(More Practice With Trend Forecasts)

Size: px
Start display at page:

Download "(More Practice With Trend Forecasts)"

Transcription

1 Stats for Strategy HOMEWORK 11 (Topic 11 Part 2) (revised Jan. 2016) DIRECTIONS/SUGGESTIONS You may conveniently write answers to Problems A and B within these directions. Some exercises include special instructions which clarify or modify textbook instructions. Data files are available from the Stats website for some exercises. Text exercises marked with the icon are accessed from the Supplementary Exercises (SE) file posted on the Stats website, not the textbook itself. (More Practice With Trend Forecasts) A. Cable Wire Sales In the last problem of HW10 (Problem E: Chinese Car Ownership), we fit a trend to the time series where the residuals from the trend fit are autocorrelated. In that problem we improved on trend forecasts for future Chinese car ownership by forecasting the residuals, as well. But can you guess how to obtain valid 95% forecasts when the residuals from the trend fit are not autocorrelated? The data file Wire shows U.S. sales (in thousands of feet) of a special flat cable wire used in heavy equipment such as cranes and hoists, from January 2005 through December (a) Make a time-series plot. Do sales appear to follow a linear trend? Answer: (b) Fit a linear trend to the series by simple linear regression. Which variable is the predictor variable? Answer: What is R 2 from this regression? Answer: (c) Consider the sample (fitted) regression equation. Interpret the slope in the space below. (d) Run the regression again, this time storing the residuals in the MINITAB worksheet. Make a time-series plot of the residuals. Add a 0 line by right-clicking inside the plot and Add the Reference Line Y = 0. Apply the Runs Test in MINITAB. Then answer questions on the next page! (continued) 1

2 Write down the hypotheses H 0 and H A (in English) in the space below. What s the P -value? What decision do you recommend, based on the P -value? What s the conclusion? (e) Interpret a 95% forecast for cable wire sales in March (f) Is it necessary to forecast residuals using time-series methods such as Partial Autocorrelation and ARIMA? Why or why not? (continued) 2

3 (Seasonal Forecasts) B. Retail Trade Employment DIRECTIONS: Open the Trade Employment data file and refer to Notebook page 255. First make a plot: Stat > Time Series > Time Series Plot > (Select Trade Employment) > OK Now improve the plot by showing the actual dates along the horizontal axis: (Click the blue box i.e., recall previous commands) > Time/Scale > Stamp > (Select Date) > OK > OK Clearly, these data show both a trend and seasonality. The first step is to model the trend with simple regression. So make a Fitted Line Plot! Also get the full regression output for Trade vs. Month and make a MINITAB prediction for Month 80, as shown on Notebook page 256. Did you reproduce the plot and output? To see the autocorrelation of residual errors from simple regression, rerun Regression... Fit Regression Model and store the residuals in the MINITAB worksheet: Storage > (Select Residuals) > OK > OK Now make a scatterplot of Residuals vs. Month: Graph > Scatterplot... Since this is a time series we should connect the dots to reproduce Figure 2: Graph > Scatterplot > With Connect Line > OK... Just for fun add a horizontal line to the graph to separate positive residuals from negative residuals: (Right-click inside the graph) > Add > Reference Lines > Y = 0 > OK Answer these questions using the Trend-Only model: (a) Use MINITAB Regression Predict to predict trade employment in March (b) Predict trade employment in March 1976 with 95% certainty. (continued) 3

4 B. continued DIRECTIONS: The residuals plot from simple regression shows clear seasonality: Notice that the errors spike in December of each year (at months 12, 24, 36,....) So let s improve the model by incorporating seasonality as well as trend. Reproduce the regression output and predictions shown on Notebook page 259: Stat > Regression > Regression > Fit Regression Model > (Select Response Trade Employment) > (Select Continuous Predictors Month S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 ) Stat > Regression... Predict > (Enter ) Again plot Residuals vs. Month for your new model. Did you reproduce Figure 3 on page 261? Answer these questions using the Trend-and-Seasonal model: (c) Predict trade employment in March (d) Predict trade employment in March 1976 with 95% certainty. (e) Estimate by how much trade employment in December exceeds trade employment in January, after accounting for trend. (f) Estimate by how much trade employment in December exceeds trade employment in June, after accounting for trend. (g) Estimate the average increase in trade employment from May to June of each year. (continued) 4

5 (Improving Seasonal Forecasts by Modeling Autocorrelation) B. continued DIRECTIONS: Open to Notebook page 265. Reproduce MINITAB Steps 1 5 exactly as shown on pages , checking at each step that you produce the output in the Notes. Review the reasoning at each step. Questions: (h) How many periods (months) of past Trade Employment residuals affect future Trade Employment residuals, using 5% significance for statistical tests? (Find p = # periods for the AR(p) models described on Notes page 264.) Answer: (i) The original data ended in December 1974 and in the Notes we produced forecasts for Jan. June 1975 (Months ) Now modify the MINITAB commands to produce both a simple forecast and a 95% interval forecast for Trade Employment in December (j) Produce both a simple forecast and a 95% forecast for March (end of Problem B) 5

6 C. JCPenny Retail Sales (Note: Please use your own scratch paper for Problem C.) Supplementary Exercise 13.1 (SE file p. 131) (b) Tip: Use the Time/Scale option to put actual dates on the horizontal axis of the time-series plot. Supplementary Exercise 13.2 Supplementary Exercise 13.3 Tip: This exercise requires indicator variables to represent seasonality in quarterly data. To do this, you can simply enter 1 s and 0 s by hand in three new columns: { 1 for first quarter x 1 = 0 otherwise { 1 for second quarter x 2 = 0 otherwise { 1 for third quarter x 3 = 0 otherwise Quarter x 1 x 2 x With this setup, the three seasonal coefficients always compare to the fourth quarter. After you add the three dummy variables for Quarters 1 3, your MINITAB worksheet should look like this: Order Year-Quarter Sales Q1 Q2 Q st nd rd th st nd rd th st nd rd th st nd rd th st nd rd th st nd rd th Supplementary Exercise 13.5 Supplementary Exercise

7 C. continued Supplementary Exercise 13.9 You ll need to consider MINITAB output for both the Trend-Only and Trend-Seasonal regression models. Tip: Use this MINITAB trick to get both the Trend-Only and Trend-Seasonal predictions: Storage > (Check Fits) Then use Time Series > Time Series Plot > Multiple > OK to plot the three time series together, as the textbook requests in part (c). Supplementary Exercise Special instructions: Do part (a) only. Supplementary Exercise Additional Exercise for Problem C We concluded that the Trend-Seasonal model is superior to the Trend-Only model so we ll make forecasts using the Trend-Seasonal model. Follow these steps: Store residuals from the Trend-Seasonal model. Fit an AR(p) autoregression model to the residuals using MINITAB Partial Autocorrelation and ARIMA procedures. Questions: (a) Find the correct value of p for the AR(p) model, using 5% significance. (b) From MINITAB output, write down the fitted AR(p) model for residuals. (c) Use MINITAB to make both a simple forecast and a 95% forecast for JCPenny sales in the first quarter of (d) Make both a simple forecast and a 95% forecast for the fourth quarter of (e) Make both a simple forecast and a 95% forecast for the third quarter of (f) Explain why it makes sense for the residual forecasts ê t for the JCPenny data to be negative numbers. (g) Statistically speaking, is it easier or harder to forecast sales for the third quarter of 2003 compared to the fourth quarter of 2002? Cite numerical evidence to support your answer. 7

8 (Seasonal Factors and Deseasonalized Data) C. continued DIRECTIONS: Review our work with seasonal factors and deseasonalized data for the Trade Employment data Notebook pages Let the ideas settle in. Supplementary Exercise 13.4 Tip for part (c): Type the four seasonal factors into a MINITAB column and make a connected scatterplot. Add part (d): (d) Use MINITAB Time Series Decomposition. Are MINITAB s seasonal factors similar to the ones which you calculated in (a)? Are they identical? Plot the seasonally-adjusted time series. What are seasonally-adjusted JCPenny sales in the second quarter of 1998? Supplementary Exercise 13.7 (end of Problem C) 8

9 D. Number of Macs Shipped (Note: You ll need scratch paper for Problem D.) Exercise 13.8 (p. 697) (a) Enter data in a MINITAB worksheet and use Stat > Time Series > Time Series Plot and choose Fiscal Year/Qtr as the stamp variable in the Time/Scale option to plot actual dates on the horizontal axis. (b) As practice for the final exam, use simple linear regression calculation formulas for b 0 and b 1. (See Exam 3 formula sheet.) Warning: The textbook s table of statistics for the time predictor variable t = Quarter and the response variable Macs Shipped contains errors! So instead, use the information below obtained from MINITAB Descriptive Statistics and Correlation procedures: Descriptive Statistics: Quarter, Units shipped Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Quarter Units shipped Variable Maximum Quarter Units shipped Correlations: Quarter, Units shipped Pearson correlation of Quarter and Units shipped = (c) Tip: Use Stat > Time Series > Trend Analysis > (Select Macs-Shipped) > OK to make the plot. Add part (e): (e) How does the trend line from the MINITAB plot from (c) compare to the regression line which you computed in (b)? Exercise (p. 704) Exercise (p. 706) Add part (d): (d) Use MINITAB Time Series Decomposition. Are MINITAB s seasonal factors similar to the ones which you calculated in (a)? Are they identical? Plot the seasonally-adjusted time series. shipments in the first quarter of 2008? What are seasonally-adjusted Mac (end of assignment) 9

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your

More information

Advanced Forecasting Techniques and Models: ARIMA

Advanced Forecasting Techniques and Models: ARIMA Advanced Forecasting Techniques and Models: ARIMA Short Examples Series using Risk Simulator For more information please visit: www.realoptionsvaluation.com or contact us at: [email protected]

More information

Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB

Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB DIRECTIONS: Welcome! Your TA will help you apply your Calculator and MINITAB to review Business Stats, and will

More information

DIRECTIONS. Exercises (SE) file posted on the Stats website, not the textbook itself. See How To Succeed With Stats Homework on Notebook page 7!

DIRECTIONS. Exercises (SE) file posted on the Stats website, not the textbook itself. See How To Succeed With Stats Homework on Notebook page 7! Stats for Strategy HOMEWORK 3 (Topics 4 and 5) (revised spring 2015) DIRECTIONS Data files are available from the main Stats website for many exercises. (Smaller data sets for other exercises can be typed

More information

Spreadsheet software for linear regression analysis

Spreadsheet software for linear regression analysis Spreadsheet software for linear regression analysis Robert Nau Fuqua School of Business, Duke University Copies of these slides together with individual Excel files that demonstrate each program are available

More information

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships

More information

How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

More information

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

More information

Rob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1

Rob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4

More information

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

More information

Directions for using SPSS

Directions for using SPSS Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

More information

Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

More information

5. Multiple regression

5. Multiple regression 5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

More information

MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal

MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims

More information

Forecasting in STATA: Tools and Tricks

Forecasting in STATA: Tools and Tricks Forecasting in STATA: Tools and Tricks Introduction This manual is intended to be a reference guide for time series forecasting in STATA. It will be updated periodically during the semester, and will be

More information

Scatter Plot, Correlation, and Regression on the TI-83/84

Scatter Plot, Correlation, and Regression on the TI-83/84 Scatter Plot, Correlation, and Regression on the TI-83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page

More information

Interrupted time series (ITS) analyses

Interrupted time series (ITS) analyses Interrupted time series (ITS) analyses Table of Contents Introduction... 2 Retrieving data from printed ITS graphs... 3 Organising data... 3 Analysing data (using SPSS/PASW Statistics)... 6 Interpreting

More information

Module 6: Introduction to Time Series Forecasting

Module 6: Introduction to Time Series Forecasting Using Statistical Data to Make Decisions Module 6: Introduction to Time Series Forecasting Titus Awokuse and Tom Ilvento, University of Delaware, College of Agriculture and Natural Resources, Food and

More information

2.2 Elimination of Trend and Seasonality

2.2 Elimination of Trend and Seasonality 26 CHAPTER 2. TREND AND SEASONAL COMPONENTS 2.2 Elimination of Trend and Seasonality Here we assume that the TS model is additive and there exist both trend and seasonal components, that is X t = m t +

More information

The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different)

Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different) Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different) Spreadsheets are computer programs that allow the user to enter and manipulate numbers. They are capable

More information

Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

More information

USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY

USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Paper PO10 USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Beatrice Ugiliweneza, University of Louisville, Louisville, KY ABSTRACT Objectives: To forecast the sales made by

More information

Using Microsoft Excel to Plot and Analyze Kinetic Data

Using Microsoft Excel to Plot and Analyze Kinetic Data Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type

More information

Microsoft Excel Tutorial

Microsoft Excel Tutorial Microsoft Excel Tutorial by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright August, 2000 by James

More information

Data analysis and regression in Stata

Data analysis and regression in Stata Data analysis and regression in Stata This handout shows how the weekly beer sales series might be analyzed with Stata (the software package now used for teaching stats at Kellogg), for purposes of comparing

More information

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program. Statistics Module Part 3 2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

More information

Estimating a market model: Step-by-step Prepared by Pamela Peterson Drake Florida Atlantic University

Estimating a market model: Step-by-step Prepared by Pamela Peterson Drake Florida Atlantic University Estimating a market model: Step-by-step Prepared by Pamela Peterson Drake Florida Atlantic University The purpose of this document is to guide you through the process of estimating a market model for the

More information

COMP6053 lecture: Time series analysis, autocorrelation. [email protected]

COMP6053 lecture: Time series analysis, autocorrelation. jn2@ecs.soton.ac.uk COMP6053 lecture: Time series analysis, autocorrelation [email protected] Time series analysis The basic idea of time series analysis is simple: given an observed sequence, how can we build a model that

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

More information

Using Excel for Statistical Analysis

Using Excel for Statistical Analysis Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure

More information

0 Introduction to Data Analysis Using an Excel Spreadsheet

0 Introduction to Data Analysis Using an Excel Spreadsheet Experiment 0 Introduction to Data Analysis Using an Excel Spreadsheet I. Purpose The purpose of this introductory lab is to teach you a few basic things about how to use an EXCEL 2010 spreadsheet to do

More information

Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

More information

Moderation. Moderation

Moderation. Moderation Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

More information

Introduction to Regression and Data Analysis

Introduction to Regression and Data Analysis Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

More information

Figure 1. An embedded chart on a worksheet.

Figure 1. An embedded chart on a worksheet. 8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the

More information

2. Simple Linear Regression

2. Simple Linear Regression Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

More information

Simple Linear Regression, Scatterplots, and Bivariate Correlation

Simple Linear Regression, Scatterplots, and Bivariate Correlation 1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

Logs Transformation in a Regression Equation

Logs Transformation in a Regression Equation Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this

More information

Scatter Plots with Error Bars

Scatter Plots with Error Bars Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

More information

CB Predictor 1.6. User Manual

CB Predictor 1.6. User Manual CB Predictor 1.6 User Manual This manual, and the software described in it, are furnished under license and may only be used or copied in accordance with the terms of the license agreement. Information

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

c 2015, Jeffrey S. Simonoff 1

c 2015, Jeffrey S. Simonoff 1 Modeling Lowe s sales Forecasting sales is obviously of crucial importance to businesses. Revenue streams are random, of course, but in some industries general economic factors would be expected to have

More information

Time Series Analysis: Basic Forecasting.

Time Series Analysis: Basic Forecasting. Time Series Analysis: Basic Forecasting. As published in Benchmarks RSS Matters, April 2015 http://web3.unt.edu/benchmarks/issues/2015/04/rss-matters Jon Starkweather, PhD 1 Jon Starkweather, PhD [email protected]

More information

Formula for linear models. Prediction, extrapolation, significance test against zero slope.

Formula for linear models. Prediction, extrapolation, significance test against zero slope. Formula for linear models. Prediction, extrapolation, significance test against zero slope. Last time, we looked the linear regression formula. It s the line that fits the data best. The Pearson correlation

More information

STATISTICS AND DATA ANALYSIS COR1-GB.1305.05 BLOCK 5 - FALL 2015

STATISTICS AND DATA ANALYSIS COR1-GB.1305.05 BLOCK 5 - FALL 2015 STERN SCHOOL OF BUSINESS NEW YORK UNIVERSITY STATISTICS AND DATA ANALYSIS COR1-GB.1305.05 BLOCK 5 - FALL 2015 COURSE SYLLABUS Professor Aaron Tenenbein Office: 853 Management Education Center Phone: (212)998-0474

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

TIME SERIES ANALYSIS & FORECASTING

TIME SERIES ANALYSIS & FORECASTING CHAPTER 19 TIME SERIES ANALYSIS & FORECASTING Basic Concepts 1. Time Series Analysis BASIC CONCEPTS AND FORMULA The term Time Series means a set of observations concurring any activity against different

More information

Copyright 2013 by Laura Schultz. All rights reserved. Page 1 of 7

Copyright 2013 by Laura Schultz. All rights reserved. Page 1 of 7 Using Your TI-83/84/89 Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

More information

MICROSOFT EXCEL 2007-2010 FORECASTING AND DATA ANALYSIS

MICROSOFT EXCEL 2007-2010 FORECASTING AND DATA ANALYSIS MICROSOFT EXCEL 2007-2010 FORECASTING AND DATA ANALYSIS Contents NOTE Unless otherwise stated, screenshots in this book were taken using Excel 2007 with a blue colour scheme and running on Windows Vista.

More information

Statistics 151 Practice Midterm 1 Mike Kowalski

Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and

More information

Free Excel add-in for linear regression and multivariate data analysis USER MANUAL

Free Excel add-in for linear regression and multivariate data analysis USER MANUAL USER MANUAL 1. Introduction 2. Defining variables as named ranges 3. Summary statistics and series plots 4. Correlations and scatterplot matrices 5. Specifying a regression model 6. The regression model

More information

11. Analysis of Case-control Studies Logistic Regression

11. Analysis of Case-control Studies Logistic Regression Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

More information

Scientific Graphing in Excel 2010

Scientific Graphing in Excel 2010 Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.

More information

Minitab Tutorials for Design and Analysis of Experiments. Table of Contents

Minitab Tutorials for Design and Analysis of Experiments. Table of Contents Table of Contents Introduction to Minitab...2 Example 1 One-Way ANOVA...3 Determining Sample Size in One-way ANOVA...8 Example 2 Two-factor Factorial Design...9 Example 3: Randomized Complete Block Design...14

More information

Promotional Forecast Demonstration

Promotional Forecast Demonstration Exhibit 2: Promotional Forecast Demonstration Consider the problem of forecasting for a proposed promotion that will start in December 1997 and continues beyond the forecast horizon. Assume that the promotion

More information

Chapter 25 Specifying Forecasting Models

Chapter 25 Specifying Forecasting Models Chapter 25 Specifying Forecasting Models Chapter Table of Contents SERIES DIAGNOSTICS...1281 MODELS TO FIT WINDOW...1283 AUTOMATIC MODEL SELECTION...1285 SMOOTHING MODEL SPECIFICATION WINDOW...1287 ARIMA

More information

1.1. Simple Regression in Excel (Excel 2010).

1.1. Simple Regression in Excel (Excel 2010). .. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under

More information

Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices: Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:

More information

Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

More information

Time Series Analysis of Aviation Data

Time Series Analysis of Aviation Data Time Series Analysis of Aviation Data Dr. Richard Xie February, 2012 What is a Time Series A time series is a sequence of observations in chorological order, such as Daily closing price of stock MSFT in

More information

SPSS Explore procedure

SPSS Explore procedure SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

More information

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

More information

INTRODUCTION TO MULTIPLE CORRELATION

INTRODUCTION TO MULTIPLE CORRELATION CHAPTER 13 INTRODUCTION TO MULTIPLE CORRELATION Chapter 12 introduced you to the concept of partialling and how partialling could assist you in better interpreting the relationship between two primary

More information

PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

Predictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 R-Sq = 0.0% R-Sq(adj) = 0.

Predictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 R-Sq = 0.0% R-Sq(adj) = 0. Statistical analysis using Microsoft Excel Microsoft Excel spreadsheets have become somewhat of a standard for data storage, at least for smaller data sets. This, along with the program often being packaged

More information

SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

More information

Activity 5. Two Hot, Two Cold. Introduction. Equipment Required. Collecting the Data

Activity 5. Two Hot, Two Cold. Introduction. Equipment Required. Collecting the Data . Activity 5 Two Hot, Two Cold How do we measure temperatures? In almost all countries of the world, the Celsius scale (formerly called the centigrade scale) is used in everyday life and in science and

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

More information

Getting started in Excel

Getting started in Excel Getting started in Excel Disclaimer: This guide is not complete. It is rather a chronicle of my attempts to start using Excel for data analysis. As I use a Mac with OS X, these directions may need to be

More information

Microsoft Excel Tutorial

Microsoft Excel Tutorial Microsoft Excel Tutorial Microsoft Excel spreadsheets are a powerful and easy to use tool to record, plot and analyze experimental data. Excel is commonly used by engineers to tackle sophisticated computations

More information

Module 5: Statistical Analysis

Module 5: Statistical Analysis Module 5: Statistical Analysis To answer more complex questions using your data, or in statistical terms, to test your hypothesis, you need to use more advanced statistical tests. This module reviews the

More information

Chapter 14. Web Extension: Financing Feedbacks and Alternative Forecasting Techniques

Chapter 14. Web Extension: Financing Feedbacks and Alternative Forecasting Techniques Chapter 14 Web Extension: Financing Feedbacks and Alternative Forecasting Techniques I n Chapter 14 we forecasted financial statements under the assumption that the firm s interest expense can be estimated

More information

Forecasting MasterClass

Forecasting MasterClass Forecasting MasterClass Tips and Techniques for Fine-Tuning Workload Predictions Meet the Panellists Jonty Pearce, Call Centre Helper Penny Reynolds, The Call Center School Dean Couchman, injixo Chris

More information

Module 3: Correlation and Covariance

Module 3: Correlation and Covariance Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

More information

Systat: Statistical Visualization Software

Systat: Statistical Visualization Software Systat: Statistical Visualization Software Hilary R. Hafner Jennifer L. DeWinter Steven G. Brown Theresa E. O Brien Sonoma Technology, Inc. Petaluma, CA Presented in Toledo, OH October 28, 2011 STI-910019-3946

More information

E x c e l 2 0 1 0 : Data Analysis Tools Student Manual

E x c e l 2 0 1 0 : Data Analysis Tools Student Manual E x c e l 2 0 1 0 : Data Analysis Tools Student Manual Excel 2010: Data Analysis Tools Chief Executive Officer, Axzo Press: Series Designer and COO: Vice President, Operations: Director of Publishing Systems

More information

5 Correlation and Data Exploration

5 Correlation and Data Exploration 5 Correlation and Data Exploration Correlation In Unit 3, we did some correlation analyses of data from studies related to the acquisition order and acquisition difficulty of English morphemes by both

More information

Call Centre Helper - Forecasting Excel Template

Call Centre Helper - Forecasting Excel Template Call Centre Helper - Forecasting Excel Template This is a monthly forecaster, and to use it you need to have at least 24 months of data available to you. Using the Forecaster Open the spreadsheet and enable

More information

TIPS FOR DOING STATISTICS IN EXCEL

TIPS FOR DOING STATISTICS IN EXCEL TIPS FOR DOING STATISTICS IN EXCEL Before you begin, make sure that you have the DATA ANALYSIS pack running on your machine. It comes with Excel. Here s how to check if you have it, and what to do if you

More information

XPost: Excel Workbooks for the Post-estimation Interpretation of Regression Models for Categorical Dependent Variables

XPost: Excel Workbooks for the Post-estimation Interpretation of Regression Models for Categorical Dependent Variables XPost: Excel Workbooks for the Post-estimation Interpretation of Regression Models for Categorical Dependent Variables Contents Simon Cheng [email protected] php.indiana.edu/~hscheng/ J. Scott Long [email protected]

More information

Chapter 27 Using Predictor Variables. Chapter Table of Contents

Chapter 27 Using Predictor Variables. Chapter Table of Contents Chapter 27 Using Predictor Variables Chapter Table of Contents LINEAR TREND...1329 TIME TREND CURVES...1330 REGRESSORS...1332 ADJUSTMENTS...1334 DYNAMIC REGRESSOR...1335 INTERVENTIONS...1339 TheInterventionSpecificationWindow...1339

More information

TIME SERIES ANALYSIS AS A MEANS OF MANAGERIA DECISION MAKING IN MANUFACTURING INDUSTRY

TIME SERIES ANALYSIS AS A MEANS OF MANAGERIA DECISION MAKING IN MANUFACTURING INDUSTRY TIME SERIES ANALYSIS AS A MEANS OF MANAGERIA DECISION MAKING IN MANUFACTURING INDUSTRY 1 Kuranga L.J, 2 Ishola James.A, and 3 Ibrahim Hamzat G. 1 Department of Statistics Kwara State Polytechnic Ilorin,Nigeria

More information

Time Series Analysis. 1) smoothing/trend assessment

Time Series Analysis. 1) smoothing/trend assessment Time Series Analysis This (not surprisingly) concerns the analysis of data collected over time... weekly values, monthly values, quarterly values, yearly values, etc. Usually the intent is to discern whether

More information

Outline: Demand Forecasting

Outline: Demand Forecasting Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of

More information

Updates to Graphing with Excel

Updates to Graphing with Excel Updates to Graphing with Excel NCC has recently upgraded to a new version of the Microsoft Office suite of programs. As such, many of the directions in the Biology Student Handbook for how to graph with

More information

Web Extension: Financing Feedbacks and Alternative Forecasting Techniques

Web Extension: Financing Feedbacks and Alternative Forecasting Techniques 19878_09W_p001-009.qxd 3/10/06 9:56 AM Page 1 C H A P T E R 9 Web Extension: Financing Feedbacks and Alternative Forecasting Techniques IMAGE: GETTY IMAGES, INC., PHOTODISC COLLECTION In Chapter 9 we forecasted

More information

Section 1: Simple Linear Regression

Section 1: Simple Linear Regression Section 1: Simple Linear Regression Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS I. Basic Course Information A. Course Number and Title: MATH 111H Statistics II Honors B. New or Modified Course:

More information

Univariate Regression

Univariate Regression Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

More information

STC: Descriptive Statistics in Excel 2013. Running Descriptive and Correlational Analysis in Excel 2013

STC: Descriptive Statistics in Excel 2013. Running Descriptive and Correlational Analysis in Excel 2013 Running Descriptive and Correlational Analysis in Excel 2013 Tips for coding a survey Use short phrases for your data table headers to keep your worksheet neat, you can always edit the labels in tables

More information

IBM SPSS Forecasting 22

IBM SPSS Forecasting 22 IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification

More information

TIME SERIES ANALYSIS

TIME SERIES ANALYSIS TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-0 02 [email protected]. Introduction Time series (TS) data refers to observations

More information