even possibly incurring a loss 4. Non-stupid people always underestimate the damaging power of stupid individuals 5. A stupid person is the most dangerous type of person 4
5 Critique A consequence of Cipolla's 1 st and 2 nd laws is that stupid people must be an overwhelming majority of any sample population Apparent contradiction with Darwinian natural selection: Stupid and helpless people should have a competitive disadvantage vis-à-vis more opportunistic individuals In the log run, one would expect rational individuals (= intelligent + bandits) to take over the entire population Possible explanatory hypotheses (to test): Damages stupid people cause to others neutralize selection Stupid people are more resilient to damages inflicted by others The observed fraction is the effect of particular initial conditions Etc... 5
6 An Agent-Based Model Agent behavior governed by a bivariate normal PD Agents are individuals of an evolutionary algorithm Agents' genome: Agents in the initial population have a wealth of 100 Death when wealth < 0; asexual division when wealth > 200 Agent interaction cycle (= 1 simulation period): active agent randomly selected from the population passive agent randomly selected from the remaining agents <x, y> randomly extracted form the active agent's PD Active agent's wealth updated according to x Passive agent's wealth updated according to y 6
7 Wealth Distribution In general, not a zero-sum game: If most agents act intelligently, the population will enjoy an overall wealth increase If most agents act stupidly, the overall welfare of the population will decrease and nothing prevents it from becoming extinct One may enforce a zero-sum game by redistributing net wealth surplus or loss proportionally to all the agents in the population 7
8 Wealth Transfer Linear Logarithmic Hyperbolic 8
9 Defense To model the fact that rational agents know better Rational agents are able to build defenses against bandits (but not against stupid agents, by Cipolla's 4 th and 5 th laws) In an interaction, if the active agent is behaving like a bandit (i.e., x > 0 and y < 0), both x and y are discounted by multiplying them by a defense factor 1 - δ. 9
10 Relativized Effects of an Interaction To model the hypothesis that stupid agents are more resilient than others to damages inflicted by their peers The x and y effects of an interaction are relativized with respect to the μ x of the receiving agent (be it active or passive) The active agent's wealth will be updated according to The passive agent's wealth will be updated according to 10
11 Initial Distribution all stupid deleterious 11
12 Experimental Protocol We tried all combinations of the following parameters Initial distribution: i = all stupid deleterious Transfer function: f = linear logarithmic hyperbolic Defense: d = off on Relativized effects: r = off on Zero-sum game: z = off on This gives a total of 72 combinations We code-name combinations as strings of parameters: - Example: ia-flin-d-r-z Initial population: 1,000 agents. Max population: 10,000 agents Simulation length: 1,000,000 periods 12
13 Results A first inspection of the final distributions reveals the following: Relativization of the effects is critical to the survival and proliferation of stupid agents Restricting our attention to runs with r = on, the most promising distributions may be observed when a zero-sum game is enforced The only setting which results in a preponderance of stupid agents from a neutral initial distribution is ia-flin-d-r-z, with defense turned on An initial distribution biased toward stupid agents appears to favor the prevalence of stupid agents in the final distribution Overall, eight parameter settings achieved a final distribution featuring a majority of stupid agents. 13
14 Evolution of Population Composition ia-flin-d-r-z is-fhyp-r id-flin-r-z 14
15 Simulation ia-flin-d-r-z Final distribution Final wealth distribution Population size 15
16 Conclusion Some of the parameter settings we have tried led to emergent behaviors quite in line with Carlo Cipolla's theory One parameter setting, in particular, namely ia-flin-d-r-z, looks like a very promising first approximation of Cipolla's laws Zero-sum game enforcement appears to be critical. This is not obvious and calls for an explanation The subjective utility of the agents is somehow relative to the welfare of their peers (envy?) Ours is just a first step. Future work may include: sexual reproduction, different propensities to reproduce, etc. Applications: traffic jams, crowd movements, markets bubbles 16
AP STATISTICS (Warm-Up Exercises)
AP STATISTICS (Warm-Up Exercises) 1. Describe the distribution of ages in a city: 2. Graph a box plot on your calculator for the following test scores: {90, 80, 96, 54, 80, 95, 100, 75, 87, 62, 65, 85,
Asexual Versus Sexual Reproduction in Genetic Algorithms 1
Asexual Versus Sexual Reproduction in Genetic Algorithms Wendy Ann Deslauriers ([email protected]) Institute of Cognitive Science,Room 22, Dunton Tower Carleton University, 25 Colonel By Drive
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
The Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small
Optimal Replacement of Underground Distribution Cables
1 Optimal Replacement of Underground Distribution Cables Jeremy A. Bloom, Member, IEEE, Charles Feinstein, and Peter Morris Abstract This paper presents a general decision model that enables utilities
. In this case the leakage effect of tax increases is mitigated because some of the reduction in disposable income would have otherwise been saved.
Chapter 4 Review Questions. Explain how an increase in government spending and an equal increase in lump sum taxes can generate an increase in equilibrium output. Under what conditions will a balanced
arxiv:1506.04135v1 [cs.ir] 12 Jun 2015
Reducing offline evaluation bias of collaborative filtering algorithms Arnaud de Myttenaere 1,2, Boris Golden 1, Bénédicte Le Grand 3 & Fabrice Rossi 2 arxiv:1506.04135v1 [cs.ir] 12 Jun 2015 1 - Viadeo
Sharing Online Advertising Revenue with Consumers
Sharing Online Advertising Revenue with Consumers Yiling Chen 2,, Arpita Ghosh 1, Preston McAfee 1, and David Pennock 1 1 Yahoo! Research. Email: arpita, mcafee, [email protected] 2 Harvard University.
arxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
Binomial trees and risk neutral valuation
Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Credit Lectures 26 and 27
Lectures 26 and 27 24 and 29 April 2014 Operation of the Market may not function smoothly 1. Costly/impossible to monitor exactly what s done with loan. Consumption? Production? Risky investment? Involuntary
Okami Study Guide: Chapter 3 1
Okami Study Guide: Chapter 3 1 Chapter in Review 1. Heredity is the tendency of offspring to resemble their parents in various ways. Genes are units of heredity. They are functional strands of DNA grouped
Evidence-Based Claims and Belief
Evidence-Based Claims and Belief Andrew P. Martin University of Colorado Copyright 2015 Contents Practical Overview 2 Pedagogical Overview 3 Learning Goals 4 Instructor Preparation Prior to Class 5 Description
Evaluating Trading Systems By John Ehlers and Ric Way
Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system
Sharing Online Advertising Revenue with Consumers
Sharing Online Advertising Revenue with Consumers Yiling Chen 2,, Arpita Ghosh 1, Preston McAfee 1, and David Pennock 1 1 Yahoo! Research. Email: arpita, mcafee, [email protected] 2 Harvard University.
Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15
Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
Server Load Prediction
Server Load Prediction Suthee Chaidaroon ([email protected]) Joon Yeong Kim ([email protected]) Jonghan Seo ([email protected]) Abstract Estimating server load average is one of the methods that
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
A New Interpretation of Information Rate
A New Interpretation of Information Rate reproduced with permission of AT&T By J. L. Kelly, jr. (Manuscript received March 2, 956) If the input symbols to a communication channel represent the outcomes
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
VI. Real Business Cycles Models
VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized
IS MORE INFORMATION BETTER? THE EFFECT OF TRADERS IRRATIONAL BEHAVIOR ON AN ARTIFICIAL STOCK MARKET
IS MORE INFORMATION BETTER? THE EFFECT OF TRADERS IRRATIONAL BEHAVIOR ON AN ARTIFICIAL STOCK MARKET Wei T. Yue Alok R. Chaturvedi Shailendra Mehta Krannert Graduate School of Management Purdue University
CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting
CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)
Alpha Cut based Novel Selection for Genetic Algorithm
Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can
BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract
BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple
GPSQL Miner: SQL-Grammar Genetic Programming in Data Mining
GPSQL Miner: SQL-Grammar Genetic Programming in Data Mining Celso Y. Ishida, Aurora T. R. Pozo Computer Science Department - Federal University of Paraná PO Box: 19081, Centro Politécnico - Jardim das
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
Appendix B Checklist for the Empirical Cycle
Appendix B Checklist for the Empirical Cycle This checklist can be used to design your research, write a report about it (internal report, published paper, or thesis), and read a research report written
Network Tomography and Internet Traffic Matrices
Network Tomography and Internet Traffic Matrices Matthew Roughan School of Mathematical Sciences 1 Credits David Donoho Stanford Nick Duffield AT&T Labs-Research Albert
Web Mining using Artificial Ant Colonies : A Survey
Web Mining using Artificial Ant Colonies : A Survey Richa Gupta Department of Computer Science University of Delhi ABSTRACT : Web mining has been very crucial to any organization as it provides useful
3 Price Discrimination
Joe Chen 26 3 Price Discrimination There is no universally accepted definition for price discrimination (PD). In most cases, you may consider PD as: producers sell two units of the same physical good at
Nominal and ordinal logistic regression
Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome
COLLECTIVE INTELLIGENCE: A NEW APPROACH TO STOCK PRICE FORECASTING
COLLECTIVE INTELLIGENCE: A NEW APPROACH TO STOCK PRICE FORECASTING CRAIG A. KAPLAN* iq Company (www.iqco.com) Abstract A group that makes better decisions than its individual members is considered to exhibit
MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group
MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could
A Programme Implementation of Several Inventory Control Algorithms
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume, No Sofia 20 A Programme Implementation of Several Inventory Control Algorithms Vladimir Monov, Tasho Tashev Institute of Information
MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE
Science Practices Standard SP.1: Scientific Questions and Predictions Asking scientific questions that can be tested empirically and structuring these questions in the form of testable predictions SP.1.1
Oscillations of the Sending Window in Compound TCP
Oscillations of the Sending Window in Compound TCP Alberto Blanc 1, Denis Collange 1, and Konstantin Avrachenkov 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France 2 I.N.R.I.A. 2004
MS. Structure, Function, and Information Processing
MIDDLE SCHOOL LIFE SCIENCE Alignment with National Science Standards Use the chart below to find Science A-Z units that best support the Next Generation Science Standards* for Middle School Life Science,
ACH 1.1 : A Tool for Analyzing Competing Hypotheses Technical Description for Version 1.1
ACH 1.1 : A Tool for Analyzing Competing Hypotheses Technical Description for Version 1.1 By PARC AI 3 Team with Richards Heuer Lance Good, Jeff Shrager, Mark Stefik, Peter Pirolli, & Stuart Card ACH 1.1
Pricing Alternative forms of Commercial Insurance cover
Pricing Alternative forms of Commercial Insurance cover Prepared by Andrew Harford Presented to the Institute of Actuaries of Australia Biennial Convention 23-26 September 2007 Christchurch, New Zealand
Chapter 3: The effect of taxation on behaviour. Alain Trannoy AMSE & EHESS
Chapter 3: The effect of taxation on behaviour Alain Trannoy AMSE & EHESS Introduction The most important empirical question for economics: the behavorial response to taxes Calibration of macro models
Trust, Reputation and Fairness in Online Auctions
Trust, Reputation and Fairness in Online Auctions Adam Wierzbicki 21/11/2006 Polish-Japanese Institute of Information Technology Plan of the talk Background Online auctions Trust management Reputation
Statistics for Retail Finance. Chapter 8: Regulation and Capital Requirements
Statistics for Retail Finance 1 Overview > We now consider regulatory requirements for managing risk on a portfolio of consumer loans. Regulators have two key duties: 1. Protect consumers in the financial
Classification Problems
Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems
Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.
Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e -(y -µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:
1 Portfolio Selection
COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with
Lecture notes on Moral Hazard, i.e. the Hidden Action Principle-Agent Model
Lecture notes on Moral Hazard, i.e. the Hidden Action Principle-Agent Model Allan Collard-Wexler April 19, 2012 Co-Written with John Asker and Vasiliki Skreta 1 Reading for next week: Make Versus Buy in
I. Basic concepts: Buoyancy and Elasticity II. Estimating Tax Elasticity III. From Mechanical Projection to Forecast
Elements of Revenue Forecasting II: the Elasticity Approach and Projections of Revenue Components Fiscal Analysis and Forecasting Workshop Bangkok, Thailand June 16 27, 2014 Joshua Greene Consultant IMF-TAOLAM
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Sampling Biases in IP Topology Measurements
Sampling Biases in IP Topology Measurements Anukool Lakhina with John Byers, Mark Crovella and Peng Xie Department of Boston University Discovering the Internet topology Goal: Discover the Internet Router
Using simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
3-6 Toward Realizing Privacy-Preserving IP-Traceback
3-6 Toward Realizing Privacy-Preserving IP-Traceback The IP-traceback technology enables us to trace widely spread illegal users on Internet. However, to deploy this attractive technology, some problems
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Financial Institutions I: The Economics of Banking
Financial Institutions I: The Economics of Banking Prof. Dr. Isabel Schnabel Gutenberg School of Management and Economics Johannes Gutenberg University Mainz Summer term 2011 V4 1/30 I. Introduction II.
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College
Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission
Principles of Evolution - Origin of Species
Theories of Organic Evolution X Multiple Centers of Creation (de Buffon) developed the concept of "centers of creation throughout the world organisms had arisen, which other species had evolved from X
CPO Science and the NGSS
CPO Science and the NGSS It is no coincidence that the performance expectations in the Next Generation Science Standards (NGSS) are all action-based. The NGSS champion the idea that science content cannot
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
Pearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
Introduction To Genetic Algorithms
1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: [email protected] References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization
Manual for SOA Exam MLC.
Chapter 4. Life Insurance. Extract from: Arcones Manual for the SOA Exam MLC. Fall 2009 Edition. available at http://www.actexmadriver.com/ 1/14 Level benefit insurance in the continuous case In this chapter,
Chi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
USING GENETIC ALGORITHM IN NETWORK SECURITY
USING GENETIC ALGORITHM IN NETWORK SECURITY Ehab Talal Abdel-Ra'of Bader 1 & Hebah H. O. Nasereddin 2 1 Amman Arab University. 2 Middle East University, P.O. Box: 144378, Code 11814, Amman-Jordan Email:
Investment Portfolio Management and Effective Asset Allocation for Institutional and Private Banking Clients
Investment Portfolio Management and Effective Asset Allocation for Institutional and Private Banking Clients www.mce-ama.com/2396 Senior Managers Days 4 www.mce-ama.com 1 WHY attend this programme? This
Financial Market Efficiency and Its Implications
Financial Market Efficiency: The Efficient Market Hypothesis (EMH) Financial Market Efficiency and Its Implications Financial markets are efficient if current asset prices fully reflect all currently available
Choice Under Uncertainty
Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange
Evolution (18%) 11 Items Sample Test Prep Questions
Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science
ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013
Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Théorie de la décision et théorie des jeux Stefano Moretti
héorie de la décision et théorie des jeux Stefano Moretti UMR 7243 CNRS Laboratoire d'analyse et Modélisation de Systèmes pour l'aide à la décision (LAMSADE) Université Paris-Dauphine email: [email protected]
Five Myths of Active Portfolio Management. P roponents of efficient markets argue that it is impossible
Five Myths of Active Portfolio Management Most active managers are skilled. Jonathan B. Berk 1 This research was supported by a grant from the National Science Foundation. 1 Jonathan B. Berk Haas School
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
Enriching the transport model of. the Rotterdam. region by cell phone data. MT-ITS Budapest, June 3 2015. Klaas Friso
Enriching the transport model of the Rotterdam region by cell phone data MT-ITS Budapest, June 3 2015 Klaas Friso New data technology. New capabilities Using traditional methods (like Household Travel
How to Write a Successful PhD Dissertation Proposal
How to Write a Successful PhD Dissertation Proposal Before considering the "how", we should probably spend a few minutes on the "why." The obvious things certainly apply; i.e.: 1. to develop a roadmap
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
A Quality of Service Scheduling Technique for Optical LANs
A Quality of Service Scheduling Technique for Optical LANs Panagiotis G. Sarigiannidis, Member, IEEE, Sophia G. Petridou, Member, IEEE, Georgios I. Papadimitriou, Senior Member, IEEE Department of Informatics
Demographic Implications for Capital Markets Euromoney Conference 2005 Rome, September 6
Demographic Implications for Capital Markets Euromoney Conference 2005 Rome, September 6 Stefan Schneider Chief International Economist Structure Demographic trends and their drivers Population dynamics
Dealing with Missing Data
Res. Lett. Inf. Math. Sci. (2002) 3, 153-160 Available online at http://www.massey.ac.nz/~wwiims/research/letters/ Dealing with Missing Data Judi Scheffer I.I.M.S. Quad A, Massey University, P.O. Box 102904
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma
Data Preparation and Statistical Displays
Reservoir Modeling with GSLIB Data Preparation and Statistical Displays Data Cleaning / Quality Control Statistics as Parameters for Random Function Models Univariate Statistics Histograms and Probability
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
The Kelly criterion for spread bets
IMA Journal of Applied Mathematics 2007 72,43 51 doi:10.1093/imamat/hxl027 Advance Access publication on December 5, 2006 The Kelly criterion for spread bets S. J. CHAPMAN Oxford Centre for Industrial
Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania
Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically
Inaugural Lecture. Jan Vecer
Inaugural Lecture Frankfurt School of Finance and Management March 22nd, 2012 Abstract In this talk we investigate the possibilities of adopting a profitable strategy in two games: betting on a roulette
