Convenience Yield-Based Pricing of Commodity Futures
|
|
|
- Merilyn James
- 10 years ago
- Views:
Transcription
1 Convenience Yield-Based Pricing of Commodity Futures Takashi Kanamura, J-POWER BFS2010 6th World Congress in Toronto, Canada June 26th,
2 Agenda 1. The objectives and results 2. The convenience yield-based pricing of commodity futures 3. Empirical studies for energy prices 4. Application of CY-based pricing to energy derivative pricing 5. Conclusions and future discussion 2
3 1. The objectives and results 3
4 Background Convenience yield is often used to describe the value to hold commodities as is explained in e.g., Geman(2005). Following the notion, convenience yield is useful to represent the linkage between spot and futures prices. On the other hand, asset pricing theory offers a concept of stochastic discount factor to determine financial instrument prices like futures prices written on spot prices. The relationship between spot and futures prices is expressed by two ways: convenience yield and stochastic discount factor. Putting two concepts together, convenience yield may play an alternative role of a stochastic discount factor. 4
5 Literature Survey Risk neutral valuation is applied to price commodity derivatives e.g., Schwartz and Smith(2000), Yan(2002), Casassus and Collin- Dufresne(2005), Korn(2005), Eydeland and Wolyniec (2003). The application does not necessarily seem satisfactory because commodity market is incomplete by the illiquidity. A further task is needed to select a stochastic discount factor (SDF) for derivative pricing. A familiar SDF selection is a utility-based approach: SDF is assigned to unspanned risk and the derivative is uniquely priced. Davis(2001) and Cao and Wei(2000) use the method to price weather derivatives in commodities. It depends on utility function and optimal consumption. To avoid the problem and incorporate market incompleteness into commodity futures pricing, we employ good-deal bounds (GDB) of Cochrane and Saarequejo(2000). The point is in the restriction on the SDF variance: an upper bound characterized by the maximum Sharpe ratio is always required to be more than or equal to Sharpe ratios of all assets in the market. Kanamura and Ohashi(2009) applied GDB to weather derivatives. 5
6 Literature Survey GDB may be useful to price incomplete market assets in that it does not rely on utility function and optimal consumption. The method is still dissatisfactory because the maximum Sharpe ratio that binds SDF is unknown and must be given exogenously. A pricing scheme for commodities is desirable if the Sharpe ratio, i.e., the restriction on SDF, is given using commodity market data. We consider that two-way concept on intertemporal relationship between spot and futures prices, i.e., convenience yield can implicitly characterize SDF, will be beneficial to determine the Sharpe ratio. 6
7 The objectives This paper proposes the convenience yield-based pricing for commodity futures. By using the pricing method, we conduct empirical analyses of crude oil, heating oil, and natural gas futures traded on the NYMEX in order to assess the incompleteness of energy futures markets. We apply the market price of risk embedded in energy futures markets to the Asian call option pricing on crude oil futures. 7
8 The results (1) We propose a convenience yield-based pricing for commodity futures, which embeds the incompleteness of commodity futures markets in convenience yield. (2) Empirical analyses of crude oil, heating oil, and natural gas futures on the NYMEX show that the fluctuation from incompleteness is partly owed to convenience yield. (3) It is shown that the additional Sharpe ratio, which represents the degree of market incompleteness and is also used for derivative pricing written on energy prices, is obtained from the NYMEX data. (4) We numerically price the Asian call option using market price of risk estimated from crude oil futures prices. 8
9 2. The convenience yield-based pricing of commodity futures 9
10 Model Setup The relationship between spot and futures prices is expressed by two ways: convenience yield and stochastic discount factor. 10
11 Model Setup: Convenience yield We employ Gibson Schwartz (1990) two-factor model based on convenience yield (δ) to represent the spot price (S). ds t = (µ δ t )dt + σ 1 dw t, S t (1) dδ t = κ(α δ t )dt + σ 2 du t, (2) where E t [dw t du t ] = ρdt. Using Ito s lemma to equation (1), we obtain T (σ 1 + σ 2 ρ κ (1 e κ(t s) ))dw s + T ( σ 2 t S T = S t e (µ α 1 2 σ2 1 )(T t)+ 1 κ (1 e κ(t t) )(δ t α)+ t (3) We assume that the fluctuation due to convenience yield is spanned by both of complete and incomplete parts: du t = ρdw t + 1 ρ 2 1 ρ 2 dz t. (4) κ (1 e κ(t s) ))dz s. 11
12 Model Setup: SDF As is well known, commodity markets may demonstrate incompleteness because of the illiquidity. Following Cochrane(2001) which can generally express the market incompleteness, we assume that Λ t is given by dλ t Λ t = rdt φdw t νdz t, (5) where ν represents the incompleteness of the market. By using Ito s lemma to equation (5), we obtain Λ T Λ t = e (r+ 1 2 φ ν2 )(T t) T t φdw s T t νdz s. (6) 12
13 Model Setup: Linkage between CY and SDF While Schwartz(1997) introduced risk neutral measure to price commodity futures, the ambiguity may remain in the existence of such probability measure. Hence, we chose more comprehensive representation of the futures prices using stochastic discount factor (SDF). The futures prices F T t are in general represented as follows: [ ΛT ] Λ = E t S T t [ E ΛT ], (7) t Λ t F T t where we denote the SDF by Λ t at time t. 13
14 The convenience yield-based pricing of commodity futures (CY-based model) We have the futures price as follows: F T t = S t e Υ(t,T ) Ω(t,T )δ t, (8) Υ(t, T ) = (r α + σ2 2 2κ σ 1σ 2 ρ + φ σ 2ρ 2 κ κ + νσ 2 1 ρ 2 )(T t) + σ2 2 κ 4κ 3(1 e 2κ(T t) ) + (ακ + ρσ 1 σ 2 σ2 2 κ φσ 2ρ νσ 2 1 ρ 2 1 e κ(t t) ), (9) κ 2 1 e κ(t t) Ω(t, T ) =. (10) κ 14
15 Model Implication The point of this model stands on the inclusion of incompleteness parameter ν into spot-futures price relationship. We obtained a futures pricing method not using risk neutral measure, but using convenience yield-based incompleteness parameter ν. 15
16 3. Empirical studies for energy prices 16
17 Data We use the daily closing prices of WTI crude oil (WTI), heating oil (HO), and natural gas (NG) futures traded on the NYMEX. Each futures product includes six delivery months from one month to six months. The covered time period is from April 3, 2000 to March 31, The data are obtained from Bloomberg. 17
18 Incompleteness check using Kalman Filter By examining the relationship between φ (complete market price of risk) and ν (incomplete market price of risk), we can find the degree of incompleteness of energy markets. The parameters of the CY-based pricing are estimated using the Kalman filter. Both log transformed spot prices (x t ) and convenience yields (δ t ) are unobservable. Log transformed futures prices (y t ) are observable. 18
19 Time and measurement update equations Time update equations: x t = x t 1 tδ t +(µ 1 2 σ2 1 ) t+σ 1ɛ t f 1 (x t 1, δ t 1, ɛ t ). (11) δ t = (1 κ t)δ t 1 + κα t + σ 2 η t f 2 (x t 1, δ t 1, η t ). (12) The measurement update equation in the KF system is obtained from the futures-spot price relationship. y t = x t Ω(t, T )δ t + Υ(t, T ) + ξ t h 1 (x t, δ t, ξ t ). (13) Note that V [ξ t ] = diag[m 1, m 2, m 3, m 4, m 5, m 6 ] (Diagonal matrix). 19
20 Maximum likelihood estimation (WTI) The parameters of the CY-based pricing for crude oil are estimated by the maximum likelihood method: µ σ 1 κ α σ 2 ρ ν Est (S.E.) m 1 m 2 m 3 m 4 m 5 m 6 Est 2.197E E E E E E-6 (S.E.) 1.854E E E E E E-6 LL 5.461E+4 AIC E+5 SIC E+5 All parameters except m 3, m 4, and m 5 for WTI are statistically significant. 20
21 Maximum likelihood estimation (WTI) Since ρ is 0.857, it is shown that the fluctuation from incompleteness is partly owed to convenience yield. While ν is obtained as negative value, taking into account dλ t Λ t = rdt φdw t ( ν)dz t, (14) due to the symmetry of dz t, i.e., dz t = dz t by definition, the absolute value of ν represents the incompleteness of the market, i.e., incomplete market price of risk. The incompleteness of crude oil market is calculated as ν = using the market data. 21
22 Maximum likelihood estimation (HO) µ σ 1 κ α σ 2 ρ ν Est (S.E.) m 1 m 2 m 3 m 4 m 5 m 6 Est 3.619E E E E E E-4 (S.E.) 6.725E E E E E E-4 LL 4.325E+4 AIC E+4 SIC E+4 The parameters except α, m 2, m 3, and m 4 are statistically significant. In addition to the existence of incompleteness from convenience yield, we also obtained the incomplete heating oil market price of risk using the market data. 22
23 Maximum likelihood estimation (NG) µ σ 1 κ α σ 2 ρ ν Est (S.E.) m 1 m 2 m 3 m 4 m 5 m 6 Est 3.314E E E E E E-3 (S.E.) 1.199E E E E E E-5 LL 3.083E+4 AIC E+4 SIC E+4 The parameters except µ and α are statistically significant. In addition to the existence of incompleteness from convenience yield, we also obtained the incomplete natural gas market price of risk using the market data. 23
24 Incompleteness Assessment of Energy Futures Markets φ ν A = ν 2 + φ 2 Crude oil Heating oil Natural gas Note that φ is calculated as φ = µ r σ 1 assuming r = For crude oil, the incomplete market price of risk (1.404) is a little greater than the complete market price of risk (0.924), i.e., the crude oil market should be spanned by both complete and incomplete markets. The pricing of derivative instruments on crude oil prices requests the Sharpe ratio of 1.681, which is about twice as large as the complete market price of risk (0.924) based on the GDB. For heating oil and natural gas, the Sharpe ratios take a value of and 0.807, respectively. 24
25 Empirical Study Implications It was shown that the fluctuation from market incompleteness is partly owed to the fluctuation from convenience yield. We could obtain the incompleteness market price of risk from the NYMEX market data. 25
26 4. Application of CY-based model to energy derivative pricing 26
27 Asian call option on energy futures prices We price Asian call option on energy futures prices using the incompleteness market price of risk ν estimated from the NYMEX data. In general, GDB pricing is expressed by T Λ s C t =E t x s ds + E t ( Λ T dλ t x T ), = rdt φdw t νdz t, (15) Λ t Λ t Λ t s=t where represents lower and upper price boundaries, respectively. We assume the average i-month futures price from times 0 to T as We set dc C I = 1 T T 0 F i (S, δ, t)dt. (16) = µ Cdt + σ Cw dw + σ Cz dz. GDB pricing is transformed into µ C r + σ Cw σ Cz ν = 0, (17) where represents lower and upper price boundaries, respectively. Note that x s = 0. 27
28 Asian call option on energy futures prices Applying Ito s lemma to a price boundary C(S, δ, I, t), we have µ C = 1 { C C + (µ δ)s + κ(α δ) C C t S δ + 1 C 2 σ2 1 S2 2 S } 2, C 2 σ2 2 δ + ρσ 1σ 2 2 S 2 C δ S σ Cw = 1 { µs C } C S + ρσ C 2, δ σ Cz = 1 } {σ 2 1 ρ 2 C. C δ + 1 T F C I 28
29 Partial differential equation rc + C t + 1 C 2 σ2 1 S2 2 S C 2 2 σ2 2 δ + ρσ 1σ 2 2 S 2 C δ S + di dt =(δ r)s C ( S + φρσ 2 κ(α δ) + kνσ 2 1 ρ 2 sgn C ( I C δ )) C δ, with the terminal payoff: C(S, δ, I, T ) = f(i T ), where k = 1 and +1 generate the upper and lower price boundaries, respectively. To obtain the GDB prices of the Asian call option, we set the payoff at maturity to be f(i T ) = max(i T K, 0) and, following Ingersoll(1987), to be: di = F (S, δ, t)dt. 1 T di dt 29
30 Asian call option price We computed Asian call option prices written on 1-month crude oil futures prices assuming that the strike price is 70 USD, the delta is zero, and interest rate is set to 6 %. Futures Prices Upper Price No Risk Prem Lower Price Upper Premium Lower Premium UP/NRPP (%) LP/NRPP (%)
31 Outcomes from Asian call option prices Both upper and lower risk premiums are small enough comparing with the level of the option prices. It may be easy to use for practitioners in the sense that the option price is priced using small price range. We were able to obtain the risk premium based on the incompleteness of energy futures market implied from the CY-Based pricing method we proposed. 31
32 4. Conclusions and directions for future research 32
33 Conclusions (1) We have proposed a convenience yield-based pricing for commodity futures, which embeds the incompleteness of commodity futures markets in convenience yield. (2) Empirical analyses of crude oil, heating oil, and natural gas futures on the NYMEX showed that the fluctuation from incompleteness is partly owed to convenience yield. (3) It was shown that the additional Sharpe ratio, which represents the degree of market incompleteness and is also used for derivative pricing written on energy prices, is obtained from the NYMEX data. (4) We numerically priced the Asian call option using market price of risk estimated from crude oil futures prices. 33
34 Directions for future research This paper only dealt with energy futures due to the availability of data. The concept in this paper can be extended to other commodity futures like agricultural futures. These empirical studies may be the next direction for our future researches. 34
35 Thank you. 35
The Heston Model. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014
Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Generalized SV models Vanilla Call Option via Heston Itô s lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA 1.
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
Multi Factor Models for the Commodities Futures Curve: Forecasting and Pricing
Multi Factor Models for the Commodities Futures Curve: Forecasting and Pricing Vibhav Bukkapatanam [email protected] Sanjay Thirumalai Doraiswamy [email protected] Abstract The term structure is
Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
Jung-Soon Hyun and Young-Hee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest
Valuation of commodity derivatives when spot prices revert to a cyclical mean
Valuation of commodity derivatives when spot prices revert to a cyclical mean April, 24 Abstract This paper introduces a new continuous-time model based on the logarithm of the commodity spot price assuming
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
The theory of storage and the convenience yield. 2008 Summer School - UBC 1
The theory of storage and the convenience yield 2008 Summer School - UBC 1 The theory of storage and the normal backwardation theory explain the relationship between the spot and futures prices in commodity
9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)
Helyette Geman c0.tex V - 0//0 :00 P.M. Page Hedging the Risk of an Energy Futures Portfolio Carol Alexander This chapter considers a hedging problem for a trader in futures on crude oil, heating oil and
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
Effects of electricity price volatility and covariance on the firm s investment decisions and long-run demand for electricity
Effects of electricity price volatility and covariance on the firm s investment decisions and long-run demand for electricity C. Brandon ([email protected]) Carnegie Mellon University, Pittsburgh,
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
Pricing of an Exotic Forward Contract
Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,
On Market-Making and Delta-Hedging
On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide
Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral []),
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
Likewise, the payoff of the better-of-two note may be decomposed as follows: Price of gold (US$/oz) 375 400 425 450 475 500 525 550 575 600 Oil price
Exchange Options Consider the Double Index Bull (DIB) note, which is suited to investors who believe that two indices will rally over a given term. The note typically pays no coupons and has a redemption
Private Equity Fund Valuation and Systematic Risk
An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Equity forward contract
Equity forward contract INRODUCION An equity forward contract is an agreement between two counterparties to buy a specific number of an agreed equity stock, stock index or basket at a given price (called
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Lecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022
Seasonality in Natural Gas Prices
Norwegian School of Economics Bergen, Fall 2013 Seasonality in Natural Gas Prices An empirical study of Henry Hub Natural Gas Futures Prices By: Baste Fladmark & Guro Berg Grimstad Supervisor: Jørgen Haug
Pricing and Hedging of Oil Futures - A Unifying Approach -
Pricing and Hedging of Oil Futures - A Unifying Approach - Wolfgang Bühler, Olaf Korn, Rainer Schöbel* Contact information: Wolfgang Bühler Olaf Korn Rainer Schöbel University of Mannheim University of
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
Modeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003
Modeling the Implied Volatility Surface Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003 This presentation represents only the personal opinions of the author and not those of Merrill
Valuing double barrier options with time-dependent parameters by Fourier series expansion
IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_1 Valuing double barrier options with time-dependent parameters by Fourier series ansion C.F. Lo Institute of Theoretical Physics and
More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
Oil Prices and Long-Run Risk
Oil Prices and Long-Run Risk Robert C. Ready First Version: November 15, 2010 This Version: May 10, 2012 ABSTRACT I add an oil good endowment to the Long-Run Risk model of Bansal and Yaron (2004) to study
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
where N is the standard normal distribution function,
The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets
Dynamic Jump Intensities and Risk Premiums in Crude Oil Futures and Options Markets Peter Christoffersen University of Toronto, CBS, and CREATES Kris Jacobs University of Houston and Tilburg University
Pricing Interest-Rate- Derivative Securities
Pricing Interest-Rate- Derivative Securities John Hull Alan White University of Toronto This article shows that the one-state-variable interest-rate models of Vasicek (1977) and Cox, Ingersoll, and Ross
Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static
Package schwartz97. February 20, 2015
Type Package Version 0.0.6 Date 2011-12-18 Package schwartz97 February 20, 2015 Title A package on the Schwartz two-factor commodity model Author Philipp Erb, David Luethi, Juri Hinz, Simon Otziger Maintainer
HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation
HPCFinance: New Thinking in Finance Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation Dr. Mark Cathcart, Standard Life February 14, 2014 0 / 58 Outline Outline of Presentation
Introduction, Forwards and Futures
Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation Yoon W. Kwon CIMS 1, Math. Finance Suzanne A. Lewis CIMS, Math. Finance May 9, 000 1 Courant Institue of Mathematical Science,
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment Siwei Gan, Jin Zheng, Xiaoxia Feng, and Dejun Xie Abstract Refinancing refers to the replacement of an existing debt obligation
Pricing Corn Calendar Spread Options. Juheon Seok and B. Wade Brorsen
Pricing Corn Calendar Spread Options by Juheon Seok and B. Wade Brorsen Suggested citation format: Seok, J., and B. W. Brorsen. 215. Pricing Corn Calendar Spread Options. Proceedings of the NCCC-134 Conference
Brownian Motion and Stochastic Flow Systems. J.M Harrison
Brownian Motion and Stochastic Flow Systems 1 J.M Harrison Report written by Siva K. Gorantla I. INTRODUCTION Brownian motion is the seemingly random movement of particles suspended in a fluid or a mathematical
Pricing Barrier Options under Local Volatility
Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: [email protected], Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly
Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25
Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward
Expected default frequency
KM Model Expected default frequency Expected default frequency (EDF) is a forward-looking measure of actual probability of default. EDF is firm specific. KM model is based on the structural approach to
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
Lecture 1: Stochastic Volatility and Local Volatility
Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract
Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013
Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?
ELECTRICITY REAL OPTIONS VALUATION
Vol. 37 (6) ACTA PHYSICA POLONICA B No 11 ELECTRICITY REAL OPTIONS VALUATION Ewa Broszkiewicz-Suwaj Hugo Steinhaus Center, Institute of Mathematics and Computer Science Wrocław University of Technology
Affine-structure models and the pricing of energy commodity derivatives
Affine-structure models and the pricing of energy commodity derivatives Nikos K Nomikos [email protected] Cass Business School, City University London Joint work with: Ioannis Kyriakou, Panos Pouliasis
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
Understanding Options and Their Role in Hedging via the Greeks
Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that
From Asian Options to Commodities
From Asian Options to Commodities Helyette Geman Birkbeck, University of London & ESCP Europe To be presented in the Workshop anniversary of the DEA Probabilités et Finance - Paris, Jan 11, 2010 Asian
Return to Risk Limited website: www.risklimited.com. Overview of Options An Introduction
Return to Risk Limited website: www.risklimited.com Overview of Options An Introduction Options Definition The right, but not the obligation, to enter into a transaction [buy or sell] at a pre-agreed price,
A Simple Model of Price Dispersion *
Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion
Options 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
AN N-FACTOR GAUSSIAN MODEL OF OIL FUTURES PRICES
AN N-FACTOR GAUSSIAN MODEL OF OIL FUTURES PRICES GONZALO CORTAZAR* LORENZO NARANJO This article studies the ability of an N-factor Gaussian model to explain the stochastic behavior of oil futures prices
WEATHER DERIVATIVES AND SPECIFIC EVENT RISK. Calum G. Turvey
WEATHER DERIVATIVES AND SPECIFIC EVENT RISK By Calum G. Turvey Associate Professor Department of Agricultural Economics and Business Faculty of Management University of Guelph Guelph Ontario Canada Paper
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
Foreign Exchange Symmetries
Foreign Exchange Symmetries Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 8 September 2008 Contents 1 Foreign Exchange Symmetries 2 1.1 Motivation.................................... 2
Univariate Time Series Analysis; ARIMA Models
Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing
Online Appendix for Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets
Online Appendix for Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets Hui Chen Scott Joslin Sophie Ni August 3, 2015 1 An Extension of the Dynamic Model Our model
Implied Volatility Surface
Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 18 Implied volatility Recall
Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers
Variance Reduction The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output If this variance can be lowered without changing the expected value, fewer replications
Energy Markets. Weather Derivates
III: Weather Derivates René Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Banff, May 2007 Weather and Commodity Stand-alone temperature precipitation
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report
University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population
Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos
Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility
Investors and Central Bank s Uncertainty Embedded in Index Options On-Line Appendix
Investors and Central Bank s Uncertainty Embedded in Index Options On-Line Appendix Alexander David Haskayne School of Business, University of Calgary Pietro Veronesi University of Chicago Booth School
Lecture. S t = S t δ[s t ].
Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important
Tutorial: Structural Models of the Firm
Tutorial: Structural Models of the Firm Peter Ritchken Case Western Reserve University February 16, 2015 Peter Ritchken, Case Western Reserve University Tutorial: Structural Models of the Firm 1/61 Tutorial:
A Comparison of Models for Oil Futures
U.U.D.M. Project Report 2013:22 A Comparison of Models for Oil Futures Hayat Haseeb Examensarbete i matematik, 15 hp Handledare och examinator: Johan Tysk Juni 2013 Department of Mathematics Uppsala University
Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007
Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
2. Real Business Cycle Theory (June 25, 2013)
Prof. Dr. Thomas Steger Advanced Macroeconomics II Lecture SS 13 2. Real Business Cycle Theory (June 25, 2013) Introduction Simplistic RBC Model Simple stochastic growth model Baseline RBC model Introduction
An exact formula for default swaptions pricing in the SSRJD stochastic intensity model
An exact formula for default swaptions pricing in the SSRJD stochastic intensity model Naoufel El-Bachir (joint work with D. Brigo, Banca IMI) Radon Institute, Linz May 31, 2007 ICMA Centre, University
A profit model for spread trading with an application to energy futures
A profit model for spread trading with an application to energy futures by Takashi Kanamura, Svetlozar T. Rachev, Frank J. Fabozzi No. 27 MAY 2011 WORKING PAPER SERIES IN ECONOMICS KIT University of the
