Choice Under Uncertainty Insurance Diversification & Risk Sharing AIG. Uncertainty
|
|
|
- Amy Mason
- 10 years ago
- Views:
Transcription
1 Uncertainty
2 Table of Contents 1 Choice Under Uncertainty Budget Constraint Preferences 2 Insurance Choice Framework Expected Utility Theory 3 Diversification & Risk Sharing 4 AIG
3 States of Nature and Contingent Plans States of Nature: fire destroys house (f) vs. no fire (nf) Probability of: fire = π f, no fire = π nf ; π f + π nf = 1 Fire causes loss of $L Contingent Plan: A state-contingent consumption plan: consumption level/bundle is different in each state (e.g. vacation only if no fire) Contracts may be state-contingent (e.g. insurer pays only if there is a fire)
4 Endowment Bundle Deriving a state-contingent budget constraint: where to start? Without insurance: c nf = m c f = m L Graph: C nf m The endowment bundle. m L C f
5 Budget Constraint Buy $K of fire insurance at price p. c nf = m pk c f = m L pk + K = m L + (1 p)k Solve for K, substitute: c nf = m pl 1 p p 1 p c f C nf m The endowment bundle. m L m pl p C f
6 Preferences We face a risky gamble U(c f, c nf ) captures attitude towards uncertainty/risk Risk averse vs. risk neutral Consider our three favorite examples: A Perfect Substitutes B Cobb-Douglas C Perfect Complements D Not sure E Don t have clicker yet CLICKER VOTE: which reflects extreme risk aversion?
7 Optimal Choice (Graph) Some insurance (+ or -) is preferred C nf m optimal affordable plan m L m pl p C f Comparative statics: risk aversion = K? p = K L = K? What about algebraic solution? But first...
8 Expected Utility Example: a lottery Win $90 or $0 equally likely U(90) = 12 and U(0) = 2 Expected Utility is EU =.5 U(90) +.5 U(0) = = 7. Expected Money is EM = = $45.
9 Risk Attitudes How do we characterize attitude towards risk? Recall: EU = 7 and EM = $45 U(45) > 7 = risk-averse U(45) < 7 = risk-loving U(45) = 7 = risk-neutral
10 Risk Attitudes We typically assume diminishing marginal utility (DMU) of wealth. 12 EU=7 2 $0 $45 $90 Wealth So EU < U(EM)... this implies risk aversion!
11 Risk Attitudes Example: Risk-loving preferences 12 EU=7 U($45) 2 $0 $45 $90 Wealth EU < U(EM)
12 Risk Attitudes Example: Risk-neutral preferences 12 U($45)= EU=7 2 $0 $45 $90 Wealth EU = U(EM)
13 Optimal Choice (Algebra) Calculating the MRS EU = π f U(c f ) + π nf U(c nf ) Indifference curve = constant EU Differentiate: deu = 0 = π f MU(c f )dc f + π nf MU(c nf )dc nf MRS = dc nf dc f = π f MU(c f ) π nf MU(c nf ) Solution satisfies p 1 p = π f MU(c f ) π nf MU(c nf ).
14 Competitive Insurance Free entry = zero expected economic profit So pk π f K (1 π f )0 = (p π f )K = 0. = p = π f Insurance is fair
15 Competitive Insurance With fair insurance, rational choice satisfies π f π nf = π f 1 π f = p 1 p = π f MU(c f ) π nf MU(c nf ). In other words, MU(c f ) = MU(c nf ) Risk-aversion = c f = c n f Full insurance!
16 Not-Fair Insurance Suppose insurers make positive expected economic profit. pk π f K (1 π f )0 = (p π f )K > 0 Then p > π f and p 1 p > = MU(c f ) > MU(c nf ) π f 1 π f Risk-averse = c f < c nf : less than full (not-fair) insurance
17 Demand for Insurance: EU Perspective Certainty Equivalent = dollar amount you would need to have with certainty to make you indifferent to the gamble U(CE) = EU EM CE = willingness to pay for full-insurance (length of red line) 12 EU=7 =U(CE) 2 $0 CE $45 $90 Wealth
18 Proposed Gamble I flip a fair coin. Heads: I pay you $120; tails: you pay me $100. Any takers? A Accept B No thank you! CLICKER VOTE:
19 Proposed Gamble: II What if I offered this same gamble at the beginning of every lecture (and you had to tell me today what you would choose each time)? A Accept every time B Reject every time C Some combination CLICKER VOTE:
20 Analysis Why is the same gamble more attractive when it is repeated? Each gamble has positive expected value Each coin toss is independent Law of Large Numbers: expected money from compound gamble = N times the EM = a big positive number Portfolio of gambles is diverse, so very little chance of net loss
21 Diversification Example: Two firms, A and B. Shares cost $10 With prob =.5, Π A = 100 and Π B = 20 With prob =.5, Π A = 20 and Π B = 100 You have $100 to invest. How?
22 Diversification Example: Buy only firm A s stock? $100/10 = 10 shares Earn $1000 w/ prob.5 and $200 w/ prob.5 Expected earning: $500 + $100 = $600 Same for buying only B
23 Diversification Example: Buy 5 shares of each firm? Earn $600 for sure Diversification has maintained expected earnings while lowering risk Typically there s a tradeoff between earnings and risk
24 Recap What are rational responses to risk? Buying insurance A diverse portfolio of contingent consumption goods (assets)
25 AIG: WTF? How does this help us understand what big insurance/financial companies like AIG are supposed to do? You buy insurance in response to risk Insurance company gets your premium, but now faces risk of having to pay claim To the extent that claims are independent, this is ok for them because they have a diverse portfolio of risks Same w/ home lenders: they get your mortgage payments, but lose if you default To diversify risk, lenders wad mortgages together into bundles, then sell them (in pieces) as relatively safe (diversified) securities Thus, our risk and insurance courses through the veins of the financial system
26 AIG: WTF? So what can and did go wrong? Diversification works if risks are independent, but not if correlated. My proposed gamble: imagine if I decided outcome w/ one coin-toss at the end of the quarter. Taker? Risk of house burning down: Seattle vs. SoCal Wildfires, earthquakes, hurricanes can wipe out entire cities/regions at once Natural disasters are disasters for insurers Insurers know this: there is an enormous re-insurance industry
27 AIG: WTF? So what can and did go wrong? Lenders/financiers were not prepared for the collapse of the housing bubble Housing crisis = financial crisis = credit crisis = baaad recession
Lecture 11 Uncertainty
Lecture 11 Uncertainty 1. Contingent Claims and the State-Preference Model 1) Contingent Commodities and Contingent Claims Using the simple two-good model we have developed throughout this course, think
Choice Under Uncertainty
Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
Intermediate Microeconomics (22014)
Intermediate Microeconomics (22014) I. Consumer Instructor: Marc Teignier-Baqué First Semester, 2011 Outline Part I. Consumer 1. umer 1.1 Budget Constraints 1.2 Preferences 1.3 Utility Function 1.4 1.5
Demand and supply of health insurance. Folland et al Chapter 8
Demand and supply of health Folland et al Chapter 8 Chris Auld Economics 317 February 9, 2011 What is insurance? From an individual s perspective, insurance transfers wealth from good states of the world
.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106.
Chapter 16. Risk and Uncertainty Part A 2009, Kwan Choi Expected Value X i = outcome i, p i = probability of X i EV = pix For instance, suppose a person has an idle fund, $100, for one month, and is considering
Economics 1011a: Intermediate Microeconomics
Lecture 11: Choice Under Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Tuesday, October 21, 2008 Last class we wrapped up consumption over time. Today we
Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility
Introduction to Game Theory IIIii Payoffs: Probability and Expected Utility Lecture Summary 1. Introduction 2. Probability Theory 3. Expected Values and Expected Utility. 1. Introduction We continue further
Chapter 14 Risk Analysis
Chapter 14 Risk Analysis 1 Frequency definition of probability Given a situation in which a number of possible outcomes might occur, the probability of an outcome is the proportion of times that it occurs
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004 Outline 1 Uncertainty and asset prices 2 Informational efficiency - rational expectations, random walks 3 Asymmetric information - lemons,
1 Uncertainty and Preferences
In this chapter, we present the theory of consumer preferences on risky outcomes. The theory is then applied to study the demand for insurance. Consider the following story. John wants to mail a package
Decision & Risk Analysis Lecture 6. Risk and Utility
Risk and Utility Risk - Introduction Payoff Game 1 $14.50 0.5 0.5 $30 - $1 EMV 30*0.5+(-1)*0.5= 14.5 Game 2 Which game will you play? Which game is risky? $50.00 Figure 13.1 0.5 0.5 $2,000 - $1,900 EMV
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)
Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is
Lecture 10 - Risk and Insurance
Lecture 10 - Risk and Insurance 14.03 Spring 2003 1 Risk Aversion and Insurance: Introduction To have a passably usable model of choice, we need to be able to say something about how risk affects choice
Risk and Uncertainty. Vani K Borooah University of Ulster
Risk and Uncertainty Vani K Borooah University of Ulster Basic Concepts Gamble: An action with more than one possible outcome, such that with each outcome there is an associated probability of that outcome
Economics 1011a: Intermediate Microeconomics
Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore
Chapter 5 Uncertainty and Consumer Behavior
Chapter 5 Uncertainty and Consumer Behavior Questions for Review 1. What does it mean to say that a person is risk averse? Why are some people likely to be risk averse while others are risk lovers? A risk-averse
Notes - Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov).
Notes - Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov). These payments are called premiums. Insurer promises to make a
Intermediate Micro. Expected Utility
Intermediate Micro Expected Utility Workhorse model of intermediate micro Utility maximization problem Consumers Max U(x,y) subject to the budget constraint, I=P x x + P y y Health Economics Spring 2015
CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS
CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e). (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional
Chapter 4 Problems and Solutions
ECO 3223 - Spring 2007 Chapter 4 1) Compute the future value of $100 at an 8 percent interest rate five, ten and fifteen years into the future. Future value in 5 years = $100*(1.08) 5 = $146.93 Future
Lecture 1: Asset Allocation
Lecture 1: Asset Allocation Investments FIN460-Papanikolaou Asset Allocation I 1/ 62 Overview 1. Introduction 2. Investor s Risk Tolerance 3. Allocating Capital Between a Risky and riskless asset 4. Allocating
Chapter 25: Exchange in Insurance Markets
Chapter 25: Exchange in Insurance Markets 25.1: Introduction In this chapter we use the techniques that we have been developing in the previous 2 chapters to discuss the trade of risk. Insurance markets
Decision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7
Capital Allocation Between The Risky And The Risk- Free Asset Chapter 7 Investment Decisions capital allocation decision = choice of proportion to be invested in risk-free versus risky assets asset allocation
CHAPTER 6 RISK AND RISK AVERSION
CHAPTER 6 RISK AND RISK AVERSION RISK AND RISK AVERSION Risk with Simple Prospects Risk, Speculation, and Gambling Risk Aversion and Utility Values Risk with Simple Prospects The presence of risk means
Answer Key to Problem Set #2: Expected Value and Insurance
Answer Key to Problem Set #2: Expected Value and Insurance 1. (a) We have u (w) = 1 2 w 1 2, so u (w) = 1 4 w 3 2. As we will see below, u (w) < 0 indicates that the individual is risk-averse. (b) The
ECO 317 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 21 Insurance, Portfolio Choice - Questions
ECO 37 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 2 Insurance, Portfolio Choice - Questions Important Note: To get the best value out of this precept, come with your calculator or
UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A)
UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) The economic agent (PR 3.1-3.4) Standard economics vs. behavioral economics Lectures 1-2 Aug. 15, 2009 Prologue
Moral Hazard and Adverse Selection. Topic 6
Moral Hazard and Adverse Selection Topic 6 Outline 1. Government as a Provider of Insurance. 2. Adverse Selection and the Supply of Insurance. 3. Moral Hazard. 4. Moral Hazard and Incentives in Organizations.
Lecture notes for Choice Under Uncertainty
Lecture notes for Choice Under Uncertainty 1. Introduction In this lecture we examine the theory of decision-making under uncertainty and its application to the demand for insurance. The undergraduate
We never talked directly about the next two questions, but THINK about them they are related to everything we ve talked about during the past week:
ECO 220 Intermediate Microeconomics Professor Mike Rizzo Third COLLECTED Problem Set SOLUTIONS This is an assignment that WILL be collected and graded. Please feel free to talk about the assignment with
Midterm Exam:Answer Sheet
Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the
Problem Set #3 Answer Key
Problem Set #3 Answer Key Economics 305: Macroeconomic Theory Spring 2007 1 Chapter 4, Problem #2 a) To specify an indifference curve, we hold utility constant at ū. Next, rearrange in the form: C = ū
Homework Assignment #2: Answer Key
Homework Assignment #2: Answer Key Chapter 4: #3 Assuming that the current interest rate is 3 percent, compute the value of a five-year, 5 percent coupon bond with a face value of $,000. What happens if
Credit Lectures 26 and 27
Lectures 26 and 27 24 and 29 April 2014 Operation of the Market may not function smoothly 1. Costly/impossible to monitor exactly what s done with loan. Consumption? Production? Risky investment? Involuntary
Review for Exam 2. Instructions: Please read carefully
Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note
3 Introduction to Assessing Risk
3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated
An Introduction to Utility Theory
An Introduction to Utility Theory John Norstad [email protected] http://www.norstad.org March 29, 1999 Updated: November 3, 2011 Abstract A gentle but reasonably rigorous introduction to utility
Combining decision analysis and portfolio management to improve project selection in the exploration and production firm
Journal of Petroleum Science and Engineering 44 (2004) 55 65 www.elsevier.com/locate/petrol Combining decision analysis and portfolio management to improve project selection in the exploration and production
Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS
Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 5-1 a. Stand-alone risk is only a part of total risk and pertains to the risk an investor takes by holding only one asset. Risk is
Economics 206 Problem Set 1 Winter 2007 Vincent Crawford
Economics 206 Problem Set 1 Winter 2007 Vincent Crawford This problem set, which is optional, covers the material in the first half of the course, roughly in the order in which topics are discussed in
1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises.
1. Solutions to PS 1: 1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises. 7. The bill has a maturity of one-half year, and an annualized
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability
Lecture Note 14: Uncertainty, Expected Utility Theory and the Market for Risk
Lecture Note 14: Uncertainty, Expected Utility Theory and the Market for Risk David Autor, Massachusetts Institute of Technology 14.03/14.003, Microeconomic Theory and Public Policy, Fall 2010 1 Risk Aversion
2. Information Economics
2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many
Decision making in the presence of uncertainty II
CS 274 Knowledge representation Lecture 23 Decision making in the presence of uncertainty II Milos Hauskrecht [email protected] 5329 Sennott Square Information-gathering actions Many actions and their
Problem Set 1 Solutions
Health Economics Economics 156 Prof. Jay Bhattacharya Problem Set 1 Solutions A. Risk Aversion Consider a risk averse consumer with probability p of becoming sick. Let I s be the consumer s income if he
University of Oslo Department of Economics
University of Oslo Department of Economics Exam: ECON3200/4200 Microeconomics and game theory Date of exam: Tuesday, November 26, 2013 Grades are given: December 17, 2013 Duration: 14:30-17:30 The problem
An Improved Measure of Risk Aversion
Sherman D. Hanna 1 and Suzanne Lindamood 2 An Improved Measure of Risk Aversion This study investigates financial risk aversion using an improved measure based on income gambles and rigorously related
Economics of Insurance
Economics of Insurance In this last lecture, we cover most topics of Economics of Information within a single application. Through this, you will see how the differential informational assumptions allow
Informatics 2D Reasoning and Agents Semester 2, 2015-16
Informatics 2D Reasoning and Agents Semester 2, 2015-16 Alex Lascarides [email protected] Lecture 29 Decision Making Under Uncertainty 24th March 2016 Informatics UoE Informatics 2D 1 Where are we? Last
Part I. Gambling and Information Theory. Information Theory and Networks. Section 1. Horse Racing. Lecture 16: Gambling and Information Theory
and Networks Lecture 16: Gambling and Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ Part I Gambling and School of Mathematical
a. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10?
Return, Risk, and Risk Aversion Holding Period Return Ending Price - Beginning Price + Intermediate Income Return = Beginning Price R P t+ t+ = Pt + Dt P t An Example You bought IBM stock at $40 last month.
Social Insurance (Chapter-12) Part-1
(Chapter-12) Part-1 Background Dramatic change in the composition of government spending in the U.S. over time Background Social insurance programs: Government interventions in the provision of insurance
Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.
374 Chapter 8 The Mathematics of Likelihood 8.3 Expected Value Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.
The Theory of Investment
CHAPTER 17 Modified for ECON 2204 by Bob Murphy 2016 Worth Publishers, all rights reserved IN THIS CHAPTER, YOU WILL LEARN: leading theories to explain each type of investment why investment is negatively
1. Overconfidence {health care discussion at JD s} 2. Biased Judgments. 3. Herding. 4. Loss Aversion
In conditions of laissez-faire the avoidance of wide fluctuations in employment may, therefore, prove impossible without a far-reaching change in the psychology of investment markets such as there is no
SAMPLE MID-TERM QUESTIONS
SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,
Lecture 13: Risk Aversion and Expected Utility
Lecture 13: Risk Aversion and Expected Utility Uncertainty over monetary outcomes Let x denote a monetary outcome. C is a subset of the real line, i.e. [a, b]. A lottery L is a cumulative distribution
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that
Asset Pricing. Chapter IV. Measuring Risk and Risk Aversion. June 20, 2006
Chapter IV. Measuring Risk and Risk Aversion June 20, 2006 Measuring Risk Aversion Utility function Indifference Curves U(Y) tangent lines U(Y + h) U[0.5(Y + h) + 0.5(Y h)] 0.5U(Y + h) + 0.5U(Y h) U(Y
Economics 2020a / HBS 4010 / HKS API-111 Fall 2011 Practice Problems for Lectures 1 to 11
Economics 2020a / HBS 4010 / HKS API-111 Fall 2011 Practice Problems for Lectures 1 to 11 LECTURE 1: BUDGETS AND REVEALED PREFERENCE 1.1. Quantity Discounts and the Budget Constraint Suppose that a consumer
Lecture 15. Ranking Payoff Distributions: Stochastic Dominance. First-Order Stochastic Dominance: higher distribution
Lecture 15 Ranking Payoff Distributions: Stochastic Dominance First-Order Stochastic Dominance: higher distribution Definition 6.D.1: The distribution F( ) first-order stochastically dominates G( ) if
The Term Structure of Interest Rates CHAPTER 13
The Term Structure of Interest Rates CHAPTER 13 Chapter Summary Objective: To explore the pattern of interest rates for different-term assets. The term structure under certainty Forward rates Theories
Lecture 15: Final Topics on CAPM
Lecture 15: Final Topics on CAPM Final topics on estimating and using beta: the market risk premium putting it all together Final topics on CAPM: Examples of firm and market risk Shorting Stocks and other
1 Portfolio mean and variance
Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring
1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
Chapter 6 The Tradeoff Between Risk and Return
Chapter 6 The Tradeoff Between Risk and Return MULTIPLE CHOICE 1. Which of the following is an example of systematic risk? a. IBM posts lower than expected earnings. b. Intel announces record earnings.
Health Economics. University of Linz & Demand and supply of health insurance. Gerald J. Pruckner. Lecture Notes, Summer Term 2010
Health Economics Demand and supply of health insurance University of Linz & Gerald J. Pruckner Lecture Notes, Summer Term 2010 Gerald J. Pruckner Health insurance 1 / 25 Introduction Insurance plays a
CHAPTER 4 Consumer Choice
CHAPTER 4 Consumer Choice CHAPTER OUTLINE 4.1 Preferences Properties of Consumer Preferences Preference Maps 4.2 Utility Utility Function Ordinal Preference Utility and Indifference Curves Utility and
Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:
Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position
Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model
Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model These notes consider the single-period model in Kyle (1985) Continuous Auctions and Insider Trading, Econometrica 15,
Economics 101A (Lecture 26) Stefano DellaVigna
Economics 101A (Lecture 26) Stefano DellaVigna April 30, 2015 Outline 1. The Takeover Game 2. Hidden Type (Adverse Selection) 3. Empirical Economics: Intro 4. Empirical Economics: Home Insurance 5. Empirical
Introduction. Asymmetric Information and Adverse selection. Problem of individual insurance. Health Economics Bill Evans
Introduction Asymmetric Information and Adverse selection Health Economics Bill Evans Intermediate micro build models of individual, firm and market behavior Most models assume actors fully informed about
CHAPTER 6. Topics in Chapter. What are investment returns? Risk, Return, and the Capital Asset Pricing Model
CHAPTER 6 Risk, Return, and the Capital Asset Pricing Model 1 Topics in Chapter Basic return concepts Basic risk concepts Stand-alone risk Portfolio (market) risk Risk and return: CAPM/SML 2 What are investment
Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4
Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with
Module 5. Attitude to risk. In this module we take a look at risk management and its importance. TradeSense Australia, June 2011, Edition 10
Attitude to risk Module 5 Attitude to risk In this module we take a look at risk management and its importance. TradeSense Australia, June 2011, Edition 10 Attitude to risk In the previous module we looked
Problem Set 9 Solutions
Problem Set 9 s 1. A monopoly insurance company provides accident insurance to two types of customers: low risk customers, for whom the probability of an accident is 0.25, and high risk customers, for
LECTURES ON REAL OPTIONS: PART I BASIC CONCEPTS
LECTURES ON REAL OPTIONS: PART I BASIC CONCEPTS Robert S. Pindyck Massachusetts Institute of Technology Cambridge, MA 02142 Robert Pindyck (MIT) LECTURES ON REAL OPTIONS PART I August, 2008 1 / 44 Introduction
CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM)
CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) Answers to Concepts Review and Critical Thinking Questions 1. Some of the risk in holding any asset is unique to the asset in question.
Practice Problems for FE 486B Thursday, February 2, 2012. a) Which choice should you make if the interest rate is 3 percent? If it is 6 percent?
Practice Problems for FE 486B Thursday, February 2, 2012 1) Suppose you win the lottery. You have a choice between receiving $100,000 a year for twenty years or an immediate payment of $1,200,000. a) Which
Price Discrimination: Part 2. Sotiris Georganas
Price Discrimination: Part 2 Sotiris Georganas 1 More pricing techniques We will look at some further pricing techniques... 1. Non-linear pricing (2nd degree price discrimination) 2. Bundling 2 Non-linear
Chapter 5 End of Chapter Review Question KEY
Chapter End of Chapter Review Question KEY - (Key Question) Complete the following table and answer the questions below: Units consumed Total utility Marginal utility 0 0 0 0 0 a. At which rate is total
Introduction to Investments FINAN 3050
Introduction to Investments FINAN 3050 : Introduction (Syllabus) Investments Background and Issues (Chapter 1) Financial Securities (Chapter 2) Syllabus General Information The course is going to be organized
Dynamic Trading Strategies
Dynamic Trading Strategies Concepts and Buzzwords Multi-Period Bond Model Replication and Pricing Using Dynamic Trading Strategies Pricing Using Risk- eutral Probabilities One-factor model, no-arbitrage
Attitude to Risk Questionnaire.
Attitude to Risk Questionnaire. 1. In an effort to grow your wealth, can you afford to lose any money over the next two years? No Yes 2. When do you expect to start withdrawing money from your investment?
You Are What You Bet: Eliciting Risk Attitudes from Horse Races
You Are What You Bet: Eliciting Risk Attitudes from Horse Races Pierre-André Chiappori, Amit Gandhi, Bernard Salanié and Francois Salanié March 14, 2008 What Do We Know About Risk Preferences? Not that
The relationship between exchange rates, interest rates. In this lecture we will learn how exchange rates accommodate equilibrium in
The relationship between exchange rates, interest rates In this lecture we will learn how exchange rates accommodate equilibrium in financial markets. For this purpose we examine the relationship between
AK 4 SLUTSKY COMPENSATION
AK 4 SLUTSKY COMPENSATION ECON 210 A. JOSEPH GUSE (1) (a) First calculate the demand at the original price p b = 2 b(p b,m) = 1000 20 5p b b 0 = b(2) = 40 In general m c = m+(p 1 b p0 b )b 0. If the price
ATTITUDE TO RISK. In this module we take a look at risk management and its importance. MODULE 5 INTRODUCTION PROGRAMME NOVEMBER 2012, EDITION 18
INTRODUCTION PROGRAMME MODULE 5 ATTITUDE TO RISK In this module we take a look at risk management and its importance. NOVEMBER 2012, EDITION 18 CONTENTS 3 6 RISK MANAGEMENT 2 In the previous module we
How to Win the Stock Market Game
How to Win the Stock Market Game 1 Developing Short-Term Stock Trading Strategies by Vladimir Daragan PART 1 Table of Contents 1. Introduction 2. Comparison of trading strategies 3. Return per trade 4.
