Pico Power: A Boon for Rural Electrification
|
|
|
- Emma Heath
- 10 years ago
- Views:
Transcription
1 Advance in Electronic and Electric Engineering. ISSN , Volume 3, Number 7 (2013), pp Research India Publications Pico Power: A Boon for Rural Electrification B.Tech Power System Engineering, University of Petroleum and Energy Studies, Energy Acre, P.O. Bidholi, Via Prem Nagar, Dehradun, INDIA. Abstract Rural electrification is required to improve the subsistence of individuals that are located where centralized power grids do not reach. It is a known fact that India is very rich in water resources from where we can harness enough water for irrigation and huge amount of electricity. To harness electricity many big hydropower plants and irrigation projects are in the process of development. But there are numerous villages in India far away from reach of electrical grid connection system. Such villages are located in difficult terrain and high altitude having numerous small water resources such as rivulets, ponds, small rivers and springs. In most of these villages life is difficult due to high altitude but the same high altitude can prove as a boon if even a small water source is available there. There are numerous such sources having adequate height and flow rate for feasibly developing multipurpose pico hydropower project. Pico hydro, hydro systems of 5 kw capacity or less, can address this need at relatively low cost and with virtually no environmental or social impacts. Recent innovations in pico hydro technology have made it an economic source of power even in some of the world s poorest places. It is also a versatile power source. AC electricity can be produced enabling standard electrical appliances to be used and electricity can be distributed to whole village. This paper will describe how multipurpose pico hydro power project can be developed for increasing living standard of household in rural areas along with some case studies. Keywords: Pico; hydroelectric; head; rivulets; multipurpose.
2 Introduction A hydropower system captures the energy of moving water for some useful purpose. Wherever there are mountains and streams, hydropower can bring low-cost electricity to isolated communities without polluting the air or water. Furthermore, hydropower is a proven technology; people have been obtaining energy from falling water for thousands of years. Hydropower is still being used on many different scales for many purposes, from small grain-grinding facilities to huge hydroelectric dams that provide electricity to entire cities. Most hydropower available around the world can be categorized as large hydro. The hydropower plant can be classified according to the size of electrical power it produces as shown in Table 1. Table 1: Classification of Hydropower Plant. Power Class > 10 MW Large < 10 MW Small < 1 MW Mini <100 kw Micro < 5 kw Pico Pico-hydro is a term used to describe the smallest systems, covering hydroelectric power generation under 5kW. Depending on its size, a pico-hydro power system may provide a small, remote community with adequate electricity to power light bulbs, radios, and televisions, among other appliances. 2. Principle of Opearation Hydro Power is driven by extracting the potential energy from water over height difference. The energy in the water is converted to mechanical energy and can be used directly or can be converted to electrical by means of a generator. The term head, H, is the measure of pressure in the water. It refers to actual height difference the water travels. Power, P, is the energy converted over time or the rate of work being done. The Power, P, which can be extracted from a water flow; is P = g Where; is the efficiency of the system, Q is the total volumetric flow, H is the head, is the water density, and g is the gravitational constant (9.81m/ ).
3 Pico Power: A Boon for Rural Electrification Components of Pico Hydro System Figure 1: Basic Components of Pico Hydro Power System. 3.1 Dam : The dam is the most important component of hydroelectric power plant. The dam is built on a large river that has abundant quantity of water throughout the year. It should be built at a location where the height of the river is sufficient to get the maximum possible potential energy from water. 3.2 Water Reservoir : The water reservoir is the place behind the dam where water is stored. The water in the reservoir is located higher than the rest of the dam structure. The height of water in the reservoir decides how much potential energy the water possesses. The higher the height of water, the more its potential energy. The high position of water in the reservoir also enables it to move downwards effortlessly. 3.3 Intake or Control Gates : These are the gates built on the inside of the dam. The water from reservoir is released and controlled through these gates. These are called inlet gates because water enters the power generation unit through these gates. When the control gates are opened the water flows due to gravity through the penstock and towards the turbines. The water flowing through the gates possesses potential as well as kinetic energy. 3.4 Penstock : The penstock is the long pipe or the shaft that carries the water flowing from the reservoir towards the power generation unit, comprised of the turbines and generator. The water in the penstock possesses kinetic energy due to its motion and potential energy due to its height. The total amount of power generated in the hydroelectric power plant depends on the height of the water reservoir and the amount of water flowing through the penstock. The amount of water flowing through the penstock is controlled by the control gates.
4 Water Turbines : Water flowing from the penstock is allowed to enter the power generation unit, which houses the turbine and the generator. When water falls on the blades of the turbine the kinetic and potential energy of water is converted into the rotational motion of the blades of the turbine. The rotating blades causes the shaft of the turbine to also rotate. The turbine shaft is enclosed inside the generator. In most hydroelectric power plants there is more than one power generation unit. There is large difference in height between the level of turbine and level of water in the reservoir. This difference in height, also known as the head of water, decides the total amount of power that can be generated in the hydroelectric power plant. There are various types of water turbines such as Kaplan turbine, Francis turbine, Pelton wheels etc. The type of turbine used in the hydroelectric power plant depends on the height of the reservoir, quantity of water and the total power generation capacity. 3.6 Generators: It is in the generator where the electricity is produced. The shaft of the water turbine rotates in the generator, which produces alternating current in the coils of the generator. It is the rotation of the shaft inside the generator that produces magnetic field which is converted into electricity by electromagnetic field induction. Hence the rotation of the shaft of the turbine is crucial for the production of electricity and this is achieved by the kinetic and potential energy of water. Thus in hydroelectricity power plants potential energy of water is converted into electricity. 3.7 Electronic Controller: An electronic controller is connected to the generator. This matches the electrical power that is produced to the electrical loads that are connected and stops the voltage from changing as devices are switched on and off. 3.8 Mechanical load : The mechanical load is a machine connected to the turbine shaft using a pulley system so that the power can be drawn directly from the turbine. The rotating force of the turbine runner can be used to turn equipments such as grain mills or woodwork chinery. 3.9 Distribution System : It connects the electrical supply from the generator to the houses or schools. This is the most extensive part of the system. 4. Need of Pico Hydro System Often small communities are without electricity even in countries with extensive grid electrification. Despite the high demand for electrification, grid connection of small communities remains unattractive to utilities due to relatively low power consumption. Only small water flows are required for pico hydro so there are numerous suitable sites. A small stream or spring often provides enough water. Pico hydro equipment is small and compact. The component parts can be easily transported into remote and inaccessible areas.
5 Pico Power: A Boon for Rural Electrification 869 The number of houses connected to each scheme is small, typically under 100 households. Therefore it is easier to raise the required capital and to mange maintenance and revenue collection. Carefully designed pico hydro scheme have a lower cost per kilowatt than solar or wind power. Diesel generator systems, although initially cheaper, have a higher cost per kilowatt over their lifetime because of associated fuel costs. Local manufacture is possible. The design principles and fabrication can be easily learned. This keeps some equipment costs in proportion with local wages. It is easier to establish and maintain agreements regarding ownerships, payments, operations and maintenance and water rights, as the units supply power for a small number of households. 5. Planning A Hydro Scheme It is important to conduct a feasibility study in a proposed area to determine what is required to implement a pico hydro project for village electrification. Overview : Establish the demand, willingness to pay, local ability to manage a scheme and grid electricity available or planned. Location : A suitable geographical location for a pico-hydro scheme is one with steep rivers that have an all year flow. Demand Survey : Estimate the number of houses within 1 km from the water supply and those who are willing to pay. A 1km radius is the distance that electricity can most easily be transmitted. Power Estimate : The head and flow rate should both be measured to determine the possible power output and to help in choosing equipments. Head and Flow : Decide on a suitable combination of head and flow to produce the required power. Assumptions should be made on system efficiency, but if in doubt, assume an overall efficiency (water power to electrical power) to 45 percent. Cost and Availability : Estimate the size of the generator needed to meet the energy demand, based on the head, flow and power outputs of the available equipment. Typically, the higher the head, the lower the cost per installed kilowatt. The initial investment is high, but running cost and maintenance, are low because there is no need to buy fuel. Viability : Comparing the likely annual income with capital cost gives a rough guide to financial viability. If the annual income is less than 10 per cent of the capital cost, the project is not viable. If it is percent of the scheme, could be possible. If annual income is more than 25 percent, the scheme is viable. Village Meeting : Present the findings of the survey to the community at an open meeting. Local government staff should be encouraged to attend.
6 870 Other Steps : A number of other steps need to be taken, including a detailed site survey, finalizing power output, producing a scale map and scheme layout, a detailed costing. Once this has been done the scheme can get under way. Ordering materials, installation and training can all be undertaken. 6. Case Studies Case Study 1 - Kirinyaga District, Kenya. A typical pico hydro power plant has been installed in Kathamba, Kirinyaga District, Kenya. This scheme was installed as part of a program implemented by The Micro Hydro Centre at Nottingham Trent University to demonstrate Pico Hydro technology in Sub Saharan Africa. The cost of the penstock, turbine and generator equipment was met by the project funders (European Commission) and all other costs were contributed by the 65 households which the scheme now supplies with electricity. This case study describes a pico hydro plant using a Pelton turbine directly-coupled to an induction generator which has an electrical output of 1.1kW. The penstock is 158m in length, 110mm diameter PVC pipe. The electrical output of 1.1kW corresponds to a turbine generator efficiency of 48%. The water source is a small spring with a flow around 90% of the year and has never been known to run completely dry. Case Study 2 - Few Steps Taken In India In Mankulam, an isolated village in Kerala, an INFORSE member, the Malanadu Development Society, has installed two pilot units of 200 watt pico hydro plant. The plant has been operating well for the past last year. Based on this MDS, is proposing to install 30 units for 30 poor and low income families in the village. The beneficiaries have agreed to contribute small amount to proposed project. In Karnataka, many rural areas, especially in hilly regions of Malnad and costal areas of Udupi, Dakshina, Kannada. The terrain conditions make grid electricity supply unreliable. However, these areas provide ideal sites for small pico hydro systems. There has been a significant change perceived in the energy scenario after the deployment of Pico Hydro Projects in Karnataka in the last 4 years. Pico Hydro are projects with a capacity upto 5kW especially targeted to benefit rural communities with access to small streams and rivulets. The developers of these projects are based in UK and from 2007 till date have installed around 400 Pico Hydro projects with the numbers increasing steadily. 7. Conclusion The energy demand and utilization have trended to increase everday. Moreover, the world market price of gasoline fuel as main energy for most factory and vechile engines have trended to increase day by day. The strategic planning for the renewable technology and development with wisely energy utilization from natural resources
7 Pico Power: A Boon for Rural Electrification 871 included wind power, hydro power, solar energies, bio-gas and farm waste has been proposed by Ministry of Energy. A source of water with lower flow rate compared to its head is efficiently utilized to generate power in the installed system. The runoff water can be utilized for household system. Places having larger water sources but difficult terrain can be benefited from water supply, electricty and income generation activity if this project is done in bigger scale. This project is very suitable and feasible in contex of India and if listed out it clearly has numerous advantages over any other projects related to renewable energy and rural development. References [1] A. Bartle (2002), Hydropower Potential and Development Activities, Energy Policy, 30, pp [2] E.M. Nfah, J.M. Ngundam (2009), Feasibility of pico-hydro power systems, Vol. 34, pp [3] P. Maher, N.P.A. Smith, A.A.Williams (2003,) Assessment of Pico Hydro as an Option for Off-Grid Electrification in Kenya, Renewable Energy, Vol. 28, pp [4] K.V. Alexander, E.P. Giddens (2008), Optimum penstocks for low head microhydro schemes, Renewable Energy, Vol 33, No 3, pp
8 872
What are the Benefits?
Micro hydro power system introduction Not everyone is lucky enough to have a source of running water near their homes. But for those with river-side homes or live-on boats, small water generators (micro-hydro
PICO HYDRO: CLEAN POWER FROM SMALL STREAMS
PICO YDRO: CLEAN POWER FROM SMALL STREAMS KAMARUZZAMAN SOPIAN AND JUARI AB. RAZAK Solar Energy Research Institute Universiti Kebangsaan Malaysia 43600 Bangi, Selangor Darul Ehsan MALAYSIA [email protected]
Techno - socio - economic Assessment of Pico Hydropower Installations in the Northern Region of Thailand
2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore Techno - socio - economic Assessment of Pico Hydropower Installations in the Northern
Analytical Approach for Cost Estimation of Low Head Small Hydro Power Schemes
Analytical Approach for Cost Estimation of Low Head Small Hydro Power Schemes S.K. Singal and R.P. Saini Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee, India Email : [email protected]
MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed
MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT Significant water resources are found in many developing countries. In areas where adequate water resources are present, harnessing the power of falling
Micro-hydro applications in rural areas
OASYS South Asia: Dundee Workshop 20 Micro-hydro applications in rural areas Dr Arthur Williams Dept. of Electrical & Electronic Engineering University of Nottingham, UK Types of hydropower Conventional
AN ECONOMICAL AND TECHNICAL CASE STUDY FOR A SMALL HYDROPOWER SYSTEM
AN ECONOMICAL AND TECHNICAL CASE STUDY FOR A SMALL HYDROPOWER SYSTEM Dumitru Dan POP 1, Vasile Simion CRĂCIUN, Liviu Neamţ, Radu Tîrnovan, Teodor VAIDA Technical University of Cluj Napoca, [email protected]
MICRO-HYDRO POWER. Technical
MICRO-HYDRO POWER Introduction Water power can be harnessed in many ways; tidal flows can be utilised to produce power by building a barrage across an estuary and releasing water in a controlled manner
RENEWABLE ENERGY TECHNOLOGY: MICRO HYDRO POWER GENERATION FOR ELECTRIFICATION
RENEWABLE ENERGY TECHNOLOGY: MICRO HYDRO POWER GENERATION FOR ELECTRIFICATION Dr. S. K. Dave 1, Ashokkumar A. Parmar 2, Nikhil M. Vyas 3, P. S.Chadhari 4 Lecturer & I/C Head Civil Eng, Applied Mechanics.,
S.1 Introduction to the Case Study on Micro-Hydro Power Plants
S.1 Introduction to the Case Study on Micro-Hydro Power Plants Micro-Hydro power is an alternative technology for power generation. This section provides a case study on the design and development of a
Micro-Hydro. Module 4.1. 4.1.1 Introduction. Tokyo Electric Power Co. (TEPCO)
Module 4.1 Micro-Hydro 4.1.1 Introduction Tokyo Electric Power Co. (TEPCO) Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Subjects to be Covered in Workshop Potential
Frequently Asked Questions (FAQs) on Hydropower
Frequently Asked Questions (FAQs) on Hydropower What are the advantages of Hydropower? A renewable source of energy - saves scarce fuel reserves. Non-polluting and hence environment friendly. Long life
Indonesian Microhydro Power Development
Indonesian Microhydro Power Development A Success Story Faisal Rahadian ASOSIASI HIDRO BANDUNG Indonesia Small Hyro Power Association Jl. Sabang No. 25 Bandung Phone ++62 22 4240310 [email protected]
Technology Fact Sheet for Mitigation B. Small Hydropower Technology i 1. Introduction 1.1. Historical - All over the World, hydropower sector is
Technology Fact Sheet for Mitigation B. Small Hydropower Technology i 1. Introduction 1.1. Historical - All over the World, hydropower sector is playing a great role in economic development since the last
An Introduction to. Micro- Hydropower. Systems. Natural Resources Canada. Ressources naturelles Canada
An Introduction to Micro- Hydropower Systems Natural Resources Canada Ressources naturelles Canada Introduction Hydropower technology has been around for more than a century. Hydropower comes from converting
Is a community based micro-hydro ELEctrification SCHEME. suitable for your village?
Is a community based micro-hydro ELEctrification SCHEME suitable for your village? published by Practical Action Is a community based micro-hydro ELEctrification scheme suitable for your village? ISBN
Asian Journal on Energy and Environment
As. J. Energy Env. 2005, 6(02), 139-144 Asian Journal on Energy and Environment ISSN 1513-4121 Available online at www.asian-energy-journal.info The Small Hydropower Project as the Important Renewable
FIXED CHARGE: This is a cost that goes towards making the service available, including
ELECTRICITY BILL COMPONENTS FIXED CHARGE: This is a cost that goes towards making the service available, including installation and maintenance of poles, power lines and equipment, and 24-hour customer
GRID CONNECTION Introduction Technical The grid Electricity production
GRID CONNECTION Introduction It was in London in 1882 that the Edison Company first produced electricity centrally that could be delivered to customers via a distribution network or grid. Since then electricity
Solar and Hydroelectric Power. Abbie Thill Becca Mattson Grace Nordquist Keira Jacobs Miyabi Goedert
Solar and Hydroelectric Power Abbie Thill Becca Mattson Grace Nordquist Keira Jacobs Miyabi Goedert Photovoltaic Cell vs Solar Heating Panel Photovoltaic cells power things such as calculators and satellites.
A Green Sector Overview
A Green Sector Overview Micro Hydro Electric Power Ontario's Waterpower Resources: Past and Present The first hydroelectric generator in Canada was installed near Ottawa, which was the first city in North
MICRO HYDRO FOR THE FARM AND HOME
MICRO HYDRO FOR THE FARM AND HOME How much can I expect to save? This depends entirely on the available flow, available head (fall) and the duration that the flow is available. Some farms struggle to maintain
Case Study 5 Use of Wind Turbine Technology
Case Study 5 Use of Wind Turbine Technology 1. Context Hong Kong relies on an adequate and reliable electricity supply for its economic development. Our electricity needs are met by the two electricity
Solar Solutions for Off-grid Power Supply
Solar Solutions for Off-grid Power Supply 2 Solar power for everyone anytime and ANywhere More than 1.3 billion people around the globe still do not have access to electricity. The reason is simple. It
RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM)
IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) Vol., Issue 3, Aug 23, - Impact Journals RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) C.
CHAPTER 3 RESEARCH DESIGN
CHAPTER 3 RESEARCH DESIGN 3.1 Introduction In general, micro-hydropower systems operate as Run-of-River type which means that neither a large dam or water storage reservoir is built nor is land flooded.
KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine
DEVELOPMENT OF COST EFFECTIVE TURBINE FOR HILLY AREAS [Blank line 11 pt] A. Tamil Chandran, Senior Research Engineer Fluid Control Research Institute, Kanjikode west, Plalakkad, Kerala, India [email protected]
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
Performance of Gangrel Hydroelectric Power Plant A Case Study
Performance of Gangrel Hydroelectric Power Plant A Case Study Bhoumika Sahu 1, Sanjiv Kumar 2, Dhananjay Kumar Sahu 3,Brijesh patel 4,Kalpit P. Kaurase 5 1 M.Tech scholar (TurboMachinary) & Mats University,
Energy Technology. Marco Ordonez
Energy Technology Marco Ordonez Solar Power Solar Power The conversion of sunlight into electricity. Solar Power can be done directly using photovoltaic's, or indirectly using concentrated power. Concentrated
Swiss Resource Centre and Consultancies for Development
Swiss Resource Centre and Consultancies for Development Hydropower in water supply and irrigation systems Synergies and hidden hydropower potentials Hedi Feibel ([email protected] ) Skat Consulting Ltd.
Micro Hydro Portable Inexpensive Power For Rural India
Micro Hydro Portable Inexpensive Power For Rural India A Design Project Report Presented to the Engineering Division of the Graduate School of Cornell University in Partial Fulfillment of the Requirements
NATIONAL POLICY FOR OFF-GRID HYDRO POWER GENERATION
NATIONAL POLICY FOR OFF-GRID HYDRO POWER GENERATION PUBLIC UTILITIES COMMISSION OF SRI LANKA November 2011 Summary Small and mini hydel potential can provide a solution for the energy problems in remote
Electricity Generation from Renewable Energy in Sri Lanka: Future Directions
Electricity Generation from Renewable Energy in Sri Lanka: Future Directions Presented by M.M.C. Ferdinando, Secretary, Ministry of Power and Energy R.J. Gunawardana, Additional General Manager (Transmission),
MICRO/MINI HYDRO POLICIES AND PLANS IN NEPAL
MICRO/MINI HYDRO POLICIES AND PLANS IN NEPAL Dr. Govind Raj Pokharel Executive Director Background of AEPC (AEPC) was established by Government of Nepal in 1996 under Ministry of Environment, Science and
DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME
DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME Delson Jose 1, Lini Varghese 2, Renjini G. 3 1,2B.Tech Scholars Engineering College, Cheruthuruthy, Thrissur, 3Assistant Professor,
Institut für Energietechnik Department of Energy Systems. Hydroelectric power. Elias Bartos 2/7 2010
Institut für Energietechnik Department of Energy Systems Hydroelectric power Elias Bartos 2/7 2010 1 Contents Different types of power plants Potential Economics Conclusion 2 Impoundment A dam is built
BY GREEN KNOWLEDGE INSTITUTE (GKI)
BY GREEN KNOWLEDGE INSTITUTE (GKI) The Green Village concept/programme has been designed and developed by the Green Knowledge Institute (GKI) for Zambia and African countries in general. The aim of the
FACT SHEET 6: HYDRO ELECTRICITY
FACT SHEET 6: HYDRO ELECTRICITY Hydro comes from the Greek word hydra, meaning water. Hydro electricity is electricity produced from the energy contained in the downhill flow of water from rivers and lakes.
Fuzzy Logic based user friendly Pico-Hydro Power generation for decentralized rural electrification
Fuzzy Logic based user friendly Pico-Hydro Power generation for decentralized rural electrification Priyabrata Adhikary #1, Susmita Kundu $2, Pankaj Kr Roy *3, Asis Mazumdar *4 # Mechanical Engineering
Potential of Solarhomesystems, Biogas-plants and Micro-hydro in Nepal and Opportunities for MFI
Potential of Solarhomesystems, Biogas-plants and Micro-hydro in Nepal and Opportunities for MFI A Paper prepared for the MicroFinanceSummit 2010 in Kathmandu, Nepal. Prepared by Michael Wegstein, Financial
DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 37-42 International Research Publication House http://www.irphouse.com DC Voltage Regulation
Clean Development Mechanism Project Opportunities in Indonesia
Clean Development Mechanism Project Opportunities in Indonesia Pre-feasibility Report on a Micro Hydro Power CDM Project Center for Research on Material and Energy Institut Teknologi Bandung October 2002
China s Small Hydropower in Rural Energy Development
China s Small Hydropower in Rural Energy Development Li Zhiwu National Research Institute for Rural Electrification, China Hangzhou regional (Asia & Pacific) Center for Small Hydropower 2012.8.1 As one
Exploring the potential of energy recovery using micro hydropower systems in water supply systems
Water Utility Journal 7: 25-33, 2014. 2014 E.W. Publications Exploring the potential of energy recovery using micro hydropower systems in water supply systems I. Kougias *, T. Patsialis, A. Zafirakou and
Amir Bashirzadeh Tabrizi, Nassir Gifani. TOOSSAB Consulting Engineers Company e-mail: [email protected], [email protected].
International Renewable Energy Congress November 5-7, 2010 Sousse, Tunisia Economical and Environmental Effects of Pressure Reducer Valve Substituting by Small Hydro Power-Plants in Gravity Water Transmission
pdfmachine by BroadGun Software
European Association for the Development of Renewable Energies, Environment and Power Quality International Conference on Renewable Energies and Power Quality (ICREPQ 09) Valencia (Spain), 15th to 17th
Conduit hydropower: An alternative sustainable renewable energy source
Conduit hydropower: An alternative sustainable renewable energy source Marco van Dijk A project of the University of Pretoria to investigate the potential of conduit hydropower development recently received
Glossary of Energy Terms. Know Your Power. Towards a Participatory Approach for Sustainable Power Development in the Mekong Region
Glossary of Energy Terms Know Your Power 2012 Towards a Participatory Approach for Sustainable Power Development in the Mekong Region List of terms Terms Page Terms Page Avoided cost 10 Installed capacity
UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:
UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: 1. These waves travel through the body of the Earth and are called S waves. a. Transverse b. Longitudinal c. Amplitude d. Trough 2. These waves
MANUAL ON MICRO HYDRO DEVELOPMENT. Prepared for: NGO Capacity Building for Poverty-reducing Sustainable Energy Solutions in South Asia Project INFORSE
MANUAL ON MICRO HYDRO DEVELOPMENT Prepared for: NGO Capacity Building for Poverty-reducing Sustainable Energy Solutions in South Asia Project INFORSE Prepared by: Centre for Rural Technology, Nepal (CRT/N)
Hydropower in Rwanda: Ongoing Initiatives & New Investment Opportunities. Yves Muyange Director General Energy Water & Sanitation Authority
Hydropower in Rwanda: Ongoing Initiatives & New Investment Opportunities Yves Muyange Director General Energy Water & Sanitation Authority Rwanda: A Thousand hills between the two Major Drainage Basins
Macro- and Micro-Hydropower: An Option for Socioeconomic Development. Case Study Agbokim Waterfalls, Cross River State, Nigeria.
Macro- and Micro-Hydropower: An Option for Socioeconomic Development. Case Study Agbokim Waterfalls, Cross River State, Nigeria. R. Uhunmwangho, Ph.D. and E.K. Okedu Department of Electrical/Electronic
MICRO-GRIDS FOR RURAL ELECTRIFICATION Case Study from Zambia on the Zengamina Micro-Hydro Power Grid
MICRO-GRIDS FOR RURAL ELECTRIFICATION Case Study from Zambia on the Zengamina Micro-Hydro Power Grid Presentation by Energy Regulation Board, Zambia 79 th IEC General Assembly Workshop for Industrialising
Centralized vs. distributed power generation in developing countries: what's smarter? Marco Raganella. September the 16 th, Rabat
Centralized vs. distributed power generation in developing countries: what's smarter? Marco Raganella September the 16 th, Rabat PV Competitiveness in Village Powers Strategic Rationale Currently off-grid
PICO HYDROPOWER PROMOTION PROJECT
Date: 04/02/2013 PICO HYDROPOWER PROMOTION PROJECT With support of MNRE through EMC Energy Management Centre-Kerala Central Financial Assistance Features CFA of Rs. 1,10,000 per project For Pico hydel
Micro-hydro Power. Introduction. What is hydropower? System types. Power the entire farm Generate power to sell back to the national grid
Cronfa Amaethyddol Ewrop ar gyfer Datblygu Gwledig: Ewrop yn Buddsoddi mewn Ardaloedd Gwledig The European Agricultural Fund for Rural Development: Europe Investing in Rural Areas Micro-hydro Power Introduction
Seabell International Co., Ltd.
Feel the future of our children Corporate Introduction The technology of STREAM and its business development 2012 Seabell International Co., Ltd. 1 1. Corporate Profile 2 Corporate Profile Company Name
OPTIMIZATION OF POWER OUTPUT OF A MICRO-HYDRO POWER STATION USING FUZZY LOGIC ALGORITHM
International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization of IOTPE ISSN 2077-3528 IJTPE Journal www.iotpe.com [email protected] March 2013 Issue
Hon. Jemma Nunu Kumba Minister Ministry of Electricity and Water Resources Republic of South Sudan
Hon. Jemma Nunu Kumba Minister Ministry of Electricity and Water Resources Republic of South Sudan South Sudan Electricity Sector Investment Opportunities Introduction Status of electricity supply in South
RE Practices in Pakistan Micro Hydro Community-managed micro-hydro projects in Northern Pakistan by Aga Khan Rural Support Programme (AKRSP)
RE Practices in Pakistan Micro Hydro Community-managed micro-hydro projects in Northern Pakistan by Aga Khan Rural Support Programme (AKRSP) Distribution, in this instance a transformer is needed Schematic
MODELLING AND SIMULATION OF MICRO HYDRO POWER PLANT USING MATLAB SIMULINK
MODELLING AND SIMULATION OF MICRO HYDRO POWER PLANT USING MATLAB SIMULINK Auwal Abubakar Usman 1, Rabiu Aliyu Abdulkadir 2 1 M.Tech (Power System Engineering), 2 M.Tech (Instrumentation and Control) Sharda
Executive Summary: PA No. 12 Micro-hydro at Graham Hill Water Treatment Plant
Executive Summary: PA No. 12 Micro-hydro at Graham Hill Water Treatment Plant Description A micro-hydro project at SCWD s Graham Hill Water Treatment Plant (WTP) would replace an exisiting non-operational
Mini & Micro Hydro Power Generation. EBARA Hatakeyama Memorial Fund Tokyo, Japan
Mini & Micro Hydro Power Generation EBARA Hatakeyama Memorial Fund Tokyo, Japan Definitions Large Scale hydro power generation : Capacity 100(MW) Most of them involve major construction of dams. Small
Mpeketoni Electricity Project
Session 4.1 Mpeketoni Electricity Project Mr Danson Mwangi Kinyanjui & Mr Paul Mutinda Kituku Rural Electrification Workshop March 1-3, 2006 Nairobi Mpeketoni Electricity Project Community Based Electricity
Hybrid Renewable Energy Systems for North-Eastern Poland
Hybrid Renewable Energy Systems for North-Eastern Poland * Janusz PIECHOCKI, Piotr SOLOWIEJ, Maciej NEUGEBAUER Department of Electrical, Power, Electronic and Control Engineering, University of Warmia
SMALL HYDRO PROJECT ANALYSIS
Training Module SPEAKER S NOTES SMALL HYDRO PROJECT ANALYSIS CLEAN ENERGY PROJECT ANALYSIS COURSE This document provides a transcription of the oral presentation (Voice & Slides) for this training module
Chattichai WAISURASINGHA 1*, Prinya CHINDAPRASIRT 1, Winai SRI-AMPORN 1 and Sinee CHUANGCHAM 2
The Utilization of Geographic Information Systems and Multi-Criteria Decision Making with Local Community Participation for Selection of Site for Micro Hydropower Project: A Case Study of Chi River Basin,
Sample Micro Hydro Initial Report
Sample Micro Hydro Initial Report Sample Micro Hydro Initial Report Introduction The Hydro Burn at Glen Water was visited by Richard Haworth of Glen Hydro to assess its suitability for a micro hydro installation.
Waste, Just Another Resource: A Case for Waste Water
Energy Engineering ISSN: 0199-8595 (Print) 1546-0118 (Online) Journal homepage: http://www.tandfonline.com/loi/uene20 Waste, Just Another Resource: A Case for Waste Water David Goodman, Arash Edalatnoor
Hydroelectric Power (3 Semester Hours)
ECET 3811 Hydroelectric Power (3 Semester Hours) I. Course Overview: Hydroelectric power is a form of hydropower which exploits the movement of water to generate electricity. Hydroelectricity is a well-established
DRAFT National Mission on Small Hydro
DRAFT National Mission on Small Hydro Enriching Remote Areas through Small Hydro 1. Introduction The National Mission on Small Hydro will be a joint initiative of the Government of India and State Governments
INDONESIA S COUNTRY REPORT ENCOURAGING CLEAN ENERGY INITIATIVE
DEWAN PERWAKILAN RAKYAT REPUBLIK INDONESIA INDONESIA S COUNTRY REPORT ENCOURAGING CLEAN ENERGY INITIATIVE As part of the international community, Indonesia shares its concern on the environment and development
WIND POWER IN INDIA: PROS AND CONS AN OVERVIEW
Int. J. Elec&Electr.Eng&Telecoms. 2013 Sunita Singh, 2013 Review Article ISSN 2319 2518 www.ijeetc.com Vol. 2, No. 2, April 2013 2013 IJEETC. All Rights Reserved WIND POWER IN INDIA: PROS AND CONS AN OVERVIEW
Wind Turbine Power Calculations
Wind Turbine Power Calculations RWE npower renewables Mechanical and Electrical Engineering Power Industry INTRODUCTION RWE npower is a leading integrated UK energy company and is part of the RWE Group,
Electrical Charge: a type of energy that comes from the flow of charged particles; it allows electrical devices to function.
Unit E: Electrical Applications Chapter 11: Electrical Energy 11.1: Generating Electricity pg. 420 Key Concepts: 1. Electrical energy is generated using a variety of technologies. 2. Electrical energy
HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL
HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL 1 WWW.GILKES.COM CONTENTS THE COMPANY 3 GILKES HYDROPOWER 5 GILKES PACKAGE 7 TURBINE SELECTION
12.5: Generating Current Electricity pg. 518
12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical
OFF-GRID SOLAR CASE STUDY AND OPPORTUNITIES IN KENYA J.M.P. MBITHI Deputy Director, Renewable Energy MINISTRY OF ENERGY AND PETROLEUM
OFF-GRID SOLAR CASE STUDY AND OPPORTUNITIES IN KENYA J.M.P. MBITHI Deputy Director, Renewable Energy MINISTRY OF ENERGY AND PETROLEUM PRESENTATION SUMMARY Introduction-Power situation in Kenya Off-grid
Station #1 Interpreting Infographs
Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles
Photovoltaic in Mexico Recent Developments and Future
Photovoltaic in Mexico Recent Developments and Future Rodolfo Martínez Strevel Berlin, Germany May 23th, 2013 Bufete de Tecnología Solar, S.A. (BUTECSA) Production of Primary Energy in Mexico, 2011 % 7,0
Small-Micro Hydro Facilitation & Innovative Technologies in Japan
1 HYDROVISION2006 Oregon Convention Center, Portland, Oregon USA July 31 August 5, 2006 Innovative Small and Medium Hydro Technologies Workshop By IEA Small Hydro Annex-2 2 & NRCan - CETC Small-Micro Hydro
MICRO HYDRO POWER GENERATING EQUIPMENT
MICRO HYDRO POWER GENERATING EQUIPMENT TOSHIBA TOSHIBA ENGINEERING In general, specifications of hydroelectric power system vary depending upon the installation location. The hydro turbine and generator
WIND AND SOLAR ENERGY DEVELOPMENTS IN IRAN
WIND AND SOLAR ENERGY DEVELOPMENTS IN IRAN H. Kazemi Karegar a,b, A.Zahedi a,v. Ohis a, G. taleghani b and M. Khalaji b a Department of Electrical & Computer Systems Engineering, PO Box 35, Monash University,
e7/ppa Workshop on Renewable Energy - TEST ANSWER -
e7/ppa Workshop on Renewable Energy - TEST ANSWER - NAME UTILITY 1 Question 1: Give two kinds of gases that cause the global warming. Most serious Green house gas. CO 2 (Carbon dioxide), CH 4 (Methane),
HYDROMATRIX Jebel Aulia - Sudan
HYDROMATRIX Jebel Aulia - Sudan www.andritz.com HYDROMATRIX - Concept Jebel Aulia - Sudan HYDROMATRIX is a new concept of hydraulic energy generation, which has been developed by an American engineer in
INTERNATIONAL ELECTROTECHNICAL COMMISSION
RENEWABle ENERGies INTERNATIONAL ELECTROTECHNICAL COMMISSION RENEWABle ENERGIES 1 In standardization, we work in three areas concerned with RE: water, sun and wind. Technical Committee 4: Hydraulic turbines.
Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal
Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 Feasibility of Hydrogen Production from Micro Hydropower Projects
Report Tidal Power Generation Systems
The American University in Cairo Engineering Department ENGR 318 Spring 2001 Report Tidal Power Generation Systems Submitted to: Prof. Dr. Mahmoud Gilany By: Sherif Masoud Maher Amer Mohamed Samir Introduction
Selection of Optimum Hybrid Stand Alone Systems
Selection of Optimum Hybrid Stand Alone Systems Belgin Emre TÜRKAY Electrical Engineering Department, İstanbul Technical University, Ayazağa, Turkey turkayb@ itu.edu.tr Abstract-- A development area in
IDENTIFY ALTERNATIVE ENERGY RESOURCES SUCH AS WIND, SOLAR, HYDROELECTRIC, GEOTHERMAL, AND BIOFUELS. ALTERNATIVE ENERGY. Biofuels
IDENTIFY ALTERNATIVE ENERGY RESOURCES SUCH AS WIND, SOLAR, HYDROELECTRIC, GEOTHERMAL, AND BIOFUELS. ALTERNATIVE ENERGY Biofuels are produced from living organisms or from m e t a b o l i c b y - p r o
Energy and Society. Professor Ani Aprahamian
Energy and Society Professor Ani Aprahamian Wednesday, September 14th Nieuwland Science Hall 123; 6 pm - 7pm Dr. Peter Burns - "Nuclear Energy: Past Mistakes, Current Challenges, Future Prospects" Thursday,
ALL STAR ELECTRIC COMPANY 10,000 Trumbull SE, Suite #F Albuquerque, NM 87123 (505) 856-1010 voice & fax NM License 21880 www.allstarelec.
ALL STAR ELECTRIC COMPANY 10,000 Trumbull SE, Suite #F Albuquerque, NM 87123 (505) 856-1010 voice & fax NM License 21880 www.allstarelec.com On-Site Power System Specialists: Photovoltaics, Wind Turbine
Hydro Power Projections Report. Jennifer Palmer
Hydro Power Projections Report Jennifer Palmer Abstract- The purpose of this report is to assess the current and future role of hydro power in the UK energy supply market. The historical trends and barriers
POWER AFRICA GEOTHERMAL ROADSHOW. Presented by Mekuria Lemma Ethiopian Electric Power Strategy & Investment Head SEP 28 Oct 3, 2014
POWER AFRICA GEOTHERMAL ROADSHOW Presented by Mekuria Lemma Ethiopian Electric Power Strategy & Investment Head SEP 28 Oct 3, 2014 Country in the horn of Africa Total area 1.13 million square km 90 million
Design of Micro-Hydro-Electric Power Station
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-3, Issue-3, February 214 Design of Micro-Hydro-Electric Power Station Bilal Abdullah Nasir Abstract: Micro-hydro-electric
Smart Power for Environmentally-Sound Economic Development (SPEED), Initiative in Development. power sources
Smart Power for Environmentally-Sound Economic Development (SPEED), Initiative in Development Off-grid green power Decentralized distributed power sources 0 Defining the Problem Almost 2 billion people
University of Nairobi
Sustainable Management of Micro Hydropower Systems for Rural Electrification The Case of Mt. Kenya Water Catchment Area By AKAKI, Rodgers Master of Science Energy Management University of Nairobi November
