Watershed Works Manual
|
|
|
- Beatrix Rosamond Powers
- 10 years ago
- Views:
Transcription
1 National Rural Employment Guarantee Act Watershed Works Manual DRAINAGE LINE TREATMENT: GABION STRUCTURE Baba Amte Centre for People s Empowerment Samaj Pragati Sahayog September 2006
2
3 Drainage Line Treatment: Gabion Structure Gabion structures are rock and wire dams constructed across drainage lines with a catchment area of ha. They are also constructed to reinforce highly erodable stream embankments. Objectives The main aim of constructing gabion structures is to reduce the velocity of water flowing through the drainage line. By reducing the velocity of runoff, gabion structures help in 1. Reduction in soil erosion; 1
4 2 Drainage Line Treatment: Gabion Structure 2. Trapping silt, which reduces the rate of siltation in water harvesting structures in the lower reaches of the watershed. 3. Increasing recharge of groundwater and 4. Increasing the duration of flow in the drainage line. Therefore, the capacity of the water harvesting structures created downstream on the drainage line is utilised more fully as they get many more refills. Location High Embankment a a Low Embankment Figure 1: Gabion structures should be made where the embankments of the drainage line are high
5 Location 3 a More Storage Flat Bed Slope a Less Storage High Bed Slope Figure 2: Gabion structures should be made where the bed slope of the drainage line is low The minimum independent catchment area for a gabion structure is 5 ha. For a catchment area smaller than this even a loose boulder check may suffice. The precise location of a gabion structure depends on the following factors:
6 4 Drainage Line Treatment: Gabion Structure 1. Stability of the embankments is the primary consideration. The less stable and more erodable the material on the embankments, the weaker the structure is likely to be. In such a situation, making the structure stronger would render it too expensive. 2. The height of side embankments from the bed of the stream must at least be equal to the sum of the depth of peak flow in the stream and the designed height of the structure (see Figure 1). For example, if the height of the embankments is 6m and the depth of peak flow is 4 metres, then the height of the gabion must not exceed 2 metres. Otherwise water will jump over the sides. Hence, observation of the peak flows is imperative before a gabion structure is planned. 3. For maximising storage in the structure, the bed slope of the upstream portion should be low (Figure 2). The flatter the upstream slope, the more will be the storage. 4. The material composing the bed of the drainage line upstream of the structure should not be completely impermeable, because what we want is temporary storage followed by groundwater recharge. Design There are two ways of reinforcing a loose boulder structure with wire mesh: 1. To make the structure as per the dimensions of the design and wrap it with wire mesh on all sides except the bottom. This wrap is partially anchored under the bottom. 2. To cage the boulders in rectangular boxes. The structure would be made up of several such boxes tied together. In such a structure the wire mesh not only provides a covering shell, it also gives horizontal and vertical reinforcements within the structure. The second method is far superior to the first in terms of strength and it is economical in the use of boulders, although more wire mesh is used than in the first method. In this chapter, we concentrate on the second method. Different Parts of the Gabion The rectangular, box type gabion structure has the following sections (see Figure 3): 1. Foundation: The foundation should be dug upto a depth of 0.6 m across the bed of the drainage line for the entire length and width of the Headwall of the structure. Where the stream bed has a thick layer of sand or silt the foundation will have to
7 Different Parts of the Gabion 5 Head Wall Extension Head Wall Head Wall Extension Side Wall Apron Side Wall Foundation Trench Figure 3: Contituent parts of the gabion be dug deeper till a more stable layer is encountered. This foundation should be filled with boulders and the wire mesh should be anchored under the boulders. 2. Headwall: The headwall is built across the width of the stream from embankment to embankment. In most cases the top of the structure across the entire stream can be level. The entire length of the headwall serves as a spillway for the stream. Where it is required that most of the flows be directed towards the centre of the stream, that part of the headwall is lowered. For a height of up to 2m, the width of the headwall can be restricted to 1m. For heights beyond 2m, it is advisable to design it as a step-like structure, where the downstream face is constructed as a series of steps. For every 2m fall, a step should be provided of 1m width. 3. Sidewalls: Sidewalls are built to protect the embankments downstream from erosion by the stream spilling over the Headwall. On either end of the headwall, where the natural embankments begin, a block of the Sidewall is laid. The height of the sidewall above the top of the headwall is determined by the depth of peak flow in the stream. From here the Sidewall descends in a series of steps along the embankments to the bed of the stream.
8 6 Drainage Line Treatment: Gabion Structure 4. Headwall Extension or Wing Walls: The headwall is extended into both the embankments in order to anchor the structure and secure it against sagging on account of the pressure of water. From the same height as the top of the sidewall, the headwall extends into the embankments. 5. Apron: During peak discharge, the stream spills over the headwall and falls on the stream bed with considerable force that can causesevere erosion. Hence, some way has to be found to neutralise the force of falling water. For this we dig the stream-bed to a depth of 0.6m. for a distance of 3 to 6m from the Headwall downstream of the structure. This trench is filled with boulders and enclosed in a wire mesh which is anchored under the boulders. This is called an apron. The length of the apron depends upon the radius of the arc made by the water spilling over the headwall, which is in turn determined by the depth of peak flow in the nla. Therefore, the higher the depth of flow, the longer the apron should be. Material 1. Wire Mesh: Good quality galvanised wire of gauge (chain link) must be used for constructing gabion structures. Ready-made mesh with a single twist is commercially available. In these meshes the gap should not be more than 7.5cm x 7.5cm. 2. Binding Wire: The wire used for tying the wire mesh sections must be of the same strength as the wire used in the wire mesh. It could either be of the same gauge or of a thinner gauge plied and twisted together (see Figure 4). 3. Boulders: The minimum size of the boulders is dictated by the gap size in the wire mesh (see Figure 5). The boulders should be hard and should not deteriorate under water. Angular boulders are to be preferred to round boulders. Arrange smaller sized boulders in such a way that they fill the gap left by larger sized boulders. Besides rendering the structure less permeable, this minimises the damage to the structure on account of settling and sagging. There are two types of pressures operating on a gabion structure: static pressure of standing water; and the pressure of moving water. If small boulders are used in the structure, they could get shifted and dislocated on account of these pressures and the structure would tend to sag. The same problem will occur if the wire mesh is not drawn tight over the boulders.
9 Material 7 a a a a a Wire boxes should not be loose. The wire should be pulled tight a a a a a Stones inside the boxes should not be kept loosely. They should packed tightly The shape of the wire mesh. Ensure that the wire used to tie up the boxes should be of the same thickness as that of the wire mesh Figure 4: The wire mesh and boxes made out of it
10 8 Drainage Line Treatment: Gabion Structure Construction Figure 5: How to select stones for the construction of a gabion First of all boulders must be collected on the location site. For the Headwall, a 1m wide and 0.6m deep trench should be dug across the stream bed from embankment to embankment. Foundation of similar depth should also be dug for the area demarcated for the apron and the sidewalls. For the headwall extension the embankments are cut to the appropriate depth. Before the foundation trench is filled, lengths of wiremesh are placed vertically at three places: 1. The upstream edge of the foundation;
11 Construction 9 2. Where the headwall ends and the apron begins; and 3. Against the downstream edge of the apron. At all three places the wire mesh runs along the entire length of the structure (see Figure 6). Everywhere, 0.15m of the wire mesh is folded along the bed of the trench so that the mesh can be embedded under the boulders. After that the trench is filled with boulders upto ground level. Then, the wire mesh is laid over the entire surface and tied to the mesh which has been embedded under the boulders. The headwall as well as the sidewalls should be constructed as boxes of 1 to 2m length and 1m height. Excavation in the Embankment for the Head Wall Extension Wire Mesh on the Upstream Bed of the Head Wall Trench Head Wall Trench a Apron Trench a a a a a Wire Mesh on the Downstream Bed of the Head Wall Trench Wire Mesh on the Downstream Bed of the Head Wall Trench Figure 6: How to spread out the wire mesh First the four vertical faces of these boxes are erected with wire mesh which is tied to the wire mesh in the section below as well as the section alongside. Then the boxes are filled with boulders and covered at the top with wire mesh. This wire mesh is tied to each of the vertical faces on all four sides. Such boxes are filled up in succession till the structure is complete.
12 10 Drainage Line Treatment: Gabion Structure To increase impermeability of the structure, a reverse filter should be constructed on its upstream face (see Figure 7). This device is made by placing layers of small boulders, gravel, sand and mud against the structure. However, the order of placement of these materials is exactly the opposite of the arrangement in a normal filter. The boulders are placed closest to the structure, with gravel, sand and mud being placed successively away from it. The reason for the reverse order is that we want the finest material to come into contact with water first. Following the normal filter scheme would have allowed water to pass unchecked through the boulders and coarser material on the outer surface. One can even try to place used cement or fertilizer bags filled with fine sand against the structure in several layers. Downstream Side Wall Head Wall Apron Reverse Filter Rock Gravel Sand Silt Clay Figure 7: The gabion s reverse filter Upstream DOs and DON'Ts Do not build a gabion structure where the embankment is highly erodable or is of insufficient height. Do not build a gabion structure at a point on the stream, below which the stream drops sharply. Locate the gabion structure where the nla width is relatively low.
13 Gabion Structure Along Embankments 11 Locate the structure where the bed-slope of the nla upstream of the structure is low. Care must be taken that the boulders are placed compactly against each other so that they do not slide or move under the impact of water. Smaller boulders must be placed in the interior part of these boxes while the larger ones must be placed on the outside. Even the smallest boulder should be bigger than the gap in the wire mesh. The wire mesh must be stretched taut so that there is no bulging or sagging. The wire used for tying the wire mesh sections must be of the same strength as the wire used in the wire mesh. It could either be of the same gauge or of a thinner gauge plied and twisted together. For height above 2m, the Headwall must be made as a series of steps sloping on the downstream side to impart stability to the structure. Gabion Structure Along Embankments These structures are built to cushion the impact of water, preventing it from eroding the banks. On high slopes surrounding roads or railway lines, such structures are built along contour lines to prevent landslides. On stream embankments, these should be located in stretches prone to severe erosion. The length of the embankment to be strengthened has to be determined. Along this length the rectangular boxes have to be placed as a straight wall with a vertical face. The wall width could be a standard 1m while the length and height are both dependent on local conditions. The height of this wall should be at least 1m above peak flood levels of the stream. The upstream end of the gabion wall should be well embedded into the embankment so that the stream is not able to cut a path behind the structure. Care must be taken while raising the rectangular structure that the gap between the structure and the embankment is filled with rammed earth.
Outlet stabilization structure
Overview of Sedimentation and Erosion Control Practices Practice no. 6.41 Outlet stabilization structure Erosion at the outlet of channels, culverts, and other structures is common, and can cause structural
Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1
6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT
WATER CONSERVATION TECHNICAL BRIEFS
WATER CONSERVATION TECHNICAL BRIEFS TB 2 Rainwater Harvesting and Artificial Recharge to Groundwater SAI Platform August 2009 This document has been produced for internal information purposes only among
Emergency Spillways (Sediment basins)
Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]
Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road,
Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road, Wolverhampton, WV6 0PJ Tel 01902 712200 Fax 01902 714096 e-mail [email protected]
Storm Drain Inlet Protection
Objectives EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Objective
RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.
RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.htm#storm Definition: A permanent, erosion-resistant ground cover
STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION
STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION Design Criteria Drainage Area The drainage area for storm drain inlets shall not exceed one acre. The crest elevations of these practices shall
SECTION 5. Sediment Control Measures
SECTION 5 Sediment Control Measures 60. STORM DRAIN INLET PROTECTION When Runoff from earth change activities will discharge to a catch basin or storm drain inlet. A newly constructed catch basin or storm
Siting and settlement: The most important way to protect shelter from floods is to build in a place that is unlikely to be flooded.
Siting and settlement: The most important way to protect shelter from floods is to build in a place that is unlikely to be flooded. Key Messages Shelters and settlements should be sited above the highest
BMP-7. A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet.
BMP-7 BMP: STORM DRAIN INLET PROTECTION Definition A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet. To prevent sediment from entering storm drainage systems
THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS
Chapter 11 Slope Stabiliza bilization and Stability of Cuts and Fills THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS are 1) to create space for the road template and driving surface; 2) to balance material
City of Shelbyville Site Inspection Checklist
City of Shelbyville Site Inspection Checklist General Information Project Name: KYR10 Permit Number: Date: Project Location: Contractor: Conractor Representative: Inspector's Name: Title: Signature : Weather
Storm Drain Inlet Protection
Categories EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Category
Safe & Sound Bridge Terminology
Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries
Attachment G-1: Pit Latrine Diagram. Fig E.1a: Pit Latrine. Fig E.1b: Plan View of Twin Pits
Attachment G-1: Pit Latrine Diagram Fig E.1a: Pit Latrine Fig E.1b: Plan View of Twin Pits Fig E.1c: Section of a water-sealed pan Fig E.1d: 3D view of Overflow Pipe Fig E.1e: 2D view of Overflow Pipe
Temporary Erosion-Control Measures
A Guide to Temporary Erosion-Control Measures for Contractors, Designers and Inspectors June 2001 North Dakota Department of Health Division of Water Quality A Guide to Temporary Erosion-Control Measures
SE-10 STORM DRAIN INLET PROTECTION. Objectives
STORM DRAIN INLET PROTECTION SE-10 Objectives Erosion Control - EC Sediment Control - SE Tracking Control - TC Wind Erosion Control - WE Non-Storm Water Management - NS Waste and Materials Management -
CHAPTER 3A Environmental Guidelines for STREAM CROSSING BY ALL-TERRAIN VEHICLES
GOVERNMENT OF NEWFOUNDLAND AND LABRADOR DEPARTMENT OF ENVIRONMENT AND LABOUR CHAPTER 3A Environmental Guidelines for STREAM CROSSING BY ALL-TERRAIN VEHICLES WATER RESOURCES MANAGEMENT DIVISION Water Investigations
Construction Site Inspection Checklist for OHC000004 By making use of some simple Best Management Practices (BMPs) a construction site operator can
Construction Site Inspection Checklist for OHC000004 By making use of some simple Best Management Practices (BMPs) a construction site operator can do his or her share to protect Ohio's water resources
Storm Drain Inlet Protection - IP
Storm Drain Inlet Protection - IP DEFINITION A temporary protective device formed around a storm drain drop inlet to trap sediment. PURPOSE To prevent sediment from entering storm drainage systems, prior
Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses.
4.5-p DRAIN INLET PROTECTION Alternative Names: DI protection, Drop Inlet Protection DESCRIPTION Storm drain inlet (DI) protection slows and ponds stormwater, and filters sediment and debris before it
Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile
Chapter 3 CULVERTS Description A culvert is a closed conduit used to convey water from one area to another, usually from one side of a road to the other side. Importance to Maintenance & Water Quality
Storm Drain Inlet Protection for Construction Sites (1060)
Storm Drain Inlet Protection for Construction Sites (1060) Wisconsin Department of Natural Resources Conservation Practice Standard I. Definition A temporary device installed in or around a storm drain
BUILDING WITH STONE AND EARTH
BUILDING WITH STONE AND EARTH PART 1 Earth is a popular building material all over the world. It can be used by itself, but if there is stone available, then the two can be used together to make very good
How to build raised beds page
This leaflet has information to help you if you want to build a raised bed yourself or if you need information to give to a professional contractor. This information should be read in conjunction with
Permeable Pavement Construction Guide
Permeable Pavement Construction Guide Permeable pavement at Olympic Park, Waitakere Final Construction result What are permeable pavements? Permeable pavements are hard surface paving systems that reduce
SPECIFICATION FOR PIPE SUBSOIL DRAIN CONSTRUCTION
SPECIFICATION FOR PIPE SUBSOIL DRAIN CONSTRUCTION 1. SCOPE Pipe subsoil drains shall be constructed in accordance with this specification and in conformity with the lines, grades and cross-sections shown
Table 4.9 Storm Drain Inlet Protetion Applicable for
BMP C220: Storm Drain Inlet Protection Purpose To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area. Conditions of Use Type of Inlet Protection
Storm Drain Inlet Protection for Construction Sites (1060)
Storm Drain Inlet Protection for Construction Sites (1060) Wisconsin Department of Natural Resources Conservation Practice Standard I. Definition A temporary device installed in or around a storm drain
5.0 OVERVIEW OF FLOOD DAMAGE REDUCTION MEASURES
5.0 OVERVIEW OF FLOOD DAMAGE REDUCTION MEASURES Flood damage reduction consists of two basic techniques structural and non-structural. Structural methods modify the flood and take the flood away from people
INSTRUCTIONS FOR CHAIN LINK INSTALLATION Chain Link fence & Posts Meshdirect.co.uk
INSTRUCTIONS FOR CHAIN LINK INSTALLATION Chain Link fence & Posts Meshdirect.co.uk This guide explains how to correctly install our chain link fencing and post system. The guide provides details of the
State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS
State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary
The correct answers are given below. Some talking points have been added for the teachers use.
Natural Resources Canada 2011: Lesson Plan Grades 11 and 12 Landslide activity 5b: Landslides in Canada quiz Description: This is an independent study activity for grades 11 and 12. Students will read
Section 2100-Trenching and Tunneling
SECTION 5200 - STORM SEWER PART 1 - GENERAL 1.01 SCOPE: This Section covers installation of storm sewer mains and culverts. Topics include permits and fees, trench widths, pipe laying, bedding, initial
Stormwater/Wetland Pond Construction Inspection Checklist
: Construction Inspection ChecklistsTools Stormwater/Wetland Pond Construction Inspection Checklist Project: Location: Site Status: Date: Time: Inspector: SATISFACTORY/ UNSATISFACTORY COMMENTS Pre-Construction/Materials
BUTE Department of Construction Management and Technology
BUTE Department of Construction Management and Technology 02.10.2012 Definition 1: Foundation: The structure, that transmits the load of the building to the soil Definition 2: Load bearing soil (strata):
Land Disturbance, Erosion Control and Stormwater Management Checklist. Walworth County Land Conservation Department
Land Disturbance, Erosion Control and Stormwater Management Checklist Walworth County Land Conservation Department The following checklist is designed to assist the applicant in complying with the Walworth
Flash Flood Science. Chapter 2. What Is in This Chapter? Flash Flood Processes
Chapter 2 Flash Flood Science A flash flood is generally defined as a rapid onset flood of short duration with a relatively high peak discharge (World Meteorological Organization). The American Meteorological
SUSTAINABLE URBAN DRAINAGE SYSTEMS
overflow can lead into a permeable conveyance system to increase further the benefit and reduce the need for pipe systems. Pollutant removal rates have been shown to be high, with some pollutants being
VOLUME AND SURFACE AREAS OF SOLIDS
VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b
SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)
SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains
A CASE-STUDY OF CUA_DAT CFRD IN VIETNAM
A CASE-STUDY OF CUA_DAT CFRD IN VIETNAM Giang Pham Hong, Michel Hotakhanh, Nga Pham Hong, Hoai Nam Nguyen, Abstract:Dams have been taken an important role in time and surface redistribution of water for
June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL
7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction
Small Dam Repair The Stone Lake Dam Story. Joe Barron, P.E. SynTerra formerly the Fletcher Group, Inc. 148 River St. Suite 220 Greenville, S.C.
Small Dam Repair The Stone Lake Dam Story Joe Barron, P.E. SynTerra formerly the Fletcher Group, Inc. 148 River St. Suite 220 Greenville, S.C. 29601 1 Historical background of Stone Lake A series of three
720 Contour Grading. General. References. Resources. Definitions
720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable
Crossing creeks Stream crossings on farms
Crossing creeks Stream crossings on farms Looking after all our water needs Crossing creeks Stream crossings on farms Looking after all our water needs Department of Water 168 St Georges Terrace Perth
Riprap-lined Swale (RS)
Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This
Section 2 Specification 2.18 Concrete and/or Corrugated Steel Storm Sewer TABLE OF CONTENTS
TABLE OF CONTENTS 2.18 CONCRETE AND/OR CORRUGATED STEEL STORM SEWER... 1 2.18.1 GENERAL... 1 2.18.2 MATERIALS... 1 2.18.2.1 Storm Sewer Pipe... 1 2.18.2.2 Cement Mortar... 1 2.18.2.3 Granular Materials...
DESIGN GUIDELINES FOR EARTH RETENTION
DESIGN GUIDELINES FOR EARTH RETENTION Strata Systems, Inc. 380 Dahlonega Rd., Suite 200 Cumming, GA 30040 USA www.geogrid.com TABLE OF CONTENTS MECHANICS OF RETAINING WALLS... 3 THE STRATAWEB SOLUTION...4
The Manitoba Water Services Board SECTION 022180 Standard Construction Specifications PIPE EXCAVATION, BEDDING AND BACKFILL Page 1 of 11
Page 1 of 11 Part 1 General 1.1 DESCRIPTION OF WORK.1 The work described herein shall consist of the excavation of trenches (or excavation of tunnels); the supply and placing of bedding and backfill materials;
Construction sites are dewatered for the following purposes:
9. DEWATERING CONTROL OF GROUNDWATER Construction of buildings, powerhouses, dams, locks and many other structures requires excavation below the water table into water-bearing soils. Such excavations require
Final. Contact person: Colin Whittemore Aurecon Centre 1 Century City Drive Waterford Precinct, Century City Cape Town, South Africa
Review Report and Recommendations for the Remediation of Flood Damage at the Berg River Causeway and the Dam Bypass Channel on Portion of Farms 1646 and 1014, Franschhoek Contact person: Colin Whittemore
Local Road Assessment and Improvement Drainage Manual
Local Road Assessment and Improvement Drainage Manual Donald Walker, T.I.C. Director, author Lynn Entine, Entine & Associates, editor Susan Kummer, Artifax, design Transportation Information Center University
Block and Gravel Inlet Protection (BIP)
Block and Gravel Inlet Protection (BIP) Practice Description Block and gravel inlet protection is a sediment control barrier formed around a storm drain inlet by the use of standard concrete block and
STORMWATER MANAGEMENT CHECKLIST
STORMWATER MANAGEMENT CHECKLIST *This checklist must be completed and part of the Land Disturbing Permit submittal for review if the acreage disturbed is one (1) acre or more: I. SUPPORTING DATA Narrative
NJ650.1404 Interception Drainage
NJ650.1404 Interception Drainage Interception drainage is used to intercept surface and subsurface water. The investigation, planning, and construction of surface interception drains follow the requirements
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
CITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
Experiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
Dimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05
Dimensional and Structural Data for Elliptical Pipes 21/09/05 Page 1 of 15 1. Foreword This document details a method for the structural design of Stanton Bonna Elliptical pipes for the common conditions
Trenching and Excavation Safety
1.0 ACTIVITY DESCRIPTION 1.1 This document provides basic safety guidelines related to excavation and trenching in pipeline construction activities. These guidelines are applicable to the locating, marking
Underground Injection Control Storm Water Information
Underground Injection Control Storm Water Information Best Management Practices DEQ has reviewed the EPA definition of a subsurface fluid distribution system and the infiltration design best management
The Hydrologic Cycle. precipitation evaporation condensation transpiration infiltration surface runoff transport groundwater water table.
The Hydrologic Cycle Page 1 of 1 Name Directions: The hydrologic cycle consists of the processes that change and move water through the earth s system. Use the terms below to label the hydrologic cycle.
Topic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.
Section 33 0200- Page 1 of 4 PART 1 - GENERAL 1.1 DESCRIPTION OF WORK The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.
Small Dam Hazard Assessment Inventory
Small Dam Hazard Assessment Inventory What would happen if your dam were to fail? This is a question that most dam owners hope they will never have to answer. However it is a question you, as a responsible
PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta
PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE By H P Gupta & D K Gupta DIFFERENT TYPES OF DAMAGES 1.Minor cracks 0.5 to 5 mm wide in load or non-load bearing walls 2.Major
Soils, Foundations & Moisture Control
Soils, Foundations & Moisture Control Soil The top loose layer mineral and/or organic material on the surface of the Earth that serves as a natural medium for the growth of plants and support for the foundations
Scour and Scour Protection
Design of Maritime Structures Scour and Scour Protection Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways Experiment Station 3909 Halls
AUSTRALIAN PAVING CENTRE
AUSTRALIAN PAVING CENTRE The Concept 02 The concept of Ecopave permeable paving is already well established in many countries where development threatens already over-stretched drainage and river systems.
GEOTECHNICAL ISSUES OF LANDSLIDES CHARACTERISTICS MECHANISMS PREPARDNESS: BEFORE, DURING AND AFTER A LANDSLIDE QUESTIONS FOR DISCUSSIONS
GEOTECHNICAL ISSUES OF LANDSLIDES CHARACTERISTICS MECHANISMS PREPARDNESS: BEFORE, DURING AND AFTER A LANDSLIDE QUESTIONS FOR DISCUSSIONS Huge landslide Leyte, Phillipines, 1998 2000 casulties Small debris
DRAINAGE MATS For Vertical: Flow 15-P For Horizontal: Flow 18-H
DRAINAGE MATS For Vertical: Flow 15-P For Horizontal: Flow 18-H Soil Drainage Mat with Built-In Protection Layer POLYGUARD DRAINAGE MATS are three-part prefabricated geocomposite drain consisting of a
9.00 THE USE OF HUNTER LAND DRAINAGE PERFORATED PIPES. Hunter Underground Systems
9.00 THE USE OF HUNTER LAND DRAINAGE PERFORATED PIPES Hunter Underground Systems 9.01 General 9.02 Surface water Drainage 9.03 Groundwater Drainage 9.04 Dispersal of Septic Tank Effluent 9.01 The use of
CONCRETE SEGMENTAL RETAINING WALL SYSTEM
CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall
Moving Small Mountains Vesuvius Dam Rehab
Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,
Track Drainage Inspection and Maintenance
Track Drainage Inspection and Maintenance 1 Scope Civil Engineering RTS 3432, March 2006 The purpose of this drainage guide is to enable engineering and maintenance staff to inspect and maintain effective
Catchment Scale Processes and River Restoration. Dr Jenny Mant [email protected]. The River Restoration Centre therrc.co.uk
Catchment Scale Processes and River Restoration Dr Jenny Mant [email protected] The River Restoration Centre therrc.co.uk 3 Main Catchment Elements Hydrology Energy associated with the flow of water affects
GOOD NEWS BUT NOT ALWAYS
GOOD NEWS BUT NOT ALWAYS The prospective homebuyer and homeowner in the Amarillo area are indeed fortunate. Typically, he has a wide choice of type home, size, and location for wide ranges of pricing.
SC-07 STORM DRAIN INLET PROTECTION
Greenville County Technical Specification for: SC-07 STORM DRAIN INLET PROTECTION 1.0 Storm Drain Inlet Protection 1.1 Description Provide Storm Drain Inlet Protection at all existing and newly installed
Minimum Design Criteria for the permitting of Gravity Sewers
Minimum Design Criteria for the permitting of Gravity Sewers Adopted by the Division of Water Quality on February 12, 1996 Updated to 15A NCAC 2T Regulations on March 2008 1,400 copies of this document
Treatment Practice for Controlling Water Damage in the Annular Space of Shaft Freezing Hole
An Interdisciplinary Response to Mine Water Challenges - Sui, Sun & Wang (eds) 2014 China University of Mining and Technology Press, Xuzhou, ISBN 978-7-5646-2437-8 Treatment Practice for Controlling Water
Town of Elkton & Cecil Soil Conservation District Checklist for Joint Agency Review Stormwater Management / Erosion and Sediment Control
Town of Elkton & Cecil Soil Conservation District Checklist for Joint Agency Review Stormwater Management / Erosion and Sediment Control Project Name: Tax Map Parcel: Acreage: Plat: ADC Map & Grid Engineering
Homeowner s Guide for Flood, Debris, and Erosion Control
Homeowner s Guide for Flood, Debris, and Erosion Control The assistance of the following agencies and publications in preparing this guide is gratefully acknowledged: Homeowner s Guide for Flood, Debris,
SECTION 08000 STORM DRAINAGE TABLE OF CONTENTS
SECTION 08000 STORM DRAINAGE 08010 DESIGN A. Location B. Sizing TABLE OF CONTENTS 08020 MATERIALS A. Pipe Materials B. Structure Materials C. Installation D. Inlets and Outlets 08030 INSPECTIONS AND TESTING
Seven. Easy Steps. Your Own Walkway, Without Mortar. or Concrete. to Installing. Driveway and Patio
Seven Easy Steps to Installing Your Own Walkway, Driveway and Patio Without Mortar or Concrete Brick is one of the world s oldest and most enduring building materials. Those same qualities also make it
Types of Retaining Walls - Gravity walls - Pre-cast crib walls - Gabion walls - Reinforced concrete walls - Sheet pile walls - MS walls (mechanically
Foundation Engineering Lecture #23 Types of Retaining Walls - Gravity walls - Pre-cast crib walls - Gabion walls - Reinforced concrete walls - Sheet pile walls - MS walls (mechanically stabilized) - Slurry
BRIDGES ARE relatively expensive but often are
Chapter 10 Bridges Chapter 10 Bridges Bridg Bridges -- usually the best, but most expensive drainage crossing structure. Protect bridges against scour. BRIDGES ARE relatively expensive but often are the
TECHNICAL NOTE Culvert Sliplining and Lining of Casings with HPPipe
TECHNICAL NOTE Culvert Sliplining and Lining of Casings with HPPipe TN 5.14 February 2010 Introduction It may be at times necessary, in an aging infrastructure, to rehabilitate drainage and sanitary lines
DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS
DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS Phase I MS4 permits require continuous updating of the stormwater system inventory owned and operated by the MS4. They also include inspection
SWIMMING POOL, SPA, & HOT TUB GUIDELINES
SWIMMING POOL, SPA, & HOT TUB GUIDELINES Pool permit cost is based on the total value of the project. See Permit Fee Schedule Table 1A. A. Adopted construction codes and installation requirements 1. 2015
Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur
Module 3 Irrigation Engineering Principles Lesson 9 Regulating Structures for Canal Flows Instructional objectives On completion of this lesson, the student shall be able to learn: 1. The necessity of
Operations and Maintenance Guidelines for Coal Ash Landfills Coal Ash Landfills are NOT the Same as Subtitle D Solid Waste Landfills
Operations and Maintenance Guidelines for Coal Ash Landfills Coal Ash Landfills are NOT the Same as Subtitle D Solid Waste Landfills 1. INTRODUCTION: 2011 World of Coal Ash (WOCA) Conference May 9-12,
Trench Rescue by Buddy Martinette
Trench Rescue by Buddy Martinette SOIL TYPE AND TESTING It is imperative that rescue personnel understand soil types and testing procedures if the want to be competent at trench rescue operations. Determining
BMP #: Dry Wells / French Drains
Structural BMP Criteria BMP #: Dry Wells / French Drains A Dry Well, or French Drain, is a variation on an Infiltration Trench that is designed to temporarily stores and infiltrate rooftop runoff. Key
Elevating Your House. Introduction CHAPTER 5
CHAPTER 5 Elevating Your House Introduction One of the most common retrofitting methods is elevating a house to a required or desired Flood Protection Elevation (FPE). When a house is properly elevated,
