Analysis of HVAC Control Strategies

Size: px
Start display at page:

Download "Analysis of HVAC Control Strategies"

Transcription

1 PUBLICATION DATE: Q REF NUMBER: HVAC SWGII HVAC SPECIAL WORKING GROUP Analysis of HVAC Control Strategies 06

2 Table of Contents 1 Introduction 2 2 Scope 3 3 Analysis Strategy Strategy Strategy Strategy Strategy Strategy Comparison 10 5 Conclusion 12 1

3 1 Introduction Heating, ventilation and air conditioning (HVAC) systems control the temperature, humidity and quality of air in buildings to a set of chosen conditions. This is achieved by transferring heat and moisture into and out of the air. Heating systems increase the temperature in a space. Ventilation systems supply air to the space and extract polluted air from it. Cooling is needed to bring the temperature down in spaces where people, equipment or the sun give rise to heat gains. With ever-growing energy awareness and rising fuel prices, facilities must shoulder the increasing costs of maintaining the correct conditions in production and cleanroom areas, while providing the correct conditions for employees in other areas of the site. Fuel efficiency and sustainability are now as important as maintaining comfort in buildings. As part of SEI s Heating Ventilation and Air Conditioning Working Group, it was proposed that an analysis of different forms of control strategies used in operating Air Handling Units (AHU) be carried out. This required modelling and simulating various control options and AHU configurations to investigate their impact on energy consumption and running costs. It meant breaking down the energy required by each section of the unit including the heating coils, cooling coils and humidifiers based on a year s simulation data generated by Integrated Environmental Solution s Virtual Environment, IES VE. The aim of this study is to illustrate the impact various types of control strategies have on the energy consumption and operational costs of air handling units. A standard AHU system is used in this analysis. It consists of a frost coil, a cooling coil, a heating coil and a humidifier in series, with later additions such as return ductwork, a mixing box and modulating dampers as different strategies are investigated. Each strategy provides a constant volume of supply air. 2

4 2 Scope Six different control strategies were examined as part of the study. Typically supply air is delivered into zones to maintain the temperature and humidity at setpoints which are critical to the production process being undertaken in an area. From experience the strategies that were modelled contain the most common configurations of components and operating setpoints that are used in installations throughout the country. Below is a list of the options analysed through modelling and simulation, to give general guidelines for energy savings that may be obtained by implementing different control and operational strategies in AHUs. All the options are based on delivering 1m 3 /sec of air at the specified setpoints. Strategy 1: The supply-air temperature is fixed at 21 C with a zone relative humidity requirement of 45%. There is no dead-band on these setpoints and the AHU operates on full fresh air. Strategy 2: The supply-air temperature is 21 C ± 1 C with a zone relative humidity requirement of 45% ± 15%. The AHU operates on full fresh air. Strategy 3: The supply-air temperature is fixed at 21 C with a zone relative humidity requirement of 45%. There is no dead-band on these setpoints and the AHU operates on 15% fresh air and 85% return air. Strategy 4: The supply-air temperature is 21 C ± 1 C with a zone relative humidity requirement of 45% ± 15%. The AHU operates on 15% fresh air and 85% return air. Strategy 5: The supply-air temperature is fixed at 21 C with a zone relative humidity requirement of 45%. There is no dead-band on these setpoints and the AHU has a modulating fresh-air intake. Strategy 6: The supply-air temperature is 21 C ± 1 C with a zone relative humidity requirement of 45% ± 15%. The AHU has a modulating fresh-air intake. 3

5 3 Analysis 3.1 Strategy 1 The first option has very tight control over the supply-air state. It has a fixed temperature of 21 C and a relative humidity of 45%. There is no dead-band on these setpoints, and the incoming air for the AHU is 100% fresh air at a rate of 1m 3 /sec. In this mode of operation, the AHU consumed 215,064 kwh of thermal energy at a cost of 10,753 and 12,794kWh of electrical energy at a cost of 1,407 per annum. 1 These are the baseline figures against which the other operational strategies will be compared. The figures are illustrated in the following flow diagram. The energy consumption and cost lines are weighted to represent the actual usage of each component. Figure 1: Strategy 1 component energy consumption and associated costs 1 For the purposes of this analysis, assumed costs of 0.11/kWh for electrical energy and 0.05/kWh for thermal energy were used. 4

6 3.2 Strategy 2 The second option is very similar to the first, except that the controls on the supply-air setpoints are loosened. The supply-air temperature is controlled at 21 C, with a tolerance of +/- 1 C. A relative humidity of 45%, with a tolerance of +/- 15%, is used as the setpoint. The incoming air for the AHU is still 100% fresh air at a rate of 1m 3 /sec. In this mode of operation, the AHU consumed 170,856 kwh of thermal energy at a cost of 8,543 and 7,355 kwh of electrical energy at a cost of 809 per annum. Compared to Option 1, this led to: a 21% reduction in the thermal energy consumption, a 43% reduction in electrical energy consumption a 23% overall improvement in the operational cost of the unit Figure 2: Strategy 2 component energy consumption and associated costs 5

7 3.3 Strategy 3 The third option includes return ductwork and a mixing box. The supply air comprises 15% fresh air and 85% re-circulated air. This is controlled in the mixing box. The supply air exiting the AHU has a fixed temperature of 21 C and a relative humidity of 45%. There is no dead-band on these setpoints. In this mode of operation, the AHU consumed 80,553 kwh of thermal energy at a cost of 4,028 and 12,855 kwh of electrical energy at a cost of 1,414 per annum. Compared to Option 1, this led to: a 63% reduction in the thermal energy consumption a slight 0.5% increase in electrical energy consumption a 55% overall improvement in the operational cost of the unit The minor increase in electrical energy consumption is due to (a) the air before the cooling coil being at a higher average temperature than in Option 1 and (b) the tight restrictions on the relative humidity of the supply air. Therefore, a larger cooling demand would be required when the moisture content of the air needs to be reduced. This is as a result of the mixing with the return air. Figure 3: Strategy 3 component energy consumption and associated costs 6

8 3.4 Strategy 4 The fourth option includes the return ductwork and the mixing box along with the loosening of the controls on the supply air setpoints. The temperature is controlled to 21 C with a tolerance of +/- 1 C, while a relative humidity of 45% with a tolerance of +/, while 15% is used as the setpoint. In this mode of operation, the AHU consumed 62,388 kwh of thermal energy at a cost of 3,119 and 8,815 kwh of electrical energy at a cost of 970 per annum. Compared to Option 1, this led to: a 71% reduction the thermal energy consumption a 31% reduction in the electrical energy consumption a 66% overall improvement in the operational cost of the unit Figure 4: Strategy 4 component energy consumption and associated costs 7

9 3.5 Strategy 5 The fifth option incorporates modulating dampers on the fresh-air intake and the return duct in order to get the optimum condition of supply air exiting the mixing box. This is done by using enthalpy control on the dampers. The supply air exiting the AHU has a fixed temperature of 21 C and a relative humidity of 45%. There is no dead-band on these setpoints. In this mode of operation, the AHU consumed 71,009 kwh of thermal energy at a cost of 3,550 and 13,725 kwh of electrical energy at a cost of 1,510 per annum. Compared to Option 1, this led to: a 67% reduction in the thermal energy consumption a 7% increase in the electrical energy consumption a 58% overall improvement in the operational cost of the unit The increase in electrical energy consumption is due to (a) the air before the cooling coil being at a higher average temperature than in Option 1 and (b) the tight restrictions on the relative humidity of the supply air. Therefore, a larger cooling demand would be required when the moisture content of the air needs to be reduced. This is as a result of the mixing with the return air. Figure 5: Strategy 5 component energy consumption and associated costs 8

10 3.6 Strategy 6 The sixth option incorporates the modulating dampers along with the loosening of the controls on the supply-air setpoints. The temperature is controlled at 21 C with a tolerance of +/- 1 C, while a relative humidity of 45% with a tolerance of +/- 15% is used as the setpoint. In this mode of operation, the AHU consumed 53,611 kwh of thermal energy at a cost of 2,681, and 8,111 kwh of electrical energy at a cost of 892 per annum. Compared to Option 1, this led to: a 75% reduction in the thermal energy consumption a 37% reduction in the electrical energy consumption a 71% overall improvement in the operational cost of the unit Figure 6: Strategy 6 component energy consumption and associated costs 9

11 4 Comparison Figure 7 shows the energy consumption of the various strategies. Between Strategy 1 and Strategy 6, the difference is significant: a 75% reduction in the thermal energy consumed by the AHU a 37% reduction in the electrical energy consumed by the AHU Figure 7: Comparison of energy consumption, from Option 1 to Option 6 Energy Consumption Comparison 250, ,000 Electrical Energy Thermal Energy Energy Consumption (kwh) 150, ,000 50,

12 The reduction in energy consumption is also borne out in a cost comparison of the various strategies, as shown in Figure 8. This illustrates a 71% reduction in the energy cost of delivering a metre cubed of conditioned air from 12,161 for the annual operation of Strategy 1 to 3,573 for the annual operation of Strategy 6. This is as a result of including re-circulating ductwork and modulating dampers, as well as more flexibility in supply-air setpoints. Figure 8: Comparison of the annual costs of Options 1 to 6 Cost Comparison 14,000 12,000 Electrical Energy Thermal Energy 10,000 Cost ( ) 8,000 6,000 4,000 2,

13 5 Conclusion The aim of this study is to illustrate the impact various types of control strategies have on the energy consumption and operational costs of air handling units. As can be seen from the simulation results employing a modulating damper mixing section in conjunction with setpoint deadbands results in the lowest energy consumption and operational costs of the six strategies investigated. There is a 71% reduction the operational cost from 12,161 to 3,573 per metre cubed of air delivered when Strategy 1 (full fresh air, with no setpoint deadbands) is compared to Strategy 6 (modulating damper control, with temperature and relative humidity deadbands). The use of recirculation ductwork, modulating dampers and a mixing section in an AHU has significant benefits. This operational strategy provides free heating and cooling by obtaining the optimum mixture of fresh outdoor air and re-circulated return air to achieve the most advantageous air condition exiting the mixing section of the unit. This minimises the load on the heating and cooling coils of the AHU. For example when you compare Strategy 2 (full fresh air, with temperature and relative humidity deadbands) to Strategy 6 (modulating damper control, with temperature and relative humidity deadbands) the benefit of employing modulating damper control to reduce the energy demanded by the AHU is apparent. There is a 62% reduction the operational cost from 9,325 to 3,573 per metre cubed of air delivered. The study also illustrates the increased operational costs that are incurred as a result of employing a close control strategy. The strategies with a deadband on the control setpoints show significantly less energy consumption and lower operational costs when compared to the same system with no setpoint deadband. This is illustrated in Error! Reference source not found.. Table 1: Operational cost reductions utilising deadbands. Full Fresh Air (Strategies 1 and 2) 15% Fresh Air (Strategies 3 and 4) Modulating Dampers (Strategies 5 and 6) No Deadband Deadband Percentage Reduction 12,161 9, % 9,352 5, % 5,060 3, % 12

14 Sustainable Energy Ireland Glasnevin, Dublin 9, Ireland Glas Naíon, Baile Átha Cliath 9, Éireann T info@sei.ie F Sustainable Energy Ireland is funded by the Irish Government under the National Development Plan with programmes part financed by the European Union.

Scope of Work. See www.sei.ie for resources available

Scope of Work. See www.sei.ie for resources available HVAC SWG Summary Background Pool energy-efficiency knowledge Increase cost-competitiveness Develop resources aimed at assisting in reducing HVAC energy consumption Address barriers to energy-saving HVAC

More information

Technology: Heating, Ventilation and Air Condition (HVAC) Zone Controls

Technology: Heating, Ventilation and Air Condition (HVAC) Zone Controls Accelerated Capital Allowances Eligibility Criteria Ref No.: HZC C2.1 Category: Process and Heating, Ventilation and Air conditioning (HVAC) Control Systems Technology: Heating, Ventilation and Air Condition

More information

Venice Library Humidity Study. for Williams Building Diagnostics, LLC 305 15 th Street West Bradenton, FL 34205. Report April 13, 2015

Venice Library Humidity Study. for Williams Building Diagnostics, LLC 305 15 th Street West Bradenton, FL 34205. Report April 13, 2015 for Williams Building Diagnostics, LLC 305 15 th Street West Bradenton, FL 34205 Report April 13, 2015 Moses & Associates, Inc. 2209 NW 40 th Terrace, Suite A Gainesville, FL 32605 FL License EB-0003097

More information

AIR COOLED CHILLER CHILLED WATER PUMP CONTROL: The chilled water pump with the lowest runtime will automatically start when the outside air temperature rises above the system enable setpoint. When the

More information

Glossary of HVAC Terms

Glossary of HVAC Terms Glossary of HVAC Terms Heating, Ventilation and Air Conditioning (HVAC) is a major sub- discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other

More information

Energy Saving Fact Sheet Air Conditioning

Energy Saving Fact Sheet Air Conditioning Energy Saving Fact Sheet Air Conditioning Get your air conditioning into better shape Everyone wants air conditioning. But don t let your existing system, or one that you re considering installing, burn

More information

HVAC Processes. Lecture 7

HVAC Processes. Lecture 7 HVAC Processes Lecture 7 Targets of Lecture General understanding about HVAC systems: Typical HVAC processes Air handling units, fan coil units, exhaust fans Typical plumbing systems Transfer pumps, sump

More information

Design Guide. Retrofitting Options For HVAC Systems In Live Performance Venues

Design Guide. Retrofitting Options For HVAC Systems In Live Performance Venues Design Guide Retrofitting Options For HVAC Systems In Live Performance Venues Heating, ventilation and air conditioning (HVAC) systems are major energy consumers in live performance venues. For this reason,

More information

By Tom Brooke PE, CEM

By Tom Brooke PE, CEM Air conditioning applications can be broadly categorized as either standard or critical. The former, often called comfort cooling, traditionally just controlled to maintain a zone setpoint dry bulb temperature

More information

Leveraging the Power of Intelligent Motor Control to Maximize HVAC System Efficiency

Leveraging the Power of Intelligent Motor Control to Maximize HVAC System Efficiency Leveraging the Power of Intelligent Motor Control to Maximize HVAC System Efficiency Because HVAC systems comprise a large amount of a building s operating costs, it makes sense to ensure these systems

More information

Variable Air Volume - VAV

Variable Air Volume - VAV Mode Enable Sensor Options Variable Air Volume - VAV The temperature of this sensor will determine if the unit is in heating, cooling or vent mode during occupied operation. The following options are available:

More information

Example Retrocommissioning Measure: Opening Throttled Discharge Valves

Example Retrocommissioning Measure: Opening Throttled Discharge Valves Opening Throttled Discharge Valves This 21-story building, constructed in 1997, is located in Oregon and contains 589,000 gross square feet of mostly office occupancy. The HVAC system includes six large

More information

How To Design A Building In New Delhi

How To Design A Building In New Delhi ENERGY EFFICIENT HVAC DESIGN FOR COMPOSITE CLIMATE Overview of Design Conditions: Air conditioning system consumes most of the energy that a building needs in its operation. In order to reduce energy consumption

More information

ENERGY EFFICIENT HVAC DESIGN FOR WARM-HUMID CLIMATE CLIMATE

ENERGY EFFICIENT HVAC DESIGN FOR WARM-HUMID CLIMATE CLIMATE ENERGY EFFICIENT HVAC DESIGN FOR WARM-HUMID CLIMATE CLIMATE Overview of Design Conditions: Air conditioning system consumes most of the energy that a building needs in its operation. In order to reduce

More information

Analysis of data centre cooling energy efficiency

Analysis of data centre cooling energy efficiency Analysis of data centre cooling energy efficiency An analysis of the distribution of energy overheads in the data centre and the relationship between economiser hours and chiller efficiency Liam Newcombe

More information

newsletter Let s take a high-level look at airside economizing: what it is, what it requires, and how it s done. How does economizer cooling work?

newsletter Let s take a high-level look at airside economizing: what it is, what it requires, and how it s done. How does economizer cooling work? engineers volume 35 2 newsletter providing insights for today s hvac system designer keeping cool with outdoor air Airside Economizers from the editor For the denizens of commercial buildings, comfort

More information

How To Get A Passive House

How To Get A Passive House Certificate Certified Passive House Component For cool, temperate climates, valid until 31 December 2015 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt GERMANY Category: Manufacturer: Product

More information

The THERMOSTAT THE EVOLUTION OF CAPABILITIES INTO A PLATFORM FOR ENERGY MANAGEMENT

The THERMOSTAT THE EVOLUTION OF CAPABILITIES INTO A PLATFORM FOR ENERGY MANAGEMENT The THERMOSTAT THE EVOLUTION OF CAPABILITIES INTO A PLATFORM FOR ENERGY MANAGEMENT Presented by: Michael Kuhlmann President Residential Control Systems Inc The Basics Thermostat Functions Measure Room

More information

The Business Case Annual fuel cost savings of 26% worth more than 28,000 Annual fuel savings of 1.3million kwh Annual CO2 savings of over 245 tonnes

The Business Case Annual fuel cost savings of 26% worth more than 28,000 Annual fuel savings of 1.3million kwh Annual CO2 savings of over 245 tonnes North Lanarkshire Council The Business Case Annual fuel cost savings of 26% worth more than 28,000 The Sir Matt Busby Sports Complex is an important local facility for the people of Bellshill, North Lanarkshire.

More information

5.6 Technical Specification: Premium Efficiency Electric Air Conditioning Equipment

5.6 Technical Specification: Premium Efficiency Electric Air Conditioning Equipment 5.6 Technical Specification: Premium Efficiency Electric Conditioning Equipment Small Premium Project Type: For Premium Conditioning Retrofit Projects: Projects that voluntarily replace existing unitary

More information

Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

More information

06150 PORVOO, FINLAND Pelican eco ED(D), Pelican eco EDE(D), Pelican eco EDW(D), Pelican eco EDX(D)

06150 PORVOO, FINLAND Pelican eco ED(D), Pelican eco EDE(D), Pelican eco EDW(D), Pelican eco EDX(D) Certificate Certified Passive House Component For cool, temperate climates, valid until 31 December 2013 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt GERMANY Category: Manufacturer: Heat

More information

Direct Fresh Air Free Cooling of Data Centres

Direct Fresh Air Free Cooling of Data Centres White Paper Introduction There have been many different cooling systems deployed in Data Centres in the past to maintain an acceptable environment for the equipment and for Data Centre operatives. The

More information

HVAC Costs. Reducing Building. Building owners are caught between two powerful forces the need to lower energy costs. By Stephen J.

HVAC Costs. Reducing Building. Building owners are caught between two powerful forces the need to lower energy costs. By Stephen J. Reducing Building HVAC Costs of site rec By Stephen J. Pargeter Building owners are caught between two powerful forces the need to lower energy costs and the need to meet or exceed outdoor air ventilation

More information

HVAC Systems in Schools & Commercial Buildings and Radon

HVAC Systems in Schools & Commercial Buildings and Radon HVAC Systems in Schools & Commercial Buildings and Radon References US EPA Radon Prevention in the Design and Construction of Schools and Other Large Buildings http://www.epa.gov/ordntrnt/ord/nrmrl/pubs/1993/air/

More information

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Paper (13 December 2013) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES

More information

Climate solutions. evaporative cooling, adiabatic humidification and programmable controllers. energy saving solutions for data centers. carel.

Climate solutions. evaporative cooling, adiabatic humidification and programmable controllers. energy saving solutions for data centers. carel. Climate solutions evaporative cooling, adiabatic humidification and programmable controllers energy saving solutions for data centers carel.com Data center air-conditioning Data center air-conditioning

More information

Infrastructure & Cities Sector

Infrastructure & Cities Sector Technical Article Infrastructure & Cities Sector Building Technologies Division Zug (Switzerland), October 18, 2011 Saving Energy in a Data Center A Leap of Faith? New guidelines from ASHRAE (American

More information

NEBB STANDARDS SECTION-8 AIR SYSTEM TAB PROCEDURES

NEBB STANDARDS SECTION-8 AIR SYSTEM TAB PROCEDURES NEBB STANDARDS SECTION-8 AIR SYSTEM TAB PROCEDURES 8.1 INTRODUCTION Testing, adjusting, and balancing of HVAC systems can best be accomplished by following a series of systematic procedures. The NEBB TAB

More information

UNIVERSITY OF MISSOURI 23 0000 - Heating Ventilating and Air-Conditioning (HVAC) March 2015.01

UNIVERSITY OF MISSOURI 23 0000 - Heating Ventilating and Air-Conditioning (HVAC) March 2015.01 GENERAL: This section provides general standards for overall sizing and design of Heating, Ventilating, and Air Conditioning (HVAC) systems. Other sections contain specific standards for each system per

More information

Advanced Energy Design Guide LEED Strategies for Schools. and High Performance Buildings

Advanced Energy Design Guide LEED Strategies for Schools. and High Performance Buildings Advanced Energy Design Guide LEED Strategies for Schools and High Performance Buildings Today s Presenters Stephen Koontz, LEED AP Energy Services Leader Tampa Bay Trane Allen Irvine General Sales Manager

More information

ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM

ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM J.S. Hu, Philip C.W. Kwong, and Christopher Y.H. Chao Department of Mechanical Engineering, The Hong Kong University of Science and Technology Clear Water Bay,

More information

Impacts of Static Pressure Set Level on the HVAC Energy Consumption and Indoor Conditions

Impacts of Static Pressure Set Level on the HVAC Energy Consumption and Indoor Conditions Impacts of Static Pressure Set Level on the HVAC Energy Consumption and Indoor Conditions M. Liu, Y. Zhu, D. E. Claridge Energy Systems Laboratory Texas A&M University Ed. White Energy Management Operation

More information

IEQ-15 Air Distribution System

IEQ-15 Air Distribution System AIM OF CREDIT To encourage and recognise the design and maintenance of air distribution systems that minimise the risk of particulate and microbial contamination to the internal air supply. CREDIT CRITERIA

More information

HVAC Systems: Overview

HVAC Systems: Overview HVAC Systems: Overview Michael J. Brandemuehl, Ph.D, P.E. University of Colorado Boulder, CO, USA Overview System Description Secondary HVAC Systems Air distribution Room diffusers and air terminals Duct

More information

GUIDE TO ICT SERVER ROOM ENERGY EFFICIENCY. Public Sector ICT Special Working Group

GUIDE TO ICT SERVER ROOM ENERGY EFFICIENCY. Public Sector ICT Special Working Group GUIDE TO ICT SERVER ROOM ENERGY EFFICIENCY Public Sector ICT Special Working Group SERVER ROOM ENERGY EFFICIENCY This guide is one of a suite of documents that aims to provide guidance on ICT energy efficiency.

More information

Fundamentals of HVAC Control Systems

Fundamentals of HVAC Control Systems ASHRAE Hong Kong Chapter Technical Workshop Fundamentals of HVAC Control Systems 18, 19, 25, 26 April 2007 2007 ASHRAE Hong Kong Chapter Slide 1 Chapter 5 Control Diagrams and Sequences 2007 ASHRAE Hong

More information

Air Conditioning. The opportunity for energy efficiency. Low cost actions to reduce energy usage now

Air Conditioning. The opportunity for energy efficiency. Low cost actions to reduce energy usage now Fact Sheet #6 Air Conditioning In this fact sheet you will discover: The opportunity for energy efficiency How air conditioning works Low cost actions to reduce energy usage now Investments to reduce costs

More information

Heating / Ventilation / Air Conditioning Room Climate Control with ABB i-bus KNX

Heating / Ventilation / Air Conditioning Room Climate Control with ABB i-bus KNX Heating / Ventilation / Air Conditioning Room Climate Control with ABB i-bus KNX Content Heating / Ventilation / Air Conditioning 3 The Right Room Climate 4 Optimised Energy Efficiency and well-being Room

More information

How To Control Humidity With A Humidifier

How To Control Humidity With A Humidifier Control of ventilation and air conditioning plants Building Technologies s Contents.Temperature control in air treatment systems 2. Humidity controls 3. Recirculated air mixing. Internal heat sources 6.2

More information

Energy Efficient HVAC-system and Building Design

Energy Efficient HVAC-system and Building Design Energy Efficient HVAC-system and Building Design Maija Virta 1, Harri Itkonen 1, Panu Mustakallio 1, Risto Kosonen 1 1 Halton Oy, Finland Corresponding email: maija.virta@halton.com SUMMARY This paper

More information

Heating, ventilation and air conditioning equipment. A guide to equipment eligible for Enhanced Capital Allowances

Heating, ventilation and air conditioning equipment. A guide to equipment eligible for Enhanced Capital Allowances Heating, ventilation and air conditioning equipment A guide to equipment eligible for Enhanced Capital Allowances 2 Contents Introduction 03 Background 03 Setting the scene 03 Benefits of purchasing ETL

More information

Building Energy Systems. - HVAC: Heating, Distribution -

Building Energy Systems. - HVAC: Heating, Distribution - * Some of the images used in these slides are taken from the internet for instructional purposes only Building Energy Systems - HVAC: Heating, Distribution - Bryan Eisenhower Associate Director Center

More information

ENHANCED LABORATORY HVAC SYSTEM

ENHANCED LABORATORY HVAC SYSTEM ENHANCED LABORATORY HVAC SYSTEM INTRODUCTION Since the early 1980's the attention to more energy efficient laboratory designs has been on the rise due to the increase in energy cost and the emergence of

More information

Heat Recovery Dehumidification (HRD) system. Designed for municipal swimming pools

Heat Recovery Dehumidification (HRD) system. Designed for municipal swimming pools Heat Recovery Dehumidification (HRD) system Designed for municipal swimming pools A dehumidification and ventilation system with dynamic heat pump heat recovery to swimming pool water and air ENVIRONMENTAL

More information

Sustainable Preservation Practices for Managing Storage Environments Webinar: April 3, 2013

Sustainable Preservation Practices for Managing Storage Environments Webinar: April 3, 2013 The Fundamentals of HVAC: What Shapes the Storage Environment Sustainable Preservation Practices for Managing Storage Environments Webinar: April 3, 2013 Introduction Presenter Jeremy Linden, Preservation

More information

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS

International Telecommunication Union SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC NETWORKS International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Paper (13 December 2013) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES

More information

Best Practice Guide BPGCS007

Best Practice Guide BPGCS007 Best Practice Guide BPGCS007 ENERGY MANAGEMENT Introduction: With rising fuel costs, opening of electricity and gas markets to alternate suppliers and climate change, the requirement to monitor and reduce

More information

HVAC Systems and Indoor Air Quality. Douglas K. Spratt, M.Sc., P.Eng.

HVAC Systems and Indoor Air Quality. Douglas K. Spratt, M.Sc., P.Eng. HVAC Systems and Indoor Air Quality Douglas K. Spratt, M.Sc., P.Eng. The 5 Senses Architecture Electrical Structural Mechanical Hearing Seeing Smelling Feeling Tasting HVAC Systems are Dynamic Heat Gains

More information

Energy-Saving Systems For Small Buildings

Energy-Saving Systems For Small Buildings Energy-Saving Systems For Small Buildings Trusted Partner For Energy Savings And Control Honeywell has long been a pioneer in energy savings, beginning in 1885 with the invention of the Damper Flapper,

More information

Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics

Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics A Presentation of Work in Progress 4 October 2006 in the Intelligent

More information

ASTACEA4 Inspect complex/central air conditioning systems

ASTACEA4 Inspect complex/central air conditioning systems Overview This Unit covers the competences required to inspect complex/central air conditioning systems as defined by the CIBSE TM 44 Figure 1.1: Summary of system types and their component parts. The air

More information

Engineering White Paper UTILIZING ECONOMIZERS EFFECTIVELY IN THE DATA CENTER

Engineering White Paper UTILIZING ECONOMIZERS EFFECTIVELY IN THE DATA CENTER Engineering White Paper UTILIZING ECONOMIZERS EFFECTIVELY IN THE DATA CENTER SUMMARY A proper balance of temperature and humidity control is essential for efficient data center operation, and integral

More information

White Paper Nest Learning Thermostat Efficiency Simulation for France. Nest Labs September 2014

White Paper Nest Learning Thermostat Efficiency Simulation for France. Nest Labs September 2014 White Paper Nest Learning Thermostat Efficiency Simulation for France Nest Labs September 2014 Introduction This white paper gives an overview of potential energy savings using the Nest Learning Thermostat

More information

Green Building Handbook for South Africa Chapter: Heating, Ventilation and Cooling Luke Osburn CSIR Built Environment

Green Building Handbook for South Africa Chapter: Heating, Ventilation and Cooling Luke Osburn CSIR Built Environment Green Building Handbook for South Africa Chapter: Heating, Ventilation and Cooling Luke Osburn CSIR Built Environment The heating, ventilation and cooling loads of typical commercial office space can range

More information

Evaporative Cooling. Terminology. Date: February 28, 2012. Concepts

Evaporative Cooling. Terminology. Date: February 28, 2012. Concepts Evaporative Cooling Date: February 28, 2012 P R E S E N T E D B Y R O B E R T P A D G E T E 3 M S E N G I N E E R E D M E C H A N I C A L S Y S T E M S Concepts 1. Evaporation is a cooling process. Using

More information

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues LBNL-6129E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues Liping Wang, Tianzhen Hong Environmental

More information

Technical Series 05-100

Technical Series 05-100 research highlight June 2005 Technical Series 05-100 introduction House temperatures are typically set by the occupants to ensure their personal comfort. When occupants are not at home, or are asleep,

More information

IES <Virtual Environment> training. Trainee notes. ASHRAE 90.1 Appendix G - PRM Navigator. Version 6.4.0.7

IES <Virtual Environment> training. Trainee notes. ASHRAE 90.1 Appendix G - PRM Navigator. Version 6.4.0.7 IES training Trainee notes ASHRAE 90.1 Appendix G - PRM Navigator Version 6.4.0.7 Introduction These training notes are to be used in conjunction with your ASHRAE 90.1 Appendix G

More information

ENERGY SAVING BY COOPERATIVE OPERATION BETWEEN DISTRICT HEATING AND COOLING PLANT AND BUILDING HVAC SYSTEM

ENERGY SAVING BY COOPERATIVE OPERATION BETWEEN DISTRICT HEATING AND COOLING PLANT AND BUILDING HVAC SYSTEM Proceedings of Building Simulation 211: ENERGY SAVING BY COOPERATIVE OPERATION BETWEEN DISTRICT HEATING AND COOLING PLANT AND BUILDING HVAC SYSTEM Yoshitaka Uno 1, Shinya Nagae 1, Yoshiyuki Shimoda 1 1

More information

J O U R N A L. Energy Performance for. Proper Specification of Air Terminal Units Future Climate Impacts on Building Design

J O U R N A L. Energy Performance for. Proper Specification of Air Terminal Units Future Climate Impacts on Building Design Copyright 24, American Society of Heating, Refrigerating & Air-Conditioning Engineers, Inc., 79 Tullie Circle NE, Atlanta, GA. 3329. Reprinted by permission from the September 24 Issue of ASHRAE Journal

More information

CONTROL STRATEGIES FOR HVAC SYSTEMS

CONTROL STRATEGIES FOR HVAC SYSTEMS CONROL SRAEGIES FOR HVAC SYSEMS ZBIGNIEW POPIOLEK Department of Heating, Ventilation and Dust Removal echnology Silesian University of echnology, Poland 1 Definition of control: to apply a regulating influence

More information

Mechanical and Natural Ventilation

Mechanical and Natural Ventilation BBSE3006: Air Conditioning and Refrigeration II http://www.hku.hk/bse/bbse3006/ Mechanical and Natural Ventilation Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail:

More information

NORSOK STANDARD H-001 Rev. 4, Nov. 2001. Heating, ventilation and air-conditioning

NORSOK STANDARD H-001 Rev. 4, Nov. 2001. Heating, ventilation and air-conditioning NORSOK STANDARD H-001 Rev. 4, Nov. 2001 Heating, ventilation and air-conditioning This NORSOK standard is developed by NTS with broad industry participation. Please note that whilst every effort has been

More information

Guidelines for energy efficient heating, ventilation and air conditioning (HVAC) systems

Guidelines for energy efficient heating, ventilation and air conditioning (HVAC) systems Guidelines for energy efficient heating, ventilation and air conditioning (HVAC) systems If you're a designer or a BCA, this guidance on the energy efficiency of HVAC systems in commercial buildings may

More information

THE U.S. ENVIRONMENTAL PROTECTION AGENCY S NATIONAL VEHICLE AND FUEL EMISSIONS LABORATORY, ANN ARBOR, MICHIGAN

THE U.S. ENVIRONMENTAL PROTECTION AGENCY S NATIONAL VEHICLE AND FUEL EMISSIONS LABORATORY, ANN ARBOR, MICHIGAN L ABORATORIES FOR THE 21ST C ENTURY: C ASE S TUDIES Case Study Index Laboratory Type Wet lab Dry lab Clean room Construction Type New Retrofit Type of Operation Research/development Manufacturing Teaching

More information

Rev. No. 0 January 5, 2009

Rev. No. 0 January 5, 2009 ENERGY & ENVIRONMENTAL ENERGY ISSUES COMMITTEE 415 Main Building Telephone (574) 631-6666 Notre Dame, Indiana Facsimile (574) 631-5883 46556 USA Energy Conservation Plan For HVAC Systems Rev. No. 0 January

More information

Impact of energy management software on the improvement of energy performance in public buildings

Impact of energy management software on the improvement of energy performance in public buildings Impact of energy management software on the improvement of energy performance in public buildings Prof. Dr Velimir Čongradac Faculty of technical sciences, Novi Sad, Serbia Introduction Why to use energy

More information

HVAC Efficiency Definitions

HVAC Efficiency Definitions HVAC Efficiency Definitions Term page EER - 2 SEER - 3 COP - 4 HSPF - 5 IPLV - 6 John Mix May 2006 Carrier Corporation 1 Energy Efficiency Ratio (EER) The energy efficiency ratio is used to evaluate the

More information

Datacenter Efficiency Program

Datacenter Efficiency Program Datacenter Efficiency Program Yuming Qiu, CLEAResult Anna Stieve, CLEAResult Michael Stachowiak, CLEAResult Abstract Worldwide, datacenter energy consumption is skyrocketing and datacenter energy efficiency

More information

REAL OPERATING COST SAVINGS FROM RETRO- COMMISSIONING OPPORTUNITIES FOR SAVINGS IN ACADEMIC MEDICAL CENTERS

REAL OPERATING COST SAVINGS FROM RETRO- COMMISSIONING OPPORTUNITIES FOR SAVINGS IN ACADEMIC MEDICAL CENTERS REAL OPERATING COST SAVINGS FROM RETRO- COMMISSIONING OPPORTUNITIES FOR SAVINGS IN ACADEMIC MEDICAL CENTERS Ken L. Hansen P.E. University of Nebraska Medical Center hansenkl@unmc.edu 402-559- 5301 402-630-

More information

Flexibility, Efficiency In San Antonio Arena

Flexibility, Efficiency In San Antonio Arena 2005, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Reprinted by permission from ASHRAE Journal, (Vol. 47, No. 9, September 2005). This article may not

More information

5 Factors For Finding Your HVAC Comfort Zone

5 Factors For Finding Your HVAC Comfort Zone 5 Factors For Finding Your HVAC Comfort Zone A Homeowner s Guide To Selecting The Right Heating And Air Conditioning System Whether you re a new home buyer selecting an HVAC unit for the first time, or

More information

Air Conditioning in Green Office Buildings?

Air Conditioning in Green Office Buildings? Air Conditioning in Green Office Buildings? How to implement Demand Controlled Ventilation Stuttgart Rechte allein bei ICEBO 08 10.10.2008 CI / DrRo 1 Air Conditioning in Green Office Buildings ventilation

More information

Energy Efficiency in Industrial HVAC Systems

Energy Efficiency in Industrial HVAC Systems Energy Efficiency in Industrial HVAC Systems Heating, ventilation and air conditioning (HVAC) constitutes up to 35 percent of energy used in manufacturing facilities. This fact sheet is geared towards

More information

RESEARCH HIGHLIGHT. Performance Assessment of a Cold-Climate Air Source Heat Pump

RESEARCH HIGHLIGHT. Performance Assessment of a Cold-Climate Air Source Heat Pump RESEARCH HIGHLIGHT December 2014 Technical Series 14-102 Performance Assessment of a Cold-Climate Air Source Heat Pump INTRODUCTION Most Canadians are familiar with air source heat pump technology in the

More information

Example of audit of an air conditioning system

Example of audit of an air conditioning system Example of audit of an air conditioning system Authors and affiliations: André Philippe Hannay Cleide, Hannay Jules, Lebrun Jean University of Liège, Belgium Main author: Jean Lebrun Email : j.lebrun@ulg.ac.be

More information

VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEPARTMENT OF CIVIL ENGINEERING

VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEPARTMENT OF CIVIL ENGINEERING VENTILATIVE COOLING EBC ANNEX 62 PER HEISELBERG DEFINITION OF VENTILATIVE COOLING VENTILATIVE COOLING IS APPLICATION (DISTRIBUTION IN TIME AND SPACE) OF VENTILATION AIR FLOW TO REDUCE COOLING LOADS IN

More information

System solution for data centres

System solution for data centres 1 System solution for data centres Energy-efficient air conditioning with ServeLine Cooling IT infrastructure, high availability, low energy costs and communication with DCIM systems all in one from your

More information

Heating, ventilation and air conditioning zone controls

Heating, ventilation and air conditioning zone controls Technology information leaflet ECA762 Heating, ventilation and air conditioning zone controls A guide to equipment eligible for Enhanced Capital Allowances Contents Introduction 01 Background 01 Setting

More information

HVAC Checklist - Long Form

HVAC Checklist - Long Form HVAC Checklist - Long Form Page 1 of 14 Appendix B discusses HVAC system components in relation to indoor air quality. utside Air Intake Location pen during occupied hours? Unobstructed? Standing water,

More information

85 F 80 F 50% 75 F 70 F 73.0/61.8 45 F 10% Figure 1

85 F 80 F 50% 75 F 70 F 73.0/61.8 45 F 10% Figure 1 Feb. 07 INTRODUCTION: Wrap around heat pipes are air-to-air heat exchangers that are installed in the airstream upstream and downstream of a cooling coil to deliberately reduce the Sensible Heat Ratio

More information

Data Centres. Special Working Group Spin I A Guide to Energy Savings in Data Centres

Data Centres. Special Working Group Spin I A Guide to Energy Savings in Data Centres Data Centres Special Working Group Spin I Table of Contents 1. Introduction 1 1.1 Systems Covered 1 2. Design Flaws 4 3. Savings Initiatives 5 3.1 The Actual Demand 5 3.2 Recommendations 5 4. Quantifying

More information

Automated Commissioning for Energy (ACE) Platform for Large Retail Property. Overview

Automated Commissioning for Energy (ACE) Platform for Large Retail Property. Overview Automated Commissioning for Energy (ACE) Platform for Large Retail Property $62,900 dollars of energy savings identified during the first 6 weeks Overview The ability to pull large amounts of complex data

More information

Case Study. Redmond Middle School: Advanced Analytics to Detect Energy Waste in HVAC System

Case Study. Redmond Middle School: Advanced Analytics to Detect Energy Waste in HVAC System Case Study Redmond Middle School: Advanced Analytics to Detect Energy Waste in HVAC System December 2012 Contents Overview... 3 Location... 4 Issue Description... 4 The Results... 5 Issue 1: Efficiently

More information

red zone management white paper Making the most of Distribution Use of System (DUoS) Charges

red zone management white paper Making the most of Distribution Use of System (DUoS) Charges red zone management white paper Making the most of Distribution Use of System (DUoS) Charges 1. Distribution charges 2. Measuring usage 3. Component parts 4. Time is of the essence 5. Solution provider

More information

Engineers Newsletter. Understanding Single-Zone VAV Systems. providing insights for today s hvac system designer. volume 42 2

Engineers Newsletter. Understanding Single-Zone VAV Systems. providing insights for today s hvac system designer. volume 42 2 providing insights for today s hvac system designer Engineers Newsletter volume 42 2 Understanding Single-Zone VAV Systems Single-zone variable-air-volume (VAV) is not a new concept, but due to new energy

More information

A Guide to Route Planning and Fleet Management

A Guide to Route Planning and Fleet Management A Guide to Route Planning and Fleet Management This guide shows how vehicle tracking systems can deliver fuel savings of up to 10% by helping to improve driver and vehicle productivity. VER01 TRAN RP_0409

More information

Alerts and Delta T Diagnostics with the Prestige 2.0 IAQ Thermostat

Alerts and Delta T Diagnostics with the Prestige 2.0 IAQ Thermostat Alerts and Delta T Diagnostics with the Prestige 2.0 IAQ Thermostat MOUNTING LOCATIONS Refer to the guidelines below and Fig. 1 5 for mounting locations of the Discharge and Return Air Temperature Sensors.

More information

Excool Data Centre Cooling Product Comparison Report

Excool Data Centre Cooling Product Comparison Report Excool Data Centre Cooling Product Comparison Report Desktop Study Job No: 1003780 Date: October 2011 Cundall Johnston and Partners LLP Saffron House 6-10 Kirby Street London EC1N 8TS tel 020 7438 1600

More information

HVAC Characteristics. Test Space HVAC Characteristics

HVAC Characteristics. Test Space HVAC Characteristics HVAC Characteristics Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations,

More information

Connolly Hospital Blanchardstown makes rapid recovery on energy technology investment

Connolly Hospital Blanchardstown makes rapid recovery on energy technology investment Connolly Hospital Blanchardstown makes rapid recovery on energy technology investment Connolly Hospital, Blanchardstown (CHB) is a major teaching hospital and provides medical, surgical and support services

More information

Heating and Cooling Basics Thermostat Control

Heating and Cooling Basics Thermostat Control Heating and Cooling Basics Thermostat Control UNI-LINE PRODUCT KNOWLEDGE 2012 Invensys. All Rights Reserved. The names, logos, and taglines identifying the products and services of Invensys are proprietary

More information

Offshore Substation. HVAC System. ETS-09 Rev. 2. technical standards. Dok. 44969-09 Sag 09/1437

Offshore Substation. HVAC System. ETS-09 Rev. 2. technical standards. Dok. 44969-09 Sag 09/1437 technical standards Offshore Substation HVAC System ETS-09 Rev. 2 Dok. 44969-09 Sag 09/1437 Revision survey Document title HVAC System Document no. 44972-09 Target group Fabrications Contractors and Designer

More information

Whole House Dehumidification for Occupant Comfort and Energy Savings

Whole House Dehumidification for Occupant Comfort and Energy Savings Downloaded from www.rsrews.com. Since 1968, RS Andrews has proudly served Atlanta's Heating, Air Conditioning & Plumbing Needs. Whole House Dehumidification for Occupant Comfort Energy Savings June 2009

More information

A Prototype Alternative Ventilation System for Retrofit, Rehab and Renovation of Rural Alaska Houses

A Prototype Alternative Ventilation System for Retrofit, Rehab and Renovation of Rural Alaska Houses A Prototype Alternative Ventilation System for Retrofit, Rehab and Renovation of Rural Alaska Houses Robert L Crosby Jr, Biorealis Systems, Inc. Abstract: Bristol Bay Housing Authority (BBHA) currently

More information

How To Buy A Lennox Power System

How To Buy A Lennox Power System HVAC for Schools A Comprehensive Look at Products for a Clean, Comfortable Learning Environment Why Schools Choose Lennox Even as resources for schools continue to be constrained, education leaders and

More information

Causes of High Relative Humidity Inside Air Conditioned Buildings. Roger G.Morse AIA, Paul Haas CSP, CIH Morse Zehnter Associates

Causes of High Relative Humidity Inside Air Conditioned Buildings. Roger G.Morse AIA, Paul Haas CSP, CIH Morse Zehnter Associates Causes of High Relative Humidity Inside Air Conditioned Buildings Roger G.Morse AIA, Paul Haas CSP, CIH Morse Zehnter Associates S. FLORIDA AVE. AMBIENT 91 F db / 78 F wb 16,000 HOURS ANNUALLY THAT wb

More information

User Manual THR840DUK Digital Thermostat

User Manual THR840DUK Digital Thermostat User Manual THR840DUK Digital Thermostat 50051982-001 Rev. A WARNING: This product must be correctly installed and configured to work properly (see pages 12-24). If you are not experienced in wiring electrical

More information