International Journal of Advanced Research in Computer Science and Software Engineering
|
|
|
- Baldwin Nicholson
- 10 years ago
- Views:
Transcription
1 ISSN: X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: A Comparison & Performance of Simulation Tools MATLAB/SIMULINK, PSIM & PSPICE for Power Electronics Circuits Santosh S. Raghuwanshi Ankita Singh Yamini mokhariwale EX Dept.,RGPV,Bhopal(M.P.)India EX Dept.,RGPV,Bhopal(M.P.)India EX Dept.,RGPV,Bhopal(M.P.)India [email protected] Abstract--The software packages available for simulation of power electronic circuits are MATLAB, PSPICE and PSIM. In this paper the simulation of rectifier and inverter circuits were performed in the MATLAB, PSPICE and PSIM environment and the comparison of results were made. Rectifier and inverter are the power electronic circuits which were highly used in all power supply units. The paper explains the theoretical approach of these circuits and then the simulation results are given in order to show the effectiven ess of the system in the simulation arena. Keywords MATLAB, PSIM, PASICE, DC-AC Converter, AC-DC Converter I. INTRODUCTION Power Electronics is interdisciplinary and is at the confluence of three fundamental technical areas - power, electronics and control, and is used in a wide variety of industries from computers, chemical plants to rolling mills. The importance of power electronics has grown over the years due to several factors. Computer simulation can greatly aid in the analysis, design and education of Power Electronics. A computer simulation (or "sim") is an attempt to model a real-life or hypothetical situation on a computer so that it can be studied to see how the system works. By changing variables, predictions may be made about the behavior of the system. In our work towards this we have ensured to bring out the different responses of current and voltage in the power electronic circuits. However, simulation of power electronics systems is made challenging by the following factors: Extreme non-linearity presented by switches Time constants within the system may differ by several orders of magnitude and A lack of models Therefore, it is important that the objective of the computer analysis be evaluated carefully and an appropriate simulation package be chosen. In view of the above considerations, a SPICE based simulation package, MATLAB and PSIM have been used for simulating the power electronic circuits like rectifiers, inverters, choppers and AC voltage controllers. They have had the detailed device models and have been able to represent the controller portion of the converter system by its functional features in as simplified a manner as possible. In this paper the simulation of rectifier and inverter circuits were taken into consideration. A rectifier is an electrical device that converts alternating current (AC) to direct current (DC), a process known as rectification. Rectifiers have many uses including as components of power supplies and as detectors of radio signals. Rectifiers may be made of solid state diodes, vacuum tube diodes, mercury arc valves, and other components. An inverter is an electrical or electro-mechanical device that converts direct current (DC) to alternating current (AC); the resulting AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits. Static Inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries. The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters was made to work in reverse, and thus was "inverted", to convert DC to AC. The inverter performs the opposite function of a rectifier. The comparison of the software tools are explained in the following sections.
2 MATLAB is numeric computation software for engineering and scientific calculations. MATLAB is being used for circuit theory, filter design, random processes, control systems and communication theory. MATLAB matrix functions are shown to be versatile in doing analysis of data obtained from electronics experiments. The graphical features of MATLAB are especially useful for display of frequency response of amplifiers and illustrating the principles and concepts of semiconductor physics. The interactive programming and versatile graphics of MATLAB is especially effective in exploring some of the characteristics of devices and electronic circuits. PSIM is simulation software specifically designed for power electronics and motor drives. With fast simulation and friendly user interface, PSIM provides a powerful simulation environment for power electronics, analog and digital control, magnetics, and motor drive system studies. Powersim develops and markets leading simulation and design tools for research and product development in power supplies, motor drives and power conversion and control systems. SPICE is an acronym for Simulation Program with Integrated Circuit Emphasis and was inspired by the need to accurately model devices used in integrated circuit design. It has now become the standard computer program for electrical and electronic simulation. The majority of commercial packages are based on SPICE2 version G6 from the University of California at Berkeley although development has now progress ed to SPICE3. The increased utilization of PCs has led to the production of PSPICE, a widely available PC version distributed by the MicroSim Corporation whilst HSPICE fro m Meta- Software has been popular for workstations and is now also available for the PC. One of the reasons for the popularity of Pspice is the availability and the capability to share its evaluation version freely at no cost. This evaluation version is very powerful for power electronics simulations. II. DC-AC CONVERS ION In this section the simulation of rectifier is explained with three different simulation packages and the corresponding waveforms are plotted. Fig. 1 SCR based Inverter circuit in PSIM Fig.2 Output Voltage wave form B. MATLAB Based Simulation Method Fig. 3 shows MOSFET based full bridge inverter circuit diagram in MATLAB. In this circuit Vs is 100v, load R-L, resistance is 1kohm and inductance is 1m henry. The SCR switching frequency is 1k hertz. The output wave form shown in fig.4 in this wave sinusoidal output voltage is 100v and output current 0.1amp. Fig. 3 MOSFET based full bridge inverter in MATLAB A. PSIM Based Simulation Method Fig. 1 shows SCR based full bridge inverter circuit diagram in PSIM. In this circuit Vs is 100v, load R-L, resistance is 1kohm and inductance is 1m henry. The SCR switching frequency is 1k hertz. The output wave form shown in fig.2 in this wave sinusoidal output voltage is 100v and output current 0.1amp. Fig.4 Output voltage wave form C. PSPICE Based Simulation Method 2012, IJARCSSE All Rights Reserved Page 188
3 PSPICE based simulation for full bridge inverter and the corresponding output waveforms are shown in Fig. 5-6 respectively. Fig.8 output voltage and current waveforms Fig.5 Inverter circuit in PSPICE Fig. 6 Output voltage waveform III. AC-DC CONVERS ION In this section the simulation of rectifier is explained with three different simulation packages and the corresponding waveforms are plotted. A. PSIM based Simulation Method Fig.7 shows the power circuit of the fully controlled single-phase PWM converter in PSIM, which uses four transistors with anti parallel diodes in SCR bridge block to produce a controlled dc voltage Vo. Using a bipolar PWM switching strategy, this converter may have two conduction states: transistors T1 and T4 in the ON state and T2 and T3 in the OFF state; or transistors T2 and T3 in the ON state and T1 and T4 in the OFF state. In this topology, the output voltage Vo must be higher than the peak value of the ac source voltage vs in order to ensure proper control of the input current.the input voltage value Vs= 200v, switching frequency is 1KHz. After simulation the output voltage and current wave form with resistive load is shown in fig. 8. In this wave harmonics are presence. B. MATLAB Based Simulation Method In MATLAB the simulation has been carried out for rectifier in Simulink block set. Here the full wave rectifier is used which conducts for both positive and negative half cycles respectively. Fig.9 shows the circuit diagram for full wave rectifier and the corresponding input and output waveforms are shown in Fig.10.The specifications of the circuit are: Input AC Voltage=48V, Load resistor=100ω and employing 4 diodes for rectification. The output thus obtained is a waveform without using a filter circuit. By employing a filter circuit a pulsating DC waveform can be obtained. The circuit is uncontrolled full bridge rectifier. For a controlled rectifier thyristor switches can be used. Fig.9 Full wave rectifier circuit in MATLAB Fig. 10 Input and Output voltage waveforms C. PSPICE Based Simulation Method PSPICE based simulation for full bridge rectifier is shown in Fig.11. The corresponding input and output voltage waveforms are shown in Figs. 12 and 13 respectively. The circuit specifications are input AC Voltage=20V, frequency=50hz and load resistor=100ω. Fig.7 Single-phase full bridge converter circuit in PSIM 2012, IJARCSSE All Rights Reserved Page 189
4 Fig.11 Full wave rectifier circuit in PSPICE Fig.12 Input voltage waveform Fig.13 Output voltage waveform IV. CONCLUS IONS A detailed analysis of simulation using the software tools like MATLAB, PSIM and PSPICE are given. Here the examples taken are rectifier and inverter circuits. The waveform which was obtained has to be analysed in each and every half cycle interval of time. The software packages provide the way for getting the sequences happening in each and every cycle. In addition the various parameters which can be measured are voltages and currents across the inputs, outputs and also across the switches. A comparison between the software s discussed is listed below. MATLAB finds applications in all areas from control systems to robotics. Any controller can be designed and tested in the simulation arena for power electronics and power system based circuits. This also provides the provision of graphical user interfaces and m file programming to design the various intelligent controllers like neural networks, fuzzy logic control, genetic algorithms etc., Advantages of using PSPICE are: PSpice allows multiple plots to be viewed simultaneously, such as voltage, power, etc. Also, specific points, such as a voltage at a certain time, can be selected and marked on the output plot in PSpice, PSpice contains libraries full of specific components with manufacturer specifications. These components are included so the user may obtain realistic simulation results, Very simple to represent any electrical circuit, in particular power-electronic circuits and a wide library of commercial electric components are available. Usage of PSIM increases due to: With PSIM's interactive simulation capability, we can change parameter values and view voltages/currents in the middle of a simulation. It is like having a virtual test bench running on our computer, we can design and simulate digital power supplies using PSIM's Digital Control Module. The digital control can be implemented in either block diagram or custom C code, PSIM has a built-in C compiler which allows us to enter our own C code into PSIM without compiling. This makes it very easy and flexible to implement our own function or control methods, We can use the Thermal Module to calculate semiconductor device losses (conduction losses and switching losses) based on the device information from manufacturers datasheet. Today s computer technology enables a new approach to this work which has not been considered feasible before. Simulation programs will run on inexpensive machines and be widely available. Circuits will be specified in a simple graphical format which is self documenting. Models will be available to meet today s needs and yet be sufficiently versatile to be adapted to new devices as they appear. By means of a suitable choice of simulator elements, even the inexpert user will be able to customize his package to incorporate future device developments. In comparing the above mentioned packages for a wide variety of applications all the software s provide its own unique property in obtaining and analyzing the results. Hence its upto the user to decide the software as either MATLAB or PSPICE or PSIM depending upon their area of work and applications. The other software packages such as spice and octave/scilab can also be compared with the existing packages. REFERENCES [1] Albert Alexander.S and Manigandan.T (2009) Digital Switching Scheme for Cascaded Multilevel Inverters. Proceedings of Third International Conference on Power Systems, Indian Institute of Technology, Kharagpur. [2] Albert Alexander.S and Sivavasath.A (2007) Design, Simulation and Implementation of UPS inverters using Artificial Neural Network Controller. Proceedings of International Conference on Trends in Industrial Measurements and Automation, National Institute of Technology, Trichy. [3] Dakshina M. Bellur and Marian K. Kazimierczuk (2008) PSpice and MATLAB Applications in Teaching Power Electronics to Graduate Students at Wright State University. Proceedingsof the 2008 ASEE 2012, IJARCSSE All Rights Reserved Page 190
5 North Central Section Conference, American Society for Engineering Education. [4] Elena Niculescu, E. P. Iancu, M. C. Niculescu and Dorina-Mioara Purcaru (2006) Analysis of PWM Converters Using MATLAB. Proceedings of the 6th WSEAS International Conference on Simulation, Modeling and Optimization, Lisbon, Portugal, September, [5] Sameer Khader, Alan Hadad and Akram A. Abu-aisheh (2011) The Application of PSIM & Matlab/ Simulink in Power Electronics courses IEEE Global Engineering Education Conference (EDUCON), Jordan, [6] Lee, Y.S., Cheng, K.T., and Wong, S.C.: A new approach to the modelling of converters for SPICE simulation, IEEE Trans. Power Electron., 1992, 7(4), pp [7] Ghali, F.M.A.; Arafah, S.H.; Dynamic analysis of hybrid wind diesel system with three-level inverter, Proceedings of the Power Conversion Conference PCC Osaka 2002., Vol. 2,2002, pp [8] P. Wood, Theory of Switching Power Converter. New York: Van Nostrand- Reinhold, [9] E. P.Wiechmann, P. D. Ziogas, and V. R. Stefanovic, Generalized functional model for three phase PWM inverter/rectifier converters, in Conf. Rrec. IEEE-IAS Annu Meeting, 1985, pp [10] De Doncker, R.W.A.A.; Divan, D.M.; Kheraluwala, M.B.; A threephase soft-switched high-power density DCDC converter for highpower applications IEEE Transactions on Industry Applications, Volume: 27, Issue: 1, Jan.-Feb Pages 53 ~ 73. [11] Kunrong Wang, Fred C. Lee, Jason Lai, Operation principle of bidirectional full- bridge DC-DC converter with unified softswitching scheme and soft-switching capability, APEC 2000, pp.l I I-I 18 [12] M. H. Rashid, SPICE for Circuits and Electronics Using PSpice. Englewood Cliffs, NJ: Prentice-Hall, [13] Power Electronics: Computer Simulation, Analysis and Education Using PSpice Schematics by Prof. NED MOHAN. [14] Power Electronics: converters, applications and design by MOHAN.UNDELAND.ROBBINS. 2012, IJARCSSE All Rights Reserved Page 191
Design and Simulation of Soft Switched Converter Fed DC Servo Drive
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.
A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER
A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER 1 KARUNYA CHRISTOBAL LYDIA. S, 2 SHANMUGASUNDARI. A, 3 ANANDHI.Y 1,2,3 Electrical
Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 445-449 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
Parametric variation analysis of CUK converter for constant voltage applications
ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay
Analysis of AC-DC Converter Based on Power Factor and THD
Website: www.ijetae.com (SSN 50-459, SO 900:008 Certified Journal, Volume 3, ssue, February 03) Analysis of AC-DC Converter Based on Power Factor and THD Shiney.S.Varghese, Sincy George Department of Electrical
Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor
International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive
Control Development and Modeling for Flexible DC Grids in Modelica
Control Development and Modeling for Flexible DC Grids in Modelica Andreas Olenmark 1 Jens Sloth 2 Anna Johnsson 3 Carl Wilhelmsson 3 Jörgen Svensson 4 1 One Nordic AB, Sweden, [email protected].
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial
PSE 6031 SYLLABUS (Tentative)
PSE 6031 SYLLABUS (Tentative) Power Electronics (3 credits) Friday Afternoon: 1:00-3:00 PM 15 Virtual Class Meetings (no face-face meetings) Pre-requisites: All coursework to qualify for the upper division
How To Simulate A Multilevel Inverter
Neutral Point Potential Balance of Three Phase Three Level Diode Clamped Inverter BALAMURUGAN M GNANA PRAKASH M Dr.UMASHANKAR S School of Electrical Engineering School of Electrical Engineering School
An Efficient AC/DC Converter with Power Factor Correction
An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three
CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter
CYCLOCONVERTERS Burak Ozpineci, Leon M. Tolbert Department of Electrical and Computer Engineering University of Tennessee-Knoxville Knoxville, TN 37996-2100 In industrial applications, two forms of electrical
Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
Analysis and Control of Three Phase Multi level Inverters with Sinusoidal PWM Feeding Balanced Loads Using MATLAB
Analysis and Control of Three Phase Multi level s with Sinusoidal PWM Feeding Balanced Loads Using MATLAB Rajesh Kumar Ahuja 1, Amit Kumar 2 Department of Electrical Engineering, YMCA University of Science
Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)
00-00-//$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique
Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique NKV.Sai Sunil 1, K.Vinod Kumar 2 PG Student, GITAM University, Visakhapatnam, India. Asst.Professor, Department
Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of
Relationship between large subject matter areas
H02M APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER;
MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS
, pp. 7-1 MODELING AND SIMULAION OF A HREE-PHASE INERER WIH RECIFIER-YPE NONLINEAR LOADS Jawad Faiz 1 and Ghazanfar Shahgholian 2 1 School of Electrical and Computer Engineering, Faculty of Engineering,
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Control of a Three Phase Induction Motor using Single Phase Supply
Control of a Three Phase Induction Motor using Single Phase Supply G. R. Sreehitha #1, A. Krishna Teja *2, Kondenti. P. Prasad Rao #3 Department of Electrical & Electronics Engineering, K L University,
A bidirectional DC-DC converter for renewable energy systems
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 4, 2009 A bidirectional DC-DC converter for renewable energy systems S. JALBRZYKOWSKI, and T. CITKO Faculty of Electrical Engineering,
MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES
VOL., NO. 8, OCTOBER 25 ISSN 89-668 26-25 Asian Research Publishing Network (ARPN). All rights reserved. MULTI-LEVEL INVERTER WITH DC LINK SWITCHES FOR RENEWABLE ENERGY SOURCES Sangari A., Umamaheswari
Submarine Cable Power Transmission using DC High-Voltage Three-Level Converters
Submarine Cable Power Transmission using DC High-Voltage Three-Level Converters João Antunes, IST ([email protected]) Astract This paper is about multilevel converters used in High Voltage Direct Current
EET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
THE development of new methods and circuits for electrical energy conversion
FACTA UNIERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 29, 245252 Investigation of ThreePhase to SinglePhase Matrix Converter Mihail Antchev and Georgi Kunov Abstract: A threephase to singlephase
Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 10 (2014), pp. 1027-1035 International Research Publication House http://www.irphouse.com Simulation and
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur
Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application
Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology
Modeling Grid Connection for Solar and Wind Energy
1 Modeling Grid Connection for Solar and Wind Energy P. J. van Duijsen, Simulation Research, The Netherlands Frank Chen, Pitotech, Taiwan Abstract Modeling of grid connected converters for solar and wind
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM
NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM E.Babu 1,R.Subramanian 2 1, Department of Electrical and electronics engg 2 Department of Electrical
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi
Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training & Support
www.ozeninc.com [email protected] (408) 732 4665 1210 E Arques Ave St 207 Sunnyvale, CA 94085 Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training &
Hybrid Power System with A Two-Input Power Converter
Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
Tamura Closed Loop Hall Effect Current Sensors
Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports
Three-port DC-DC Converters to Interface Renewable Energy Sources with Bi-directional Load and Energy Storage Ports A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA
High Intensify Interleaved Converter for Renewable Energy Resources
High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group
A bidirectional, sinusoidal, high-frequency inverter design
A bidirectional, sinusoidal, high-frequency inverter design E.Koutroulis, J.Chatzakis, K.Kalaitzakis and N.C.Voulgaris Abstract: A new method for the design of a bidirectional inverter based on the sinusoidal
A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER
A COMPERATIVE PERFORMANCE ANALYSIS OF BRIDGELESS PFC BOOST CONVERTER WITH THE CONVENTIONAL CONVERTER Shantiswaroop Agarwal 1, Pooja Gautam 2, Gaurav Kumar Sharma 3, Manoj Kumar Bhardwaj 4 1,2,3,4 Institute
An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources
An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources K.Pradeepkumar 1, J.Sudesh Johny 2 PG Student [Power Electronics & Drives], Dept. of EEE, Sri Ramakrishna Engineering College,
Power Flow Control Using Bidirectional Dc/Dc Converter for Grid Connected Photovoltaic Power System
International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 1, Issue 8, November 2014, PP 13-24 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Power
Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER. www.ep2000.com 800.500.
Power Quality For The Digital Age INVERTING SOLAR POWER A N E N V IRONME N TA L P OT E N T I A L S W HI T E PA PER Introduction Heat in the System The modern facility has been revolutionized by advancements
Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.
Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Alexander Isurin ( [email protected] ) Alexander Cook ([email protected] ) Vanner inc. USA Abstract- This
Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation
Design and Development of Speed Control of Induction motor drive using Pulse-Width Modulation Jigar Vaidya 1, Vatsal Shukla 2, Darshan Kale 3 1 UG Student, Electrical Department,[email protected], +91-9662532919
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements
International Journal of Electrical and Computer Engineering (IJECE) Vol.1, No.1, September 2011, pp. 31~ 42 ISSN: 2088-8708 31 Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current
98% Efficient Single-Stage AC/DC Converter Topologies
16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
Boundary between CCM and DCM in DC/DC PWM Converters
Boundary between CCM and DCM in DC/DC PWM Converters ELENA NICULESCU and E. P. IANCU Dept. of Electronics and Instrumentation, and Automation University of Craiova ROMANIA Abstract: - It is presented a
SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER
SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER 1M.Gopinath, 2S.Ramareddy Research Scholar, Bharath University, Chennai, India. Professor, Jerusalem college of Engg Chennai, India.
Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers
Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Sindhu Shetty 1, I. V. Prasanna 2, S. K. Panda 3 UG student, Dept. of EEE, National Institute
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
T.FRANCIS, D.NARASIMHARAO
Applications (IJERA) ISSN: 48-96 wwwijeracom ol, Issue 3, May-Jun 0, pp40-46 A Soft-Switching DC/DC Converter With High oltage Gain for Renewable Energy Application TFRANCIS M-Tech Scholar, Power electronics
Bridgeless PFC Implementation Using One Cycle Control Technique
Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061
Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System
Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System Thatipamula Venkatesh M.Tech, Power System Control and Automation, Department of Electrical & Electronics Engineering,
COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS
COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS Afshin LASHKAR ARA Azad University of Dezfoul - Iran [email protected] Seyed Ali NABAVI NIAKI University of Mazandaran
Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit
Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit K.Ranjith kumar kumar, Dr.S.Palaniswami K.Priyadharsini, Senior Senior Lecturer Lecturer Professor
Simulation of Photovoltaic generator Connected To a Grid
Mediterranean Journal of Modeling and Simulation MJMS 1 (214) 2 33 Simulation of Photovoltaic generator Connected To a Grid F. Slama a,*, A. Chouder b, H. Radjeai a a Automatic Laboratory of Setif (LAS),
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters )
Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters ) Classification of AC to AC converters Same frequency variable magnitude AC power AC controllers AC power Frequency converters (Cycloconverters)
Distribution Generation System
Analysis of Solar Power Optimizer for DC Distribution Generation System Srinivas Dobbala 1, K. Chandra Mouli 2 1 Student, Department of EEE, Vaageswari College of Engineering, Karimnagar, Telangana, India
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches
Analysis of PV cell fed High Voltage Gain Seven and Nine level inverter with Reduced Switches Ch.Vedasri P.G. Scholar, Department of Electrical & Electronics Engineering, Chirala Engineering College, Chirala;
Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB
Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB Kiran Boby 1, Prof.Acy M Kottalil 2, N.P.Ananthamoorthy 3 Assistant professor, Dept of EEE, M.A College
Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems
Design of Solar Power Optimizer And Eliminating Leakage Current In Multi-Level Inverter For PV Systems A. Asaph 1, Dr. P. Selvan 2 1 PG Scholar, 2 Head of the Department, Erode Sengunthar Engineering College,
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.
How To Swap Output Phases Of A Power Supply With A Power Converter
211 2nd Power Electronics, Drive Systems and Technologies Conference A New phase sequence Detector for the Three-Phase Rotary Loads M. Alizadeh Bidgoli, A. Soori, M. Tavakoli Bina K. N. Toosi University
Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions
Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family
AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
How To Improve Power Quality
Power Quality Improvement Of Three Phase Four Wire Distribution System Using VSC With A Zig-Zag Transformer Sajith Shaik *, I.Raghavendar ** *(Department of Electrical Engineering, Teegala Krishna Reddy
Performance Analysis of Multi Level Inverter with DC Link Switches for Renewable Energy Resources
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-6, May 2013 Performance Analysis of Multi Level Inverter with DC Link Switches for Renewable
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation
Electronics Technology
Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION Pramod Ghimire 1, Dr. Alan R. Wood 2 1 ME Candidate Email: [email protected] 2 Senior Lecturer: Canterbury University
Anais Volume 1 COBEP99 UFPR UFSM
COBEP99 UFPR UFSM 5 e Congresso Brasileiro de Eletronica de Potencia The 5~ Brazilian Power Electronics Conference Foz do Iguagu, Parana, Brasil 19 a 23 de setembro de 1999 Anais Volume 1 UB/TIB Hannover
MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS
MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS C.P. ION 1 C. MARINESCU 1 Abstract: This paper presents a new method to supply single-phase loads using a three-phase induction
Analysis and Design of Multi Input Dc Dc Converter for Integrated Wind PV Cell Renewable Energy Generated System
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-5, November 2012 Analysis and Design of Multi Input Dc Dc Converter for Integrated Wind PV Cell Renewable
Electronics Technology
Job Ready Assessment Blueprint Electronics Technology Test Code: 4035 / Version: 01 Copyright 2010. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
MODELLING AND SIMULATION OF SVPWM INVERTER FED PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE
MODELLING AND SIMULATION OF SVPWM INVERTER FED PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE Devisree Sasi 1, Jisha Kuruvilla P Final Year M.Tech, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam,
A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications
A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications Wuhua Li, Xiaodong Lv, Yan Deng, Jun Liu, Xiangning He College of Electrical Engineering, Zhejiang University Hangzhou,
Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink
Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. [email protected]
Advance Electronic Load Controller for Micro Hydro Power Plant
Journal of Energy and Power Engineering 8 (2014) 1802-1810 D DAVID PUBLISHING Advance Electronic Load Controller for Micro Hydro Power Plant Dipesh Shrestha, Ankit Babu Rajbanshi, Kushal Shrestha and Indraman
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2
INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,
Design of an Auxiliary Power Distribution Network for an Electric Vehicle
Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,
