Arcane/ArcGeoSim, a software framework for geosciences simulation
|
|
|
- Juniper Gallagher
- 10 years ago
- Views:
Transcription
1 Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources Arcane/ArcGeoSim, a software framework for geosciences simulation Pascal Havé
2 Outline these are the questions. n Who are IFPEN? n What was our problem? n and our solution? n A solution but another problem? n Current activities. 2 ORAP Arcane/ArcGeoSim, a software framework for geosciences simulation November 5 th 2015
3 Vocation n IFPEN is a public research and training player (EPIC Etablissement Public à caractère Industriel et Commercial -- state-owned industrial and commercial establishment) Mission n n Growth in energy demand It has an international scope, covering the fields or energy, transport and the environment From research to industry, technological innovation is central to all its activities Climate change Long development time of REs Requirement for qualified personnel Economic competitiveness As part of the public-interest mission with which it has been tasked by the public authorities, IFPEN focuses on: providing solutions to take up the challenges facing society in terms of energy and the climate, promoting the emergence of a sustainable energy mix creating wealth and jobs by supporting French and European economic activity and the competitiveness of related industrial sectors 3
4 Strategic positioning 4
5 Geosciences Software Development A suite for geosciences engineering â Facing reality Complete modeling & simulation workflows âmodeling the past, planning the present 5 â Modeling the present, predicting the future
6 Motivations 2005, back to the origin n New parallel hardware architectures n Linux cluster, multi-core processors n Needs for new physical models and advanced numerical methods n A wide range of applications in geosciences: reservoir, basin, CO 2 but few common services n Increasing cost to n maintain old scalar applications n parallelize these applications n implement advanced numerical methods n industrialize current R&D Move or die : a new generation of simulators 6
7 Why and How as a key for competitiveness : HPC n Thru an hardware abstraction n And low level optimizations for an higher productivity in challenging environment n With an high level programming n Focus on your own business An Physics HPC / Numerics framework / Computer Science for a new generation of simulators Fasten the development of applications n From research prototypes to industrial products n By sharing common services Reliability is not the fifth wheel of the wagon n By defining a standard coding n Given by a frame to the developer n With an automated environment to enforce quality 7
8 What framework? A. Building a new one from scratch n A custom made framework n which may reinvent the square wheel n How to estimate its cost? n What delay before the first commercial product? B. Using an existing framework n And following legacy choices n What continuity? / what autonomy? As a customer or as a partner? 8 Today: ü 100% self-sufficient ü 50% co-owner ü Geosciences exclusive use
9 1/2 What is Arcane? An high level design to speed up development n Developer-friendly API n Based on an Object Oriented language : C++ n n The highest performance OO language But sometimes too tricky? (template, memory ) n With a C# binding for higher level programming n For any physical/numerical developer To write code mostly as sequential procedures in service containers With some wrappers for common usages With common code services for computational sciences n I/O management (XML, HDF5) n Parallel management (data migration/synchronization/partitioning ) With common concepts for mesh oriented simulations n 2D/3D unstructured distributed mesh, variables, groups, items (node, edge, face, cell, dof, particle, link ) 9
10 2/2 What is Arcane? An high level design for lower level optimizations n Hardware Abstraction and Performances n Message passing parallelism behind unique interface with implementations (MPI, multi-thread, hybrid ) n Tested up to 60,000 cores on CEA super-calculator. n Integrates dynamic load balancing (for all Arcane distributed objects : mesh, groups, variables ) n Multi-platform support n Linux (workstation and cluster) / Windows (workstation) a multi-layer architecture for HPC simulators 10
11 ArcGeoSim TM? IFPEN project for Innovation and Rationalization in software development for new geosciences simulators Arcane for Geosciences Simulation Co-developed with Since 2007, FTE human resources by IFPEN and CEA in an active collaboration For a new generation from basin to reservoir simulators 11 Centre de Résultats Ressources DSTC ArcGeoSim - octobre 2015
12 ArcGeoSim TM HPC framework for new generation of geosciences scientific softwares Geosciences development platform for parallel applications Basin Modeling TemisFlow & DionisosFlow Reservoir simulation & CO 2 management PumaFlow CooresFlow Database Visco Puma Coores EOR CO2 Numerical Lab initiative External Links Linear Solvers, XML, HDF5 ArcTem CAMEL Prospective R&D DSL, Solver, Schemes, Thesis ArcaDES HPC Simulator development parallel platform Advanced methods Numerical schemes, AMR, (Non-)Linear Solvers R & I ArcGeoSim TM Common utilities Mesh, I/O, // Geoxim Environment & Productivity Documentation, Training DailyTests, Code Analysis CATS Optimized library shared by geoscience applications Generic / multi-purpose library 12 Centre de Résultats Ressources DSTC ArcGeoSim - octobre 2015
13 The life of a framework How to lead framework development n What s first? n Request from business applications Usually requested for yesterday n Low level concepts / optimizations May be intrusive and requiring prototypes n Architectural design Ok for the integration of a new concept But not seen as a functional enhancement When it works, why changing something? To see beyond the functionalities Long time project Application X New Business features To be ready to unexpected evolutions! Application Y New Business features 13
14 1/2 Tools for a sustainable HPC framework And IFPEN illustrations n Proactive analysis n Be ready before the business requirements n Innovation distinguishes between a leader and a follower n Unify local cases into a larger framework n Unified Linear Algebra Framework n Unified mesh format n Towards a new generation of distributed mesh in Arcane n Don t let it wild n ComTech, a multi-headed conscience n Continuous Integration (DailyTests,, ) n Internal parts may be tricky but external interfaces must be easy n Have an Orthogonalization staff A new feature may come to be able to mix others 14
15 2 Tools for a sustainable HPC framework /2 And IFPEN illustrations Continuous R&I Continuous R&I 15 (Non-) Linear solvers (adaptive criteria, AMG, DDM, multi/many-cores) Domain Specific Languages (in house & -Nabla) Application Dataflow Analysis Automatic Differentiation / Code Generation (XSD/C#) Backend independent task based programming Numerical schemes (Unstructured) Adaptive Mesh Refinement Sub-Meshes, Multi-dimensional regional model coupling Continuous tooling Debugger extension (, HyODA : the Arcane Debugger) Development environment (C# extensible compilation framework)
16
Basin simulation for complex geological settings
Énergies renouvelables Production éco-responsable Transports innovants Procédés éco-efficients Ressources durables Basin simulation for complex geological settings Towards a realistic modeling P. Havé*,
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE
1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
MIKE by DHI 2014 e sviluppi futuri
MIKE by DHI 2014 e sviluppi futuri Johan Hartnack Torino, 9-10 Ottobre 2013 Technology drivers/trends Smart devices Cloud computing Services vs. Products Technology drivers/trends Multiprocessor hardware
Technical Computing Suite Job Management Software
Technical Computing Suite Job Management Software Toshiaki Mikamo Fujitsu Limited Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster Outline System Configuration and Software Stack Features The major functions
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC2013 - Denver
1 The PHI solution Fujitsu Industry Ready Intel XEON-PHI based solution SC2013 - Denver Industrial Application Challenges Most of existing scientific and technical applications Are written for legacy execution
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
YALES2 porting on the Xeon- Phi Early results
YALES2 porting on the Xeon- Phi Early results Othman Bouizi Ghislain Lartigue Innovation and Pathfinding Architecture Group in Europe, Exascale Lab. Paris CRIHAN - Demi-journée calcul intensif, 16 juin
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
ABSTRACT FOR THE 1ST INTERNATIONAL WORKSHOP ON HIGH ORDER CFD METHODS
1 ABSTRACT FOR THE 1ST INTERNATIONAL WORKSHOP ON HIGH ORDER CFD METHODS Sreenivas Varadan a, Kentaro Hara b, Eric Johnsen a, Bram Van Leer b a. Department of Mechanical Engineering, University of Michigan,
Building an energy dashboard. Energy measurement and visualization in current HPC systems
Building an energy dashboard Energy measurement and visualization in current HPC systems Thomas Geenen 1/58 [email protected] SURFsara The Dutch national HPC center 2H 2014 > 1PFlop GPGPU accelerators
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
IBM Platform Computing : infrastructure management for HPC solutions on OpenPOWER Jing Li, Software Development Manager IBM
IBM Platform Computing : infrastructure management for HPC solutions on OpenPOWER Jing Li, Software Development Manager IBM #OpenPOWERSummit Join the conversation at #OpenPOWERSummit 1 Scale-out and Cloud
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
PRIMERGY server-based High Performance Computing solutions
PRIMERGY server-based High Performance Computing solutions PreSales - May 2010 - HPC Revenue OS & Processor Type Increasing standardization with shift in HPC to x86 with 70% in 2008.. HPC revenue by operating
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
Clusters: Mainstream Technology for CAE
Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux
Large-Scale Reservoir Simulation and Big Data Visualization
Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)
Recommended hardware system configurations for ANSYS users
Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range
Software Engineering for LabVIEW Applications. Elijah Kerry LabVIEW Product Manager
Software Engineering for LabVIEW Applications Elijah Kerry LabVIEW Product Manager 1 Ensuring Software Quality and Reliability Goals 1. Deliver a working product 2. Prove it works right 3. Mitigate risk
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*
Neptune. A Domain Specific Language for Deploying HPC Software on Cloud Platforms. Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams
Neptune A Domain Specific Language for Deploying HPC Software on Cloud Platforms Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams ScienceCloud 2011 @ San Jose, CA June 8, 2011 Cloud Computing Three
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach
Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden [email protected],
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
Experiences of numerical simulations on a PC cluster Antti Vanne December 11, 2002
xperiences of numerical simulations on a P cluster xperiences of numerical simulations on a P cluster ecember xperiences of numerical simulations on a P cluster Introduction eowulf concept Using commodity
Systems on Chip Design
Systems on Chip Design College: Engineering Department: Electrical First: Course Definition, a Summary: 1 Course Code: EE 19 Units: 3 credit hrs 3 Level: 3 rd 4 Prerequisite: Basic knowledge of microprocessor/microcontroller
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
Introduction to Generative Software Development
Introduction to Generative Software Development Krzysztof Czarnecki University of Waterloo [email protected] www.generative-programming.org Goals What is to be achieved? Basic understanding of Generative
Data Analytics at NERSC. Joaquin Correa [email protected] NERSC Data and Analytics Services
Data Analytics at NERSC Joaquin Correa [email protected] NERSC Data and Analytics Services NERSC User Meeting August, 2015 Data analytics at NERSC Science Applications Climate, Cosmology, Kbase, Materials,
Interoperability between Sun Grid Engine and the Windows Compute Cluster
Interoperability between Sun Grid Engine and the Windows Compute Cluster Steven Newhouse Program Manager, Windows HPC Team [email protected] 1 Computer Cluster Roadmap Mainstream HPC Mainstream
Federated, Generic Configuration Management for Engineering Data
Federated, Generic Configuration Management for Engineering Data Dr. Rainer Romatka Boeing GPDIS_2013.ppt 1 Presentation Outline I Summary Introduction Configuration Management Overview CM System Requirements
Parallel Debugging with DDT
Parallel Debugging with DDT Nate Woody 3/10/2009 www.cac.cornell.edu 1 Debugging Debugging is a methodical process of finding and reducing the number of bugs, or defects, in a computer program or a piece
Mathematical Libraries on JUQUEEN. JSC Training Course
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries on JUQUEEN JSC Training Course May 10, 2012 Outline General Informations Sequential Libraries, planned Parallel Libraries and Application Systems:
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Microsoft Compute Clusters in High Performance Technical Computing. Björn Tromsdorf, HPC Product Manager, Microsoft Corporation
Microsoft Compute Clusters in High Performance Technical Computing Björn Tromsdorf, HPC Product Manager, Microsoft Corporation Flexible and efficient job scheduling via Windows CCS has allowed more of
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
Collaborative modelling and concurrent scientific data analysis:
Collaborative modelling and concurrent scientific data analysis: Application case in space plasma environment with the Keridwen/SPIS- GEO Integrated Modelling Environment B. Thiebault 1, J. Forest 2, B.
Uintah Framework. Justin Luitjens, Qingyu Meng, John Schmidt, Martin Berzins, Todd Harman, Chuch Wight, Steven Parker, et al
Uintah Framework Justin Luitjens, Qingyu Meng, John Schmidt, Martin Berzins, Todd Harman, Chuch Wight, Steven Parker, et al Uintah Parallel Computing Framework Uintah - far-sighted design by Steve Parker
The Construction of Seismic and Geological Studies' Cloud Platform Using Desktop Cloud Visualization Technology
Send Orders for Reprints to [email protected] 1582 The Open Cybernetics & Systemics Journal, 2015, 9, 1582-1586 Open Access The Construction of Seismic and Geological Studies' Cloud Platform Using
Code Generation Tools for PDEs. Matthew Knepley PETSc Developer Mathematics and Computer Science Division Argonne National Laboratory
Code Generation Tools for PDEs Matthew Knepley PETSc Developer Mathematics and Computer Science Division Argonne National Laboratory Talk Objectives Introduce Code Generation Tools - Installation - Use
Challenges and Opportunities for formal specifications in Service Oriented Architectures
ACSD ATPN Xi an China June 2008 Challenges and Opportunities for formal specifications in Service Oriented Architectures Gustavo Alonso Systems Group Department of Computer Science Swiss Federal Institute
Introduction to grid technologies, parallel and cloud computing. Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber
Introduction to grid technologies, parallel and cloud computing Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber OUTLINES Grid Computing Parallel programming technologies (MPI- Open MP-Cuda )
Supercomputing and Big Data: Where are the Real Boundaries and Opportunities for Synergy?
HPC2012 Workshop Cetraro, Italy Supercomputing and Big Data: Where are the Real Boundaries and Opportunities for Synergy? Bill Blake CTO Cray, Inc. The Big Data Challenge Supercomputing minimizes data
GC3 Use cases for the Cloud
GC3: Grid Computing Competence Center GC3 Use cases for the Cloud Some real world examples suited for cloud systems Antonio Messina Trieste, 24.10.2013 Who am I System Architect
Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.
Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH
Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability
A Multi-layered Domain-specific Language for Stencil Computations
A Multi-layered Domain-specific Language for Stencil Computations Christian Schmitt, Frank Hannig, Jürgen Teich Hardware/Software Co-Design, University of Erlangen-Nuremberg Workshop ExaStencils 2014,
MAQAO Performance Analysis and Optimization Tool
MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22
Leveraging Windows HPC Server for Cluster Computing with Abaqus FEA
Leveraging Windows HPC Server for Cluster Computing with Abaqus FEA This white paper outlines the benefits of using Windows HPC Server as part of a cluster computing solution for performing realistic simulation.
Poisson Equation Solver Parallelisation for Particle-in-Cell Model
WDS'14 Proceedings of Contributed Papers Physics, 233 237, 214. ISBN 978-8-7378-276-4 MATFYZPRESS Poisson Equation Solver Parallelisation for Particle-in-Cell Model A. Podolník, 1,2 M. Komm, 1 R. Dejarnac,
Hybrid Software Architectures for Big Data. [email protected] @hurence http://www.hurence.com
Hybrid Software Architectures for Big Data [email protected] @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line
Introduction History Design Blue Gene/Q Job Scheduler Filesystem Power usage Performance Summary Sequoia is a petascale Blue Gene/Q supercomputer Being constructed by IBM for the National Nuclear Security
Lecture 1 Introduction to Parallel Programming
Lecture 1 Introduction to Parallel Programming EN 600.320/420 Instructor: Randal Burns 4 September 2008 Department of Computer Science, Johns Hopkins University Pipelined Processor From http://arstechnica.com/articles/paedia/cpu/pipelining-2.ars
Geoscience AT ITS best. Software solution. Consulting. International Oil & Gas Consultant and Software Solution Provider
Geoscience AT ITS best Software solution Consulting International Oil & Gas Consultant and Software Solution Provider Geoscience AT ITS best Beicip-Franlab: over 45 years of successful international experience
for High Performance Computing
Technische Universität München Institut für Informatik Lehrstuhl für Rechnertechnik und Rechnerorganisation Automatic Performance Engineering Workflows for High Performance Computing Ventsislav Petkov
Introduction. 1.1 Motivation. Chapter 1
Chapter 1 Introduction The automotive, aerospace and building sectors have traditionally used simulation programs to improve their products or services, focusing their computations in a few major physical
Big Workflow: More than Just Intelligent Workload Management for Big Data
Big Workflow: More than Just Intelligent Workload Management for Big Data Michael Feldman White Paper February 2014 EXECUTIVE SUMMARY Big data applications represent a fast-growing category of high-value
The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland
The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
MEng, BSc Applied Computer Science
School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries
First Semester Development 1A On completion of this subject students will be able to apply basic programming and problem solving skills in a 3 rd generation object-oriented programming language (such as
