STERILISATION AND DISINFECTION
|
|
|
- Lilian Allison
- 10 years ago
- Views:
Transcription
1 4 STERILISATION AND DISINFECTION 4.1 INTRODUCTION Disinfection and sterilization are essential for ensuring that medical and surgical instruments do not transmit infectious pathogens to patients. Because sterilization of all patient-care items is not necessary, health-care policies must identify, primarily on the basis of the items intended use, whether cleaning, disinfection, or sterilization is indicated. OBJECTIVES After reading this lesson, you will be able to: define terms related to Sterilization and Disinfection classify items to be sterilised or disinfected discuss different Methods of sterilisation describe Evaluation and in Process Monitoring of Sterilization Procedures discuss Methods of disinfection describe the Testing of disinfectants 4.2 DEFINITIONS OF TERMS Sterilization: Sterilization describes a process that destroys or eliminates all forms of microbial life and is carried out in health-care facilities by physical or chemical methods. 40
2 Disinfection: Disinfection describes a process that eliminates many or all pathogenic microorganisms, except bacterial spores, on inanimate objects. Cleaning: Cleaning is removal of visible soil (e.g., organic and inorganic material) from objects and surfaces. It is normally accomplished manually or mechanically using water with detergents or enzymatic products. Decontamination: Decontamination removes pathogenic microorganisms from objects so they are safe to handle, use, or discard. Classification of Materials to be Sterilised / Disinfected Earle H. Spaulding devised a rational approach to disinfection and sterilization of patient-care items and equipment. This has three categories MODULE Critical Items Critical items confer a high risk for infection if they are contaminated with any microorganism. Thus, objects that enter sterile tissue or the vascular system must be sterile because any microbial contamination could transmit disease. This category includes surgical instruments, cardiac and urinary catheters, implants, and ultrasound probes used in sterile body cavities etc. Semi-critical Items Semi-critical items contact mucous membranes or non-intact skin. This category includes respiratory therapy and anaesthesia equipment, some endoscopes, laryngoscope blades, esophageal manometry probes, cystoscopes, anorectal manometry catheters, and diaphragm fitting rings etc. Noncritical Items Noncritical items are those that come in contact with intact skin but not mucous membranes. Intact skin acts as an effective barrier to most microorganisms; therefore, the sterility of items coming in contact with intact skin is not critical. They can be Non-critical patient care items: bedpans, blood pressure cuffs, crutches and computers Non-critical environmental surfaces INTEXT QUESTIONS Sterilization (a) Removal of visible soil 2. Disinfection (b) Removal of Pathogenic Microorganisms 3. Cleaning (c) Destroys all forms of Microbes 4. Decontamination (d) Removal of Pathogenic Microorganism except bacteria spores 41
3 4.3 METHODS OF STERILIZATION The various methods of sterilization are: 1. Physical Method (a) Thermal (Heat) methods (b) Radiation method (c) Filtration method 2. Chemical Method 3. Gaseous method Methods of sterilization/disinfection Physical Chemical Physiochemical Liquid Sunlight Heat Vibration Radiation Filtration Alcohols Non-ionizing Dry heat Moist heat Earthenware Aldehydes Ionizing Asbestos Phenolics Red heat Below 100 C Flaming At 100 C Electomagnetic Sintered glass Halogens Heavy metals Incineration Above 100 C Particulate Membrane Surface active agents Hot air oven Dyes Infra red Gaseous Formaldehyde Ethylene oxide Plasma Heat Sterilization Heat sterilization is the most widely used and reliable method of sterilization, involving destruction of enzymes and other essential cell constituents. The process is more effective in hydrated state where under conditions of high humidity, hydrolysis and denaturation occur, thus lower heat input is required. Under dry state, oxidative changes take place, and higher heat input is required. This method of sterilization can be applied only to the thermostable products, but it can be used for moisture-sensitive materials for which dry heat ( C) sterilization, and for moisture-resistant materials for which moist heat ( C) sterilization is used. The efficiency with which heat is able to inactivate microorganisms is dependent upon the degree of heat, the exposure time and the presence of water. The action of heat will be due to induction of lethal chemical events mediated through the action of water and oxygen. In the presence of water much lower temperature 42
4 time exposures are required to kill microbe than in the absence of water. In this processes both dry and moist heat are used for sterilization. MODULE Dry Heat Sterilization: Examples of Dry heat sterilization are: 1. Incineration 2. Red heat 3. Flaming 4. Hot air oven It employs higher temperatures in the range of C and requires exposures time up to 2 hours, depending upon the temperature employed. The benefit of dry heat includes good penetrability and non-corrosive nature which makes it applicable for sterilizing glass-wares and metal surgical instruments. It is also used for sterilizing non-aqueous thermo-stable liquids and thermostable powders. Dry heat destroys bacterial endotoxins (or pyrogens) which are difficult to eliminate by other means and this property makes it applicable for sterilizing glass bottles which are to be filled aseptically. Hot-air oven Dry heat sterilization is usually carried out in a hot air oven, which consists of the following: (i) An insulated chamber surrounded by an outer case containing electric heaters. (ii) A fan (iii) Shelves (iv) Thermocouples (v) Temperature sensor (vi) Door locking controls. Operation (i) Articles to be sterilized are first wrapped or enclosed in containers of cardboard, paper or aluminium. (ii) Then, the materials are arranged to ensure uninterrupted air flow. (iii) Oven may be pre-heated for materials with poor heat conductivity. (iv) The temperature is allowed to fall to 40 C, prior to removal of sterilized material. Moist Heat Sterilization: Moist heat may be used in three forms to achieve microbial inactivation 43
5 1. Dry saturated steam Autoclaving 2. Boiling water/ steam at atmospheric pressure 3. Hot water below boiling point Moist heat sterilization involves the use of steam in the range of C. Steam under pressure is used to generate high temperature needed for sterilization. Saturated steam acts as an effective sterilizing agent. Steam for sterilization can be either wet saturated steam (containing entrained water droplets) or dry saturated steam (no entrained water droplets). Fig. 4.1: An Autoclave Autoclaves use pressurized steam to destroy microorganisms, and are the most dependable systems available for the decontamination of laboratory waste and the sterilization of laboratory glassware, media, and reagents. For efficient heat transfer, steam must flush the air out of the autoclave chamber. Before using the autoclave, check the drain screen at the bottom of the chamber and clean if blocked. If the sieve is blocked with debris, a layer of air may form at the bottom of the autoclave, preventing efficient operation. Autoclaves should be tested periodically with biological indicators like spores of Bacillus stearothermophilus to ensure proper function. This method of sterilization works well for many metal and glass items but is not acceptable for rubber, plastics, and equipment that would be damaged by high temperatures (Figure 4.1). Autoclaves, or steam sterilizers essentially consist of following: 1. A cylindrical or rectangular chamber, with capacities ranging from 400 to 800 litres. 44
6 2. Water heating system or steam generating system 3. Steam outlet and inlet valves 4. Single or double doors with locking mechanism. 5. Thermometer or temperature gauge 6. Pressure gauges Operation For porous loads (dressings) sterilizers are generally operated at a minimum temperature of 134 C for one hour, and for bottled fluid, sterilizers employing a minimum temperature of 121 C are used. Ensure that there should be sufficient water in the autoclave to produce the steam. The stages of operation of autoclaves include air removal, steam admission and sterilization cycle (includes heating up, holding/exposure, and cooling stages). MODULE Gaseous Sterilization The chemically reactive gases such as formaldehyde, (methanol, H.CHO) and ethylene oxide (CH 2 ) 2 O possess biocidal activity. Ethylene oxide is a colorless, odorless, and flammable gas. The mechanism of antimicrobial action of the two gases is assumed to be through alkylations of sulphydryl, amino, hydroxyl and carboxyl groups on proteins and amino groups of nucleic acids. The concentration ranges (weight of gas per unit chamber volume) are usually in range of mg/l for ethylene oxide and mg/l for formaldehyde with operating temperatures of C and C respectively. Both of these gases being alkylating agents are potentially mutagenic and carcinogenic. They also produce acute toxicity including irritation of the skin, conjunctiva and nasal mucosa. (a) Ethylene oxide sterilizer: An ethylene oxide sterilizer consists of a chamber of Litre capacity and surrounded by a water jacket. Air is removed from sterilizer by evacuation, humidification and conditioning of the load is done by passing sub-atmospheric pressure steam, then evacuation is done again and preheated vaporized ethylene oxide is passed. After treatment, the gases are evacuated either directly to the outside atmosphere or through a special exhaust system. Ethylene oxide gas has been used widely to process heat-sensitive devices, but the aeration times needed at the end of the cycle to eliminate the gas made this method slow. 45
7 (b) Low temperature steam formaldehyde (LTSF) sterilizer: An LTSF sterilizer operates with sub atmospheric pressure steam. At first, air is removed by evacuation and steam is admitted to the chamber. Liquid Sterilization (a) Peracetic Acid liquid sterilization: Peracetic acid was found to be sporicidal at low concentrations. It was also found to be water soluble, and left no residue after rinsing. It was also shown to have no harmful health or environmental effects. It disrupts bonds in proteins and enzymes and may also interfere with cell membrane transportation through the rupture of cell walls and may oxidize essential enzymes and impair vital biochemical pathways. In a low-temperature liquid chemical sterile processing system, several steps must be followed for effective sterilization: 1. Pre-cleaning of the devices is necessary because many devices have small connected lumens. 2. Leak testing is done to ensure there are no leaks that could allow fluid to enter/leak the ampoules/vials and cause damage. 3. The appropriate tray/container must then be selected, and if the device has lumens, the appropriate connector attached. 4. The sterilant concentrate is provided in a sealed single- use cup and requires no pre-mixing or dilution. The disadvantages of this method of sterilization are that the devices must be immersible, must fit in the appropriate tray, and must be able to withstand the 55 C temperature the process uses. (b) Hydrogen Peroxide Sterilization: This method disperses a hydrogen peroxide solution in a vacuum chamber, creating a plasma cloud. This agent sterilizes by oxidizing key cellular components, which inactivates the microorganisms. The plasma cloud exists only while the energy source is turned on. When the energy source is turned off, water vapor and oxygen are formed, resulting in no toxic residues and harmful emissions. The temperature of this sterilization method is maintained in the C range, which makes it particularly well-suited for use with heat-sensitive and moisture-sensitive medical devices. The instruments are wrapped prior to sterilization, and can either be stored or used immediately. There are five phases of the hydrogen peroxide processing cycle: 1. A vacuum phase creates a vacuum in the chamber and the pressure drops to less than one pound per square inch. This phase lasts about 20 minutes. 46
8 2. In the injection phase, the aqueous hydrogen peroxide is introduced into the vacuum chamber and is vaporized into a gas, which creates a rise in pressure due to the increase of molecules. 3. During the diffusion phase the hydrogen peroxide vapor spreads throughout the chamber and the increased pressure drives the sterilant into the packs, exposing the instrument surfaces to the sterilant and killing the microorganisms. 4. During the plasma phase the radio frequency energy is applied, stripping the electrons from some of the molecules and producing a low-temperature plasma cloud. Following this reaction, the activated compounds lose their high energy and recombine to form oxygen and water. 5. The purpose of the venting phase is to introduce filtered air into the chamber and return the chamber to atmospheric pressure so that the door can be opened. It lasts about one minute. MODULE INTEXT QUESTIONS 4.2 Match the following 1. Dry heat Sterilisation (a) Hydrogen peroxide Sterilizer 2. Moist heat (b) Formaldehyde Sterilizer 3. Gas Sterilization (c) Autoclave 4. Liquid Sterilisation (d) Hot air Oven 4.3 RADIATION STERILIZATION Many types of radiation are used for sterilization like electromagnetic radiation (e.g. gamma rays and UV light), particulate radiation (e.g. accelerated electrons).the major target for these radiation is microbial DNA. Gamma rays and electrons cause ionization and free radical production while UV light causes excitation. Radiation sterilization with high energy gamma rays or accelerated electrons has proven to be a useful method for the industrial sterilization of heat sensitive products. But some undesirable changes occur in irradiated products, an example is aqueous solution where radiolysis of water occurs. Radiation sterilization is generally applied to articles in the dry state; including surgical instruments, sutures, prostheses, unit dose ointments, plastic syringes 47
9 and dry pharmaceutical products. UV light, with its much lower energy, and poor penetrability finds uses in the sterilization of air, for surface sterilization of aseptic work areas, for treatment of manufacturing grade water, but is not suitable for sterilization of pharmaceutical dosage forms. Gamma ray Sterilizer: Gamma rays for sterilization are usually derived from cobalt-60 source, the isotope is held as pellets packed in metal rods, each rod carefully arranged within the source and containing 20 KCi of activity. This source is housed within a reinforced concrete building with 2 m thick walls. Articles being sterilized are passed through the irradiation chamber on a conveyor belt and move around the raised source. Ultraviolet Irradiation: The optimum wavelength for UV sterilization is 260 nm. A mercury lamp giving peak emission at 254 nm is the suitable source of UV light in this region. Electron Accelerator There are two types of electron accelerator machines, the electrostatic accelerator which produces electrons with maximum energies of 5 MeV, and the microwave linear accelerator which produces electrons with maximum energies of 10 MeV. Higher energies cause better penetration into the product but there is a risk of induced radiation. A high energy electron beam is generated by accelerating electrons from a hot filament down an evacuated tube under high potential difference, and then additional energy is imparted to this beam in a pulsed manner by a synchronized traveling microwave. Articles to be sterilized are arranged on a horizontal conveyor belt and are irradiated from one or both sides. Filtration Sterilization Filtration process does not destroy but removes the microorganisms. It is used for both the clarification and sterilization of liquids and gases as it is capable of preventing the passage of both viable and non viable particles. The major mechanisms of filtration are sieving, adsorption and trapping within the matrix of the filter material. Sterilizing grade filters are used in the treatment of heat sensitive injections and ophthalmic solutions, biological products and air and other gases for supply to aseptic areas. They are also used in industry as part of the venting systems on fermentors, centrifuges, autoclaves and freeze driers. Membrane filters are used for sterility testing. 48
10 Application of filtration for sterilization of gases: HEPA (High efficiency particulate air) filters can remove up to 99.97% of particles >0.3 micrometer in diameter. Air is first passed through prefilters to remove larger particles and then passed through HEPA filters. The performance of HEPA filter is monitored by pressure differential and airflow rate measurements. There are two types of filters used in filtration sterilization (a) Depth filters: Consist of fibrous or granular materials so packed as to form twisted channels of minute dimensions. They are made of diatomaceous earth, unglazed porcelain filter, sintered glass or asbestos. (b) Membrane filters: These are porous membrane about 0.1 mm thick, made of cellulose acetate, cellulose nitrate, polycarbonate, and polyvinylidene fluoride, or some other synthetic material.the membranes are supported on a frame and held in special holders. Fluids are made to transverse membranes by positive or negative pressure or by centrifugation. MODULE Application of filtration for sterilization of liquids: Membrane filters of 0.22 micrometer nominal pore diameter are generally used, but sintered filters are used for corrosive liquids, viscous fluids and organic solvents. The factors which affects the performance of filter is the titre reduction value, which is the ratio of the number of organism challenging the filter under defined conditions to the number of organism penetrating it. The other factors are the depth of the membrane, its charge and the tortuosity of the channels. Evaluation and In Process Monitoring of Sterilization Procedures Dry Heat Sterilization Physical indicator: In this process temperature record chart is made of each sterilization cycle with dry heat sterilization. This chart forms the batch documentation and is compared against a master temperature records. The temperature should be taken as the coolest part of the loaded sterilizer, further information on heat distribution and penetration within sterilizer can be gained by the use of thermocouple place at selected site in the chamber or injected into test packs or bottles. Chemical indicator: It is based on the ability of heat to alter the chemical or physical characteristics of variety of chemical substances. This change should take place only when satisfactory condition for sterilization prevails. Thus conforming that sterilization cycle has been successfully completed. Chemical indicators generally undergo melting or colour change. 49
11 Biological indicator: The biological indicators are the standardized bacterial spore preparations which are usually in the form of suspension in water or culture medium or of spore dried on paper or plastic carriers, they are placed in sterilizer. After the sterilization process the aqueous suspension /spores are on carriers are aseptically transferred to an appropriate nutrient medium, which is then incubated and occasionally seen for the growth. Clostridium species is generally used for dry heat sterilization indicator. Indicators Sterilization Principle Device Parameter Methods monitored Physical Dry heat Temperature Temperature Temperature recording charts recording charts Chemical Dry heat Temperature Browne s tube Temperature, sensitive Time coloured solution Temperature A temperature Temperature sensitive sensitive white chemical wax concealing a black marked Biological Dry heat Temperature Bacillus D value sensitive subtilis microbes Moist Heat Sterilization Physical Indicator: In this process temperature record chart is made of each sterilization cycle with dry heat sterilization. This chart of the batch documentation is compared against a master temperature records. The temperature should be taken as the coolest part of the loaded sterilizer, further information on heat distribution and penetration within sterilizer can be gained by the use of thermocouple place at selected site in the chamber or injected into test packs or bottles. Chemical Indicator: It is based on the ability of heat to alter the chemical or physical characteristics of variety of chemical substances. This change should take place only when satisfactory condition for sterilization prevails. Thus conforming that sterilization cycle has been successfully completed chemical indicator generally undergoes melting or colour change. Biological Indicator: Spores of G. steareothermophylus in sealed ampoules of culture medium are used for moist heat sterilization monitoring and these may 50
12 be incubated directly at 55 C, thus may eliminate the need of aseptic transfer (Table 3). Aseptic transfer is also avoided by use of self-contained units where the spores strip and the nutrient medium are present in the same device ready for mixing after use. The bacterial spores should have following qualities (i) It should be non-pathogenic (ii) Should possess above average resistant to the particular sterilization process. MODULE Indicator Sterilization Principle Device Parameter monitored Physical Moist heat Temperature Temperature Temperature recording recording charts charts Chemical Moist heat Temperature Browne s tube Temperature, sensitive Time coloured solution Steam A device which Saturated steam sensitive is impregnated chemical into a carrier material. Biological Moist heat Temperature Geobacillus D value sensitive stearothermicrobes mophilus Gaseous Sterilization Physical Indicator: Gas concentration is measured independently of pressure rise, often by reference to weight of gas used. Chemical Indicator: The chemical indicator used here are Royach Sacket, the indicator paper impregnated with reactive chemical which undergoes a distinct colour change on reaction. Chemical indicators are valuable monitors of the condition prevailing at the coolest of most in accessible part of a sterilizer. Biological Indicator: As with chemical indicator they are usually packed in dummy packs located at strategic sites in the sterilizer. Alternatively for gaseous sterilization, these may also be placed in tubular helix device. The species of bacteria generally used for gaseous sterilization are B.subtilis var.niger and B.subtilis var.golbigii 51
13 Radiation Sterilization Physical Indicator: In radiation sterilization a plastic or perspex dosimeter which gradually darkens in proportion to the radiation it absorbs give an accurate measure of the radiation dose and is considered to be the best technique currently available for the radiation sterilization process. Chemical Indicator: Chemical dosimeter acidified with cerric ammonium sulphate or cerric sulphate solution.these responds to irradiation by dose change in the applied density. Those are considered best and accurately measure relation dose. Biological Indicator: These consist of standardized bacterial spore preparation which are usually in the form of suspension in water or culture medium or of spore dried on paper or plastic carriers, they are placed in sterilizer. After the sterilization process the aqueous suspension /spores are on carriers are aseptically transferred to an appropriate nutrient medium, which is then incubated and periodically observed for the growth. Clostridium species is generally used for dry heat sterilization indicator Filtration Sterilization Physical Indicator: Sterilizing filters are subjected to a bubble point pressure test. This is a technique for determining the pore size of a filter, and may also be used to check the integrity of certain types of filters. The principle of the test is that the wetted filter in its assembled unit is subjected to an increasing air or nitrogen gas pressure difference. The pressure difference recorded when the first bubble of gas breaks away from the filter is related to maximum pore size. When the gas pressure is further increased slowly there is general eruption of bubble over the entire surface. The pressure difference here is related to the mean pore size. Pressure difference below the expected value would signify a damage or faulty filter. Biological Indicator: Filtration sterilization requires a different approach from biological monitoring, the test effectively measure in the ability of a filter to produce a sterile filtrate from a culture of suitable organism S. marcesence, a small gram negative rod shape bacterium. B. diminuta used as a biological indicator having a dimension 0.5 micrometres and 0.3 micrometre respectively has been used for filters of 0.45 micrometre and 0.22 micrometre. The extent of the passage of this organism through membrane filter is enhanced by increasing the filtration pressure. Thus successful sterile filtration depends markedly on the challenge condition. Such tests are used as the part of filter manufacture characterization and quality assurance process, and user s initial validation procedure. 52
14 4.4 CHEMICAL METHODS OF DISINFECTION Disinfectants are those chemicals that destroy pathogenic bacteria from inanimate surfaces. Some chemicals when used at apropriate concentration for appropriate duration can be used for sterilization and are called sterilant liquids. Those chemicals that can be safely applied over skin and mucus membranes are called antiseptics. An ideal antiseptic or disinfectant should have following properties: 1. Should have wide spectrum of activity 2. Should be able to destroy microbes within practical period of time 3. Should be active in the presence of organic matter 4. Should make effective contact and be wettable 5. Should be active in any ph 6. Should be stable 7. Should have long shelf life 8. Should be speedy 9. Should have high penetrating power 10. Should be non-toxic, non-allergenic, non-irritative or non-corrosive 11. Should not have bad odour 12. Should not leave non-volatile residue or stain 13. Efficacy should not be lost on reasonable dilution 14. Should not be expensive and must be available easily Such an ideal disinfectant is not yet available. The level of disinfection achieved depends on contact time, temperature, type and concentration of the active ingredient, the presence of organic matter, the type and quantum of microbial load. The chemical disinfectants at working concentrations rapidly lose their strength on standing. MODULE Classification of disinfectants: 1. Based on consistency (a) Liquid (E.g., Alcohols, Phenols) (b) Gaseous (Formaldehyde vapour) 2. Based on spectrum of activity (a) High level (b) Intermediate level (c) Low level 53
15 3. Based on mechanism of action (a) Action on membrane (E.g., Alcohol, detergent) (b) Denaturation of cellular proteins (E.g., Alcohol, Phenol) (c) Oxidation of essential sulphydryl groups of enzymes (E.g., H 2 O 2, Halogens) (d) Alkylation of amino-, carboxyl- and hydroxyl group (E.g., Formaldehyde) (e) Damage to nucleic acids (Formaldehyde) Alcohols Mode of action: Alcohols dehydrate cells, disrupt membranes and cause coagulation of protein. Examples: Ethyl alcohol, isopropyl alcohol and methyl alcohol Application: A 70% aqueous solution is more effective at killing microbes than absolute alcohols. 70% ethyl alcohol (spirit) is used as antiseptic on skin. Isopropyl alcohol is preferred to ethanol. It can also be used to disinfect surfaces. It is used to disinfect clinical thermometers. Methyl alcohol kills fungal spores, hence is useful in disinfecting inoculation hoods. Disadvantages: Skin irritant, volatile (evaporates rapidly), inflammable Aldehydes Mode of action: Acts through alkylation of amino-, carboxyl- or hydroxyl group, and probably damages nucleicacids. It kills all microorganisms, including spores. Examples: Formaldehyde, Gluteraldehyde Application: 40% Formaldehyde (formalin) is used for surface disinfection and fumigation of rooms, chambers, operation theatres, biological safety cabinets, wards, sick rooms etc. Fumigation is achieved by boiling formalin, heating paraformaldehyde or treating formalin with potassium permanganate. It also sterilizes bedding, furniture and books. 10% formalin with 0.5% tetraborate sterilizes clean metal instruments. 2% gluteraldehyde is used to sterilize thermometers, cystoscopes, bronchoscopes, centrifuges, anasethetic equipments etc. An exposure of at least 3 hours at alkaline ph is required for action by gluteraldehyde. 2% formaldehyde at 40 C for 20 minutes is used to disinfect wool and 0.25% at 60 o C for six hours to disinfect animal hair and bristles. 54
16 Disadvantages: Vapors are irritating (must be neutralized by ammonia), has poor penetration, leaves non-volatile residue, activity is reduced in the presence of protein. Gluteraldehyde requires alkaline ph and only those articles that are wettable can be sterilized. MODULE Phenol Mode of action: Act by disruption of membranes, precipitation of proteins and inactivation of enzymes. Examples: 5% phenol, 1-5% Cresol, 5% Lysol (a saponified cresol), hexachlorophene, chlorhexidine, chloroxylenol (Dettol) Applications: Joseph Lister used it to prevent infection of surgical wounds. Phenols are coal-tar derivatives. They act as disinfectants at high concentration and as antiseptics at low concentrations. They are bactericidal, fungicidal, mycobactericidal but are inactive against spores and most viruses. They are not readily inactivated by organic matter. The corrosive phenolics are used for disinfection of ward floors, in discarding jars in laboratories and disinfection of bedpans. Chlorhexidine can be used in an isopropanol solution for skin disinfection, or as an aqueous solution for wound irrigation. It is often used as an antiseptic hand wash. 20% Chlorhexidine gluconate solution is used for preoperative hand and skin preparation and for general skin disinfection. Chlorhexidine gluconate is also mixed with quaternary ammonium compounds such as cetrimide to get stronger and broader antimicrobial effects (eg. Savlon). Chloroxylenols are less irritant and can be used for topical purposes and are more effective against gram positive bacteria than gram negative bacteria. Hexachlorophene is chlorinated diphenyl and is much less irritant. It has marked effect over gram positive bacteria but poor effect over gram negative bacteria, mycobacteria, fungi and viruses. Triclosan is an organic phenyl ether with good activity against gram positive bacteria and effective to some extent against many gram negative bacteria including Pseudomonas. It also has fair activity on fungi and viruses. Disadvantages: It is toxic, corrosive and skin irritant. Chlorhexidine is inactivated by anionic soaps. Chloroxylenol is inactivated by hard water. Halogens Mode of action: They are oxidizing agents and cause damage by oxidation of essential sulfydryl groups of enzymes. Chlorine reacts with water to form hypochlorous acid, which is microbicidal. Examples: Chlorine compounds (chlorine, bleach, hypochlorite) and iodine compounds (tincture iodine, iodophores) 55
17 Applications: Tincture of iodine (2% iodine in 70% alcohol) is an antiseptic. Iodine can be combined with neutral carrier polymers such as polyvinylpyrrolidone to prepare iodophores such as povidone-iodine. Iodophores permit slow release and reduce the irritation of the antiseptic. For hand washing iodophores are diluted in 50% alcohol. 10% Povidone Iodine is used undiluted in pre and postoperative skin disinfection. Chlorine gas is used to bleach water. Household bleach can be used to disinfect floors. Household bleach used in a stock dilution of 1:10. In higher concentrations chlorine is used to disinfect swimming pools. 0.5% sodium hypochlorite is used in serology and virology. Used at a dilution of 1:10 in decontamination of spillage of infectious material. Mercuric chloride is used as a disinfectant. Disadvantages: They are rapidly inactivated in the presence of organic matter. Iodine is corrosive and staining. Bleach solution is corrosive and will corrode stainless steel surfaces. Heavy Metals Mode of action: Act by precipitation of proteins and oxidation of sulfydryl groups. They are bacteriostatic. Examples: Mercuric chloride, silver nitrate, copper sulfate, organic mercury salts (e.g., mercurochrome, merthiolate) Applications: 1% silver nitrate solution can be applied on eyes as treatment for opthalmia neonatorum (Crede s method). This procedure is no longer followed. Silver sulphadiazine is used topically to help to prevent colonization and infection of burn tissues. Mercurials are active against viruses at dilution of 1:500 to 1:1000. Merthiolate at a concentration of 1:10000 is used in preservation of serum. Copper salts are used as a fungicide. Disadvantages: Mercuric chloride is highly toxic, are readily inactivated by organic matter. Surface Active Agents Mode of actions: They have the property of concentrating at interfaces between lipid containing membrane of bacterial cell and surrounding aqueous medium. These compounds have long chain hydrocarbons that are fat soluble and charged ions that are water-soluble. Since they contain both of these, they concentrate on the surface of membranes. They disrupt membrane resulting in leakage of cell constituents. Examples: These are soaps or detergents. Detergents can be anionic or cationic. Detergents containing negatively charged long chain hydrocarbon are called anionic detergents. These include soaps and bile salts. If the fat-soluble part is 56
18 made to have a positive charge by combining with a quaternary nitrogen atom, it is called cationic detergents. Cationic detergents are known as quaternary ammonium compounds (or quat). Cetrimide and benzalkonium chloride act as cationic detergents. Application: They are active against vegetative cells, Mycobacteria and enveloped viruses. They are widely used as disinfectants at dilution of 1-2% for domestic use and in hospitals. Disadvantages: Their activity is reduced by hard water, anionic detergents and organic matter. Pseudomonas can metabolise cetrimide, using them as a carbon, nitrogen and energy source. MODULE Dyes Mode of action: Acridine dyes are bactericidal because of their interaction with bacterial nucleic acids. Examples: Aniline dyes such as crystal violet, malachite green and brilliant green. Acridine dyes such as acriflavin and aminacrine. Acriflavine is a mixture of proflavine and euflavine. Only euflavine has effective antimicrobial properties. They are more effective against gram positive bacteria than gram negative bacteria and are more bacteriostatic in action. Applications: They may be used topically as antiseptics to treat mild burns. They are used as paint on the skin to treat bacterial skin infections. Melachite green is used in LJ medium for growth of Mycobacterium tuberculosis. Hydrogen Peroxide Mode of action: It acts on the microorganisms through its release of nascent oxygen. Hydrogen peroxide produces hydroxyl-free radical that damages proteins and DNA. Application: It is used at 6% concentration to decontaminate the instruments, equipments such as ventilators. 3% Hydrogen Peroxide Solution is used for skin disinfection and deodorising wounds and ulcers. Strong solutions are sporicidal. Disadvantages: Decomposes in light, broken down by catalase, proteinaceous organic matter drastically reduces its activity. Beta-propiolactone (BPL) Mode of action: It is an alkylating agent and acts through alkylation of carboxyland hydroxyl-groups. Properties: It is a colorless liquid with pungent to slightly sweetish smell. It is a condensation product of ketane with formaldehyde. 57
19 Application: It is an effective sporicidal agent, and has broad-spectrum activity. 0.2% is used to sterilize biological products. It is more efficient in fumigation that formaldehyde. It is used to sterilize vaccines, tissue grafts, surgical instruments and enzymes Disadvantages: It has poor penetrating power and is a carcinogen. Testing of Disinfectants A disinfectant must be tested to know the required effective dilution, the time taken to effect disinfection and to periodically monitor its activity. As disinfectants are known to lose their activity on standing as well as in the presence of organic matter, their activity must be periodically tested. Different methods are: 1. Koch s method 2. Rideal Walker Method 3. Chick Martin test 4. Capacity use dilution test (Kelsey-Sykes test) 5. In-use test Koch s method: Spores of Bacillus anthracis were dried on silk thread and were subjected to action of disinfectants. Later, it was washed and transferred to solid medium. Rideal Walker method: This method relies on the estimation of phenol coefficient. Phenol coefficient of a disinfectant is calculated by dividing the dilution of test disinfectant by the dilution of phenol that disinfects under predetermined conditions. Disadvantages of the Rideal-Walker test are: No organic matter is included; the microorganism Salmonella typhi may not be appropriate; the time allowed for disinfection is short; it should be used to evaluate phenolic type disinfectants only. Chick Martin test: This test also determines the phenol coefficient of the test disinfectant. Unlike in Rideal Walker method where the test is carried out in water, the disinfectants are made to act in the presence of yeast suspension (or 3% dried human feces). Time for subculture is fixed at 30 minutes and the organism used to test efficacy is S.typhi as well as S.aureus. The phenol coefficient is lower than that given by Rideal Walker method. Capacity use dilution test (Kelsey-Sykes test) The capacity test (Kelsey-Sykes) determine the appropriate use dilution of the disinfectants. The stability test (Maurer) determines the stability and long term 58
20 effectiveness of disinfectant dilution. The capacity and stability test help to determine the choice of a disinfectant. MODULE In-use test: The routine monitoring of disinfectant in use can be done by the in use test (Kelsey & Maurer). This test is intended to estimate the number of living organism in a vessel of disinfectant in actual use. The disinfectant that is already in use is diluted 1 in 10 by mixing 1 ml of the disinfectant with 9 ml of sterile nutrient broth. Ten drops of the diluted disinfectant (each 0.02 ml) is placed on two nutrient agar plates. One plate is incubated at 37 C for 3 days while the other is held at room temperature for 7 days. The number of drops that yielded growth is counted after incubation. If there growth in more than five drops on either plate, it represents failure of disinfectant. INTEXT QUESTIONS species is used as indicator in dry heat sterilization 2. Spores of... is used in moist heat sterilisation 3. Chemicals that can be safely applied over skin is Spores of... used for testing of disinfectants WHAT YOU HAVE LEARNT The various methods of sterilization are: Physical Method (a) Thermal (Heat) methods (b) Radiation method (c) Filtration method Chemical Method Gaseous method Classification of disinfectants: Based on consistency (a) Liquid (E.g., Alcohols, Phenols) (b) Gaseous (Formaldehyde vapour) 59
21 Based on spectrum of activity (a) High level (b) Intermediate level (c) Low level Based on mechanism of action (a) Action on membrane (E.g., Alcohol, detergent) (b) Denaturation of cellular proteins (E.g., Alcohol, Phenol) (c) Oxidation of essential sulphydryl groups of enzymes (E.g., H 2 O 2, Halogens) (d) Alkylation of amino-, carboxyl- and hydroxyl group (E.g., Formaldehyde) (e) Damage to nucleic acids (Formaldehyde) TERMINAL QUESTIONS 1. Define sterilisation and disinfection? 2. Describe the working of an Autoclave in a flowchart? 3. Classify disinfectant based on their mechanism of action. 4. What are various physical methods of sterilisation describe any one of them. 5. How to test for efficacy of disinfectents? ANSWERS TO INTEXT QUESTIONS (c) 2. (d) 3. (a) 4. (b) (d) 2. (c) 3. (b) 4. (a) Clostridium 2. G. Steareothermophilus 3. Antiseptics 4. Bacillus Anthracisis 60
STERILIZATION AND DISINFECTION
STERILIZATION AND DISINFECTION Importance of hand washing shown by Semmelweis STERILIZATION A physical or chemical process that destroys or eliminates all forms of microbial life, including spores. A satisfactory
Sterilization methods and equipment Lab 1-2
Sterilization methods and equipment Lab 1-2 PHT 434 Sterilization Sterilization a process that by which all viable M.O are removed or destroyed, based on a probability function. Sterilization concept Sterilization
CHAPTER V: DISPOSAL OF WASTES CONTAMINATED WITH INFECTIOUS AGENTS
CHAPTER V: DISPOSAL OF WASTES CONTAMINATED WITH INFECTIOUS AGENTS These biohazard waste disposal guidelines are designed to not only protect the public and the environment, but also laboratory and custodial
PHARMACEUTICAL MICROBIOLOGY AND BIOTECHNOLOGY
PHARMACEUTICAL MICROBIOLOGY AND BIOTECHNOLOGY Sterilization Methods and Principles Dr Yashmin Sultana Lecturer Dept. of Pharmaceutics Faculty of Pharmacy Jamia Hamdard Hamdard Nagar New Delhi-110062 (11-07-2007)
Sterilization and Disinfection
Sterilization and Disinfection Sterilization is defined as the process where all the living microorganisms, including bacterial spores are killed. Sterilization can be achieved by physical, chemical and
Physical Methods Of Microbial Control: 1. Heat: denatures proteins (enzymes) = death
Physical Methods Of Microbial Control: 1. Heat: denatures proteins (enzymes) = death A. Moist heat: disrupts H-bonds, coagulates molecules denatures proteins 1. Boiling: 100 C, 10 min Kills: vegetative
PACUC Guidelines. Rodent Survival Surgery
PACUC Guidelines Rodent Survival Surgery Guidelines for rodent survival surgery are based on the National Research Council Guide for the Care and Use of Laboratory Animals 8 th edition and the Animal Welfare
Decontamination and Waste Management www.biosecurity.sandia.gov
Decontamination and Waste Management www.biosecurity.sandia.gov SAND No. 2006-3684C Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Protocol for Disinfection of Cell Culture and Tissue Culture in Media:
Protocol for Disinfection of Cell Culture and Tissue Culture in Media: Location: Hickory Hall 001 Director: Dr. Guido Verbeck DECONTAMINATION OF CELL CULTURE WASTE Cell culture has become a common laboratory
STERILIZATION د STERILIZATION
STERILIZATION. د STERILIZATION Is a term referring to any process that eliminates (removes) or kills all forms of microbial life, including transmissible agents (such as fungi, bacteria, viruses, spores
Oxivir Tb and Accelerated Hydrogen Peroxide (AHP) Frequently Asked Questions
Oxivir Tb and Accelerated Hydrogen Peroxide (AHP) Frequently Asked Questions What is Accelerated Hydrogen Peroxide (AHP)? AHP is a patented synergistic blend of commonly used, safe ingredients that when
Professional Certification in Biological Waste Management Examination Content, Sample Questions & References
Professional Certification in Biological Waste Management Examination Content, Sample Questions & References The IFBA s Professional Certification (PC) in Biological Waste Management identifies individuals
position statement INFECTION CONTROL INTRODUCTION POSITION STATEMENT PERFORMANCE EXPECTATIONS
INFECTION CONTROL INTRODUCTION Appropriate infection control is an essential element of clinical practice management based on its importance to the health and safety of patients, practitioners and the
Infection Prevention + Control
Physiotherapy Alberta regulates and leads the practice of physiotherapy in Alberta. Contact us for more information on this or other position statements. 780.438.0338 1.800.291.2782 [email protected]
Sterilization A REVIEW OF THE BASICS. By Gayla Tilton and Myrna Kauffman 66 MANAGING INFECTION CONTROL
Sterilization A REVIEW OF THE BASICS By Gayla Tilton and Myrna Kauffman 66 MANAGING INFECTION CONTROL Although sterilization has been performed in healthcare facilities for many decades, the process is
Steam Sterilization Cycles for Lab Applications
Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 Early Steam Sterilizers Koch Upright Sterilizer First Pressurized Sterilizer First built by Pasteur-Chamberlain
Sterilization, Disinfection and Biosafety. Department of Microbiology College of Medicine University of Baghdad
Sterilization, Disinfection and Biosafety Department of Microbiology College of Medicine University of Baghdad Learning Objectives Define Sterilization and disinfection Identify the different types or
Fundamental Autoclave Techniques
Fundamental Autoclave Techniques Version 3, September 2010 Veronika Tatarinoff GSBmE University of NSW Brandy Nelson University of Kentucky The following information is directed at aseptic/sterile surgical,
conductivity emulsification saponification wetting peptizing dispersion rinsability controlling mineral deposits Sequestration chelation
ENVH 441 FOOD PROTECTION DETERGENTS AND SANITIZERS Cleaning and sanitizing must both occur for dishware to be safe. These are accomplished by use of a (1) detergent to clean utensil surfaces (remove the
GUIDELINES: Aseptic Technique for Rodent Survival Surgeries Surgical Area Animal Preparation 1.
GUIDELINES: Aseptic Technique for Rodent Survival Surgeries The following Guidelines are provided to ensure correct aseptic technique for all rodent survival surgeries. Surgical Area 1. The surgical area
RBS detergents for laboratories
RBS detergents for laboratories High performance solutions For reliable and reproducible results Competence & experience RBS products are mainly intended for water-based cleaning processes of glassware
IX. Decontamination and Spills
IX. Decontamination and Spills IX.1. Definitions Sterilization: the act or process, physical or chemical, which destroys or eliminates all forms of life, especially microorganisms. Decontamination: reduction
Testing of disinfectants
Testing of disinfectants Disinfectants used in hospitals and laboratories must be tested periodically to ascertain its potency and efficacy. As certain disinfectants lose potency on standing and addition
Lab Exercise 3: Media, incubation, and aseptic technique
Lab Exercise 3: Media, incubation, and aseptic technique Objectives 1. Compare the different types of media. 2. Describe the different formats of media, plate, tube etc. 3. Explain how to sterilize it,
Cleaning. By the end of this chapter, you will be able to: Introduction. Definitions. Chapter 9
Chapter 9 By the end of this chapter, you will be able to: l Define the terms cleaning, decontamination, disinfection l List the factors that affect disinfection l Describe the aims of a cleaning schedule
Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition)
Product Description: Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition) The NU G System uses pyrolysis thermal decomposition to treat infectious wastes typically generated in hospitals.
"ADOPTED STANDARDS FOR THE REGULATION OF MEDICAL WASTE" IN HEALTH CARE FACILITIES LICENSED BY THE MISSISSIPPI STATE DEPARTMENT OF HEALTH
"ADOPTED STANDARDS FOR THE REGULATION OF MEDICAL WASTE" IN HEALTH CARE FACILITIES LICENSED BY THE MISSISSIPPI STATE DEPARTMENT OF HEALTH REGULATED MEDICAL WASTE "Infectious medical wastes" includes solid
THE BASICS OF STERILIZATION
THE BASICS OF STERILIZATION Objectives: State the importance of sterilization to patient care Review three key essentials of the sterilization process Describe sterilization methods used, application,
Assembly and Installation Procedures
Assembly and Installation Procedures for Pall Pharmaceutical Grade Capsule Assemblies 1. Introduction The following procedures must be followed for the installation of Pall pharmaceutical grade capsule
Guidance on safe use of Autoclaves
Safety Office Reviewed: Dec 2013 Reviewed: DD Month Year Guidance on safe use of Autoclaves 1. Hazards & Uses There are several different types of hazard associated with the use of autoclaves. The main
CLEANING AND SANITIZING
CLEANING AND SANITIZING Cleaning and sanitizing procedures must be part of the standard operating procedures that make up your food safety program. Improperly cleaned and sanitized surfaces allow harmful
Recommendations for Aseptic Technique and Post- Operative Care for Rodent Surgery
Recommendations for Aseptic Technique and Post- Operative Care for Rodent Surgery It is the responsibility of the veterinary staff, investigator, laboratory animal technicians, and the facility manager
GUIDELINES FOR THE MANGAGEMENT OF BIO- MEDICAL WASTE AT THE SCHOOL OF LIFE SCIENCES
Basic Safety Rules SV vademecum Safety information Version 1.2 17.04.2013 GUIDELINES FOR THE MANGAGEMENT OF BIO- MEDICAL WASTE AT THE SCHOOL OF LIFE SCIENCES Table of contents 1. General Information...
BCCDC Laboratory Services. A Guide to. Selection and Use of Disinfectants
BCCDC Laboratory Services A Guide to Selection and Use Table of Contents 1.0 DEFINITIONS... 3 2.0 SELECTION CRITERIA... 5 3.0 LOW LEVEL DISINFECTANTS... 6 3.1 Phenolic Disinfectants... 6 3.2 Quaternary
CHILDCARE SETTINGS. Childcare Settings
Childcare Settings This document provides guidelines and recommendations for cleaning childcare settings such as nurseries, crèches and schools in the event of a disease outbreak in the vicinity. Cleaning
Mechanical Systems Competency 1.20
Competency 1.20 Mechanical systems personnel shall demonstrate a working level knowledge of the safety and health fundamentals of mechanical systems and/or components. 1. Supporting Knowledge and Skills
The Control of Microbial Growth
Chapter 7 The Control of Microbial Growth Terminology Related to the Control of Microbial Growth Sterilization is the removal or destruction of all forms of microbial life. Commercial sterilization subjects
Biological Safety Program
Risk Management & Safety Main Office, Wyoming Hall Phone: (307) 766-3277 Fax: (307)766-6116 Regulated Materials Management Center Phone: (307)766-3696 Fax: (307)766-3699 Web: www.uwyo.edu/ehs Email: [email protected]
ROYAL FREE AND UNIVERSITY COLLEGE MEDICAL SCHOOL HAMPSTEAD CAMPUS
ROYAL FREE AND UNIVERSITY COLLEGE MEDICAL SCHOOL HAMPSTEAD CAMPUS LABORATORY DISINFECTION CODE OF PRACTICE Introduction The use of different disinfectants in hospital and medical school laboratories has
UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine. JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009
UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009 METHOD of WATER ACTIVATION with PLASMA of GAS DISCHARGE ANODE VACUUM WATER
Treatment options for hydrogen sulfide. Testing for hydrogen sulfide
Sometimes hot water will have a sour smell, similar to that of an old damp rag. This smell often develops when the thermostat has been lowered to save energy or reduce the potential for scalding. Odor-causing
Revised 4-3-2012 EHS Biosafety. 1 Select appropriate containers/bags for autoclaving.
Requirements for Decontamination by Autoclaving Summary: Steam sterilization (autoclaving) is one of the most effective methods for decontaminating biohazardous material. Autoclaves use saturated steam
Fumigation of Safety Cabinets
Fumigation of Safety Cabinets General Microbiological safety cabinets should always be fumigated if a large spillage of infectious material occurs within them, before filters are changed or before any
Sap Steady UV Unit for Maple Sap
Cornell Maple Bulletin 203 (2007) Sap Steady UV Unit for Maple Sap by BRIAN CHABOT Overview Components The Sap-Steady unit from FPE Inc. (Macedon NY) has been designed to kill bacteria yeast, and some
CARE HOMES AND NURSING HOMES
Care Homes and Nursing Homes: This document provides guidelines and recommendations for cleaning care homes and nursing homes in the event of a disease outbreak in the vicinity. Cleaning and disinfection
Separation by Solvent Extraction
Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic
Effective Cleaning and Sanitizing Procedures
JIFSAN Good Aquacultural Practices Program Effective Cleaning and Sanitizing Procedures By Alan Parker JIFSAN Good Aquacultural Practices Manual Section 9 Effective Cleaning and Sanitizing Procedures Why
Cleaning, Disinfection, and Sterilization. Basics of Infection Prevention 2-Day Mini-Course 2013
Cleaning, Disinfection, and Sterilization Basics of Infection Prevention 2-Day Mini-Course 2013 2 Objectives Describe basic principles of cleaning, disinfection, sterilization Identify when to use cleaning,
Procedures for the Effective Use of Biological Safety Cabinets
Procedures for the Effective Use of Biological Safety Cabinets APPROVAL DATE BY BIOHAZARDS SUBCOMMITTEE: August 10, 2012 SUPERSEDES: March 1, 2012 This corporate guideline/procedure is intended as a minimum
Autoclave Safety. Autoclaves are sterilizers using high pressure and high temperature steam. The potential safety risks for the operators are:
Autoclave Safety Purpose: Sterilization refers to the complete killing of all living organisms, including spores. Common sterilization techniques include the application of wet heat, dry heat, chemicals,
EH&S. Sheet. Fact. Safe and Effective Use of Autoclaves. What are autoclaves? Factors for effective sterilization. Dry heat cycle - when to use
Please post or circulate Fact heet nvironment, ealth and afety Information for the Berkeley Campus No. 33 Revised 04/04/11 afe and ffective Use of Autoclaves Autoclaves are easy to use but can pose a safety
Selection of Disinfectants for Use in the Pharmaceutical Industry. Tim Sandle Head of Microbiology Bio Products Laboratory
Selection of Disinfectants for Use in the Pharmaceutical Industry Tim Sandle Head of Microbiology Bio Products Laboratory Introduction Cleaning and disinfection of surfaces are essential steps for maintaining
Laboratory Hazardous Waste Disposal Guidelines
Satellite Accumulation Area (SAA) For safety and environmental reasons, hazardous waste must be stored in a designated "Satellite Accumulation Area." These areas must be inspected weekly for container
H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a.
Lab 6: Organic hemistry hemistry 100 1. Define the following: a. ydrocarbon Pre-Lab Exercises Lab 6: Organic hemistry Name Date Section b. Saturated hydrocarbon c. Unsaturated hydrocarbon 2. The formula
PEROXIDE SAFETY DATA SHEET (60% H2O2) Safety Data Sheet
SAYFA : 1/6 1. Identification of the substance Identification of the product Product name : Hydrogen peroxide solution 60% Manufacturer / supplier identification Company : A.Ş. 600Evler Mahallesi Atatürk
DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.
DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. Dyeing of textiles has been practiced for thousands of years with the first
KGI MEDICAL WASTE MANAGEMENT PLAN
1revised 2012 I. Facility Information KGI MEDICAL WASTE MANAGEMENT PLAN a. Contact Person: Barbara Erwin Director Research Operations/Chemical and Biological Laboratory Safety/Chair. 909-607-0160 i. Facility:
Identification of Unknown Organic Compounds
Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
PROJECT HAZARD ASSESSMENT FORM CHEMICAL HAZARDS
PROJECT HAZARD ASSESSMENT FORM PI/SPONSOR: Completion of the following form will serve as a risk assessment, personal protective equipment (PPE) assessment and guide to required training for the activities
Subpart 1. Installation. All plumbing systems must be. installed and tested according to this chapter and chapter 4715,
4658.4500 PLUMBING SYSTEMS; NEW CONSTRUCTION. Subpart 1. Installation. All plumbing systems must be installed and tested according to this chapter and chapter 4715, the Minnesota Plumbing Code. Subp. 2.
LABORATORY ORGANIZATION
LABORATORY ORGANIZATION A laboratory designed for invitro cultures with plant tissues should have sufficient space for performing several functions maintaining sterile conditions. A plant tissue culture
33 Infection Control Techniques
CHAPTER 33 Infection Control Techniques Learning Outcomes 33.1 Describe the medical assistant s role in infection control. 33.2 Describe methods of infection control. 33.3 Compare and contrast medical
UNCG Safety and Health Policy and Procedure Manual Section 0260 Page 1 of 14 Date: 1/08 Revised: 12/09
Section 0260 Page 1 of 14 I. POLICY All persons at the University will handle Regulated Medical Waste and other biohazard waste so as to minimize hazardous exposure to themselves, other persons, and the
Dartmouth College. Institutional Biosafety Committee. Biohazardous Waste Disposal Guide IBC Approved: 10/7/15
Dartmouth College Institutional Biosafety Committee Biohazardous Waste Disposal IBC Approved: 10/7/15 I. DEFINITION OF BIOHAZARDOUS WASTE: Biohazardous waste is any waste generated from working in biological
Thermo Scientific Biological Safety Cabinets Fumigation Methodologies
Thermo Scientific Biological Safety Cabinets Fumigation Methodologies Due to its use in hazardous processes, the biological safety cabinet (BSC) is a highly regulated device. Generally speaking, regulatory
Recommendations for the Safe Use of Handling of Cytotoxic Drugs
Recommendations for the Safe Use of Handling of Cytotoxic Drugs Introduction Cytotoxic drugs are toxic compounds and are known to have carcinogenic, mutagenic and/or teratogenic potential. With direct
Laboratory Waste Disposal
Laboratory Waste Disposal 1. Purpose This guideline details the procedures to follow in disposing of hazardous waste that is generated in the laboratory in order to minimise risks associated with the disposal
Administrative Procedure
Administrative Procedure Number: 410 Effective 1/30/98 Supercedes: 1 of Subject: MEDICAL WASTE MANAGEMENT PLAN 1.0. PURPOSE: The purpose of the California State University Los Angeles Medical Waste Management
Detergents in CSSD. Wim Renders
Detergents in CSSD Wim Renders http://www.aqualitybv.eu Water is the solvent For pre-rinsing (cold): tap water In the ultra sonic cleaner: soft (preferably) or RO water; For manual cleaning: cold tap
Managing Water Infiltration into Buildings. Water Damage Check List
Managing Water Infiltration into Buildings A Systematized Approach for Remediating Water Problems in Buildings due to Floods, Roof Leaks, Potable Water Leaks, Sewage Backup, Steam Leaks and Groundwater
Environmental Management of Staph and MRSA in Community Settings July 2008
Page 1 of 7 Environmental Management of Staph and MRSA in Community Settings July 2008 Questions addressed on this page What are Staph and MRSA? How is Staph and MRSA spread? What is the role of the environment
Laboratory Biosafty In Molecular Biology and its levels
Laboratory Biosafty In Molecular Biology and its levels Workshop 16-17 Oct..2012 Guidelines Does not mean optional Laboratory Biosafety The Laboratory Biosafety Manual is an important WHO publication
LAB 4. Cultivation of Bacteria INTRODUCTION
LAB 4. Cultivation of Bacteria Protocols for use of cultivation of bacteria, use of general growth, enriched, selective and differential media, plate pouring, determination of temperature range for growth
CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER
CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER There are a number of technologies that are being use to remediate contaminated groundwater. The choice of a certain remediation technology
Biosafety Level 2 (BSL-2) Safety Guidelines
BLS-4 Biosafety Level 2 (BSL-2) Safety Guidelines BSL-3 BSL-2 BSL-1 BSL-2 builds upon BSL-1. If you work in a lab that is designated a BSL-2, the microbes used pose moderate hazards to laboratory staff
FACT SHEET : Using Autoclaves Safely
CSULA Environmental Health and Safety Biosafety Office FACT SHEET : Using Autoclaves Safely Most science research laboratories on campus require the use of autoclaves. The primary purpose of the autoclave
AUTOCLAVE PROGRAM. SOP Bio-006 FOR THE USE OF AUTOCLAVE FOR STERILIZATION OF MATERIALS AND BIOLOGICAL WASTE SOP
ENVIRONMENTAL AND EMERGENCY MANAGEMENT ENVIRONMENTAL HEALTH AND SAFETY 175 Cabot St. Wannalancit Suite 311 Lowell MA 01854 Ruth Medina, Ph.D. Tel: 978-934-2778 Senior Biosafety Specialist/Biosafety Officer
Effective Heat Sterilization in CO 2 Incubators
Effective Heat Sterilization in CO 2 Incubators Volume 4, Number 3 Key Words Key Words Class 100 air Contamination control Contamination elimination HEPA filtration Incubator Heat Sterilization White Paper
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
Material Safety Data Sheet
1. Product & Company Identification: Product Manufacturer: Model: Nominal capacity: LiPo-Akku Conrad Electronic SE LiPo-Akku 3.7V 130mAh 130mAh Nominal voltage: 3.7V Address: Klaus-Conrad-Strasse 1, D-92242
INFECTION CONTROL PRECAUTIONS
INFECTION CONTROL PRECAUTIONS Outline Standard Precautions Droplet Precautions Contact Precautions Airborne Precautions References STANDARD PRECAUTIONS Use Standard Precautions, or the equivalent, for
Physical & Chemical Properties. Properties
Physical & Chemical Properties Properties Carbon black can be broadly defined as very fine particulate aggregates of carbon possessing an amorphous quasi-graphitic molecular structure. The most significant
Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap
Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.
Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration
Sirromet Wines Pty Ltd 850-938 Mount Cotton Rd Mount Cotton Queensland Australia 4165 www.sirromet.com Courtesy of Jessica Ferguson Assistant Winemaker & Chemist Downloaded from seniorchem.com/eei.html
HAZARDOUS CHEMICAL WASTE DISPOSAL SECTION 7
HAZARDOUS CHEMICAL WASTE DISPOSAL According to Ontario environmental legislation, generators of hazardous waste are responsible for properly packaging and labelling such wastes. The University of Toronto
MATERIAL SAFETY DATA SHEET "LIQUID FIRE" DRAIN LINE OPENER 09/2007 PHYSICAL/CHEMICAL CHARACTERISTICS:
09/2007 MATERIAL SAFETY DATA SHEET "LIQUID FIRE" DRAIN LINE OPENER MANUFACTURER'S NAME: AMAZING PRODUCTS, INC. P.O. BOX 14226 LOUISVILLE, KY 40214 PHONE: 502-361-3655 FAX: 502-361-1810 E-MAIL: [email protected]
Cal Water 1961 Petra Lane, Placentia, CA 92870 (800) CAL-WATER (800) 225-9283 FAX: (714) 792-0794 http://www.cal-water.com
Industrial Water Purification MAINTAINING A STERILE HIGH PURITY WATER SYSTEM Introduction Maintaining a microbe free deionized water system is like trying to maintain a vacuum, and nature abhors a vacuum.
CLEAN UP FOR VOMITING & DIARRHEAL EVENT IN RETAIL FOOD FACILITIES
CLEAN UP FOR VOMITING & DIARRHEAL EVENT IN RETAIL FOOD FACILITIES GENERAL INFORMATION Noroviruses are a group of viruses that cause gastroenteritis [gas-trō-en-ter-ī-tis] in people. Gastroenteritis is
18.2 Protein Structure and Function: An Overview
18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded
Appendix D lists the Field Services Standard Operating Procedures. Appendix E lists the Biological Monitoring Standard Operating Procedures.
Page 16 of 87 3.3 Sample Collection, Storage and Preservation Figure 3 details required containers, sample volumes, preservation techniques, and holding times for proper sample collection. A discussion
Now Resistant Microorganisms Have No Place to Hide
Zep DRAIN PROGRAM Introducing Zep Biofilm Drain Purge Now Resistant Microorganisms Have No Place to Hide Eliminate the Possibility of Cross-Contamination. Kill resistant microorganisms, such as Listeria,
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic
Appendix B Decontamination and Disinfection
Appendix B Decontamination and Disinfection This section describes basic strategies for decontaminating surfaces, items, and areas in laboratories to eliminate the possibility of transmission of infectious
SPILLS & SPILL KITS. Spills -General Guidelines:
Spills -General Guidelines: If handled properly, a spill may be nothing more than a nuisance. If handled improperly, a spill can seriously disrupt your activities and the work of your colleagues. At worst,
ISOLATION OF CAFFEINE FROM TEA
ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural
Ingredient % content Hazard data Cross linked Sodium Polyacrylite 70-90 CAS No:9003-04-7 Non chemical fillers 20-30 Zeolite 1-10
Body Spill Granules Composition Ingredient % content Hazard data Cross linked Sodium Polyacrylite 70-90 CAS No:9003-04-7 Non chemical fillers 20-30 Zeolite 1-10 Hazards Identification Eye contact: May
