Throw Part IV: spin-induced throw
|
|
|
- Marvin Marsh
- 10 years ago
- Views:
Transcription
1 David G. Alciatore, PhD ( Dr. Dave ) Throw Part IV: spin-induced throw ILLUSTRATED PRINCIPLES Note: Supporting narrated video (NV) demonstrations, high-speed video (HSV) clips, and technical proofs (TP) can be accessed and viewed online at billiards.colostate.edu. The reference numbers used in the article help you locate the resources on the website. If you have a or inconvenient Internet connection, you might want to view the resources from a CD-ROM. See the website for details. This is the fourth of a series of articles concerning throw effects. So far, I ve looked at basic terminology, examples of where throw can help you or hurt you in game situations, the effects of cut angle and speed, and the effects of follow and draw. All of my past articles are available on my website (billiards.colostate.edu) if you want to refer back to them. To refresh your memory, throw is change in the object ball direction due to sliding friction forces between the cue ball (CB) and object ball (OB) during impact. NV 4.15, 4.16, 7.5, and 7.6 show examples of both cutinduced throw (CIT) and spin-induced throw (SIT). See the video demos and the previous articles for more information. normal video NV 4.15 Using throw to make a partially blocked shot NV 4.16 Over-cutting a cut shot to compensate for throw NV 7.5 Frozen ball throw NV 7.6 Frozen cue-ball throw Here is a summary of the most important conclusions from previous articles: For small cut angle shots (i.e., fuller hits), the amount of CIT does not vary with shot speed, but increases with cut angle. For larger cut angle shots (i.e., thinner hits), the amount of CIT is significantly larger for er speed shots as compared to er speed shots. The amount of CIT decreases some with larger cut angles. Maximum CIT occurs at close to a half-ball hit (30º cut angle). CIT is largest for a stun shot. Both follow and draw reduce CIT (as compared to stun), and they do so by the same amount. This month, we will look at spin-induced throw (SIT) resulting from English. As illustrated in Diagram 1, English creates a sideways friction force on the object ball that throws the object ball off the impact line (AKA line of centers ). As shown in Diagram, left English throws the object ball to the right and right English throws the object ball to the left.
2 thrown object ball motion impact line sideways throwing force due to sidespin friction Diagram 1 Spin-induced throw (SIT) a) left English throws the object ball to the right thrown object ball path b) right English throws the object ball to the left Diagram SIT directions Diagram 3 shows a graph from the throw analysis in TP A.14 showing how SIT varies with English and vertical plane spin (i.e., the amount of draw or follow) for a straight-on (zero cut angle) shot as shown in Diagram 1. The graph is a plot of the amount of throw (on the vertical axis) vs. the amount of English (on the horizontal axis). The amount of English is specified as the percentage of maximum recommended English (as described in my July 06 article dealing with tips of English ). Right English (the right side of the graph) is reported as a positive number and designated with R, and left English (the left side of the graph) is negative and is designated with L. Throw to the left (from right English) is labeled negative (the bottom half of the graph), and throw to the right (from left English) is labeled positive (the top half of the graph). The red curve shows how SIT varies with English for a stun shot (0% draw or follow). The green curve shows the effect for a 50% draw or follow shot (i.e., with half the amount of spin as a typical maximum draw or follow shot). The blue curve shows the effect for a maximum spin (100%) draw or follow shot. See my July 06 article for more information about maximum recommended draw/follow/english. As we saw last month, the effects of follow and draw on the amount of throw is the same. The experimental results presented last month proved this for CIT and the detailed math and physics (for the nerds out there) can be found in TP A.4. The conclusions also apply to SIT.
3 4 3 throw angle (degrees) C 100% follow/draw (F/D) B 50% F/D -3-4 A stun (0% F/D) -100% -75% (3/4 L) -50% (1/ L) -5% (1/4 L) 0 5% (1/4 R) 50% (1/ R) 75% (3/4 R) 100% amount of English (% of max) Diagram 3 SIT vs. vertical plane spin and English technical proof TP A.14 The effects of cut angle, speed, and spin on object ball throw TP A.4 The effects of follow and draw on throw To help interpret the results in Diagram 3, Diagram 4 illustrates the data for the three example points labeled A, B, and C. Shot A is a stun shot with about 35% right English (about 1/ tip ), which results in about 3.8º of SIT to the left. Shot B is a half spin (50%) follow or draw shot with about 15% of right English (about 1/4 tip ), which results in about 1.º SIT to the left. Shot C is a maximum spin (100%) follow or draw shot, with about 75% left English (about 1 tip ), and it results in only about 1º of throw to the right.
4 3.8º shot "A" stun 35% English 1.º shot "B" or 50% draw or follow 15% English shot "C" or 100% draw or follow 75% English 1º Diagram 4 Example shots from Diagram 3 Here are some conclusions that can be drawn from the graph in Diagram 3: SIT is maximum for stun shots. Follow and draw both reduce SIT, and they do so by the same amount. More English gives you more SIT only up to a point (about 35% English for a stun shot). Additional English (beyond 35% for stun) actually reduces the amount of SIT (i.e., more English doesn t always give you more throw). The amount of throw can increase significantly as a small amount of English is added, especially for a stun shot. So how can this information be useful in your game? Here are a few examples: 1. When not using English, make sure you are hitting the center of that cue ball; otherwise, SIT might make you miss your shot. This is especially important for stun shots.. If you need to throw an object ball a lot (e.g., as with the shot in NV 4.15), use a soft stun shot with about 35% English (about 1/ tip). This is one of those cases where more (in this case, English) is not better. 3. If stun is not required for position on the next shot, use draw or follow to minimize the amount of throw. Also, if you are hitting a follow or draw shot with English, remember that you don t need to correct as much for throw (because it is smaller than that for a stun shot). I hope you are enjoying and learning from my series of articles dealing with throw. Over the next few months we ll look at the combination of CIT and SIT, the effects of outside English, and various approaches for dealing with throw in your game. Good luck with your game, Dr. Dave
5 PS: If you want to refer back to any of my previous articles and resources, you can access them online at billiards.colostate.edu. Dr. Dave is a mechanical engineering professor at Colorado State University in Fort Collins, CO. He is also author of the book: The Illustrated Principles of Pool and Billiards.
90/30 Degree Rule Follow-up Part I
David Alciatore, PhD ( Dr. Dave ) ILLUSTRATED PRINCIPLES 90/30 Degree Rule Follow-up Part I Note: Supporting narrated video (NV) demonstrations, high-speed video (HSV) clips, and technical proofs (TP)
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
Break-even analysis. On page 256 of It s the Business textbook, the authors refer to an alternative approach to drawing a break-even chart.
Break-even analysis On page 256 of It s the Business textbook, the authors refer to an alternative approach to drawing a break-even chart. In order to survive businesses must at least break even, which
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
EDUH 1017 - SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
OPTIONS TRADING AS A BUSINESS UPDATE: Using ODDS Online to Find A Straddle s Exit Point
This is an update to the Exit Strategy in Don Fishback s Options Trading As A Business course. We re going to use the same example as in the course. That is, the AMZN trade: Buy the AMZN July 22.50 straddle
Maya 2014 Basic Animation & The Graph Editor
Maya 2014 Basic Animation & The Graph Editor When you set a Keyframe (or Key), you assign a value to an object s attribute (for example, translate, rotate, scale, color) at a specific time. Most animation
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
ENERGYand WORK (PART I and II) 9-MAC
ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
Pre-Calculus Math 12 First Assignment
Name: Pre-Calculus Math 12 First Assignment This assignment consists of two parts, a review of function notation and an introduction to translating graphs of functions. It is the first work for the Pre-Calculus
Problem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
Chapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
Graphing Equations. with Color Activity
Graphing Equations with Color Activity Students must re-write equations into slope intercept form and then graph them on a coordinate plane. 2011 Lindsay Perro Name Date Between The Lines Re-write each
Mathematics on the Soccer Field
Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
Get to Know Golf! John Dunigan
Get to Know Golf! John Dunigan Get to Know Golf is an initiative designed to promote the understanding the laws that govern ball flight. This information will help golfers develop the most important skill
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
The Bullet-Block Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
A Recognized Instructor Course
The San Francisco Billiard Academy Presents: A Recognized Instructor Course Taught by Billiard Congress of America Certified Instructors Eric Harada Bob Jewett Joseph Mejia What to Teach How to Teach It
This document contains Chapter 2: Statistics, Data Analysis, and Probability strand from the 2008 California High School Exit Examination (CAHSEE):
This document contains Chapter 2:, Data Analysis, and strand from the 28 California High School Exit Examination (CAHSEE): Mathematics Study Guide published by the California Department of Education. The
2-1 Position, Displacement, and Distance
2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
Football Learning Guide for Parents and Educators. Overview
Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football
Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1
Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally
Acceleration Introduction: Objectives: Methods:
Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration
mouse (or the option key on Macintosh) and move the mouse. You should see that you are able to zoom into and out of the scene.
A Ball in a Box 1 1 Overview VPython is a programming language that is easy to learn and is well suited to creating 3D interactive models of physical systems. VPython has three components that you will
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
STATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this
Bicycle Math. presented to the Olivetti Club. Timothy E. Goldberg. March 30, 2010. Cornell University Ithaca, New York
Bicycle Math presented to the Olivetti Club Timothy E. Goldberg Cornell University Ithaca, New York March 30, 2010 Abstract Some pretty interesting mathematics, especially geometry, arises naturally from
LAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage
Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This article provides a systematic exposition
LAB 6 - GRAVITATIONAL AND PASSIVE FORCES
L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
Paper Airplanes & Scientific Methods
Paper Airplanes 1 Name Paper Airplanes & Scientific Methods Scientific Inquiry refers to the many different ways in which scientists investigate the world. Scientific investigations are done to answer
KE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
WPA World Artistic Pool Championship. Official Shot / Challenge Program. November 8, 2011 1
WPA World Artistic Pool Championship 2012 Official Shot / Challenge Program November 8, 2011 1 Revision History November 30, 2010: Initial version of shot program. January 10, 2011: February 14, 2011:
B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.
CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
Pendulum Force and Centripetal Acceleration
Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Balanced & Unbalanced Forces
3 rd Grade Force in Motion An object's motion changes because of force. Pushing and Pulling are Kinds of Forces Motion is movement that changes an object's position. Pushing or pulling forces can be used
Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
SCIENCE OF SHOOTING POWERPOINT
SCIENCE OF SHOOTING POWERPOINT [email protected] PowerPoint based on the Dr. Jim Solum Science of Shooting books Copyright 2011 1 CHAPTER 12part II FUNDAMENTAL CONCEPTS 59 Slides Dr. Jim Solum Copyright
GRAPHS/TABLES. (line plots, bar graphs pictographs, line graphs)
GRAPHS/TABLES (line plots, bar graphs pictographs, line graphs) Standard: 3.D.1.2 Represent data using tables and graphs (e.g., line plots, bar graphs, pictographs, and line graphs). Concept Skill: Graphs
PLOTTING DATA AND INTERPRETING GRAPHS
PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they
How to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
Session 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
CSU, Fresno - Institutional Research, Assessment and Planning - Dmitri Rogulkin
My presentation is about data visualization. How to use visual graphs and charts in order to explore data, discover meaning and report findings. The goal is to show that visual displays can be very effective
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions
Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I
WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal
IN THE HANDS OF TIME
MATHS B-DAY 2006 Friday 24 November IN THE HANDS OF TIME The Maths B-Day is sponsored by and Maths B-day 2006-1- Wiskunde B-dag 2006 0 Introduction The maths B-day assignment this year is totally focused
Student s User Guide. Need help? Contact us at [email protected] or 1 800 936 6899. 1
Student s User Guide Need help? Contact us at [email protected] or 1 800 936 6899. 1 Contents Introduction 3 Prep U Features 3 System Requirements 3 Getting Started 4 Option One: Register an Access
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Colorado State University. Guide for 4-H Photography Judges
Colorado State University Guide for 4-H Photography Judges Photography Criteria Use the following criteria to help you judge 4-H photography. TECHNICAL FOCUS Adjustments of the distance setting on a lens
Chapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
Project: OUTFIELD FENCES
1 Project: OUTFIELD FENCES DESCRIPTION: In this project you will work with the equations of projectile motion and use mathematical models to analyze a design problem. Two softball fields in Rolla, Missouri
Supplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
One- and Two-dimensional Motion
PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of
CS100B Fall 1999. Professor David I. Schwartz. Programming Assignment 5. Due: Thursday, November 18 1999
CS100B Fall 1999 Professor David I. Schwartz Programming Assignment 5 Due: Thursday, November 18 1999 1. Goals This assignment will help you develop skills in software development. You will: develop software
Pendulum Investigations. Level A Investigations. Level B Investigations
Pendulum Investigations Level A Investigations The Pendulum How can you change the period of a pendulum? Students are introduced to the vocabulary used to describe harmonic motion: cycle, period, and amplitude.
Chapter 7 Momentum and Impulse
Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time
Hierarchical Clustering Analysis
Hierarchical Clustering Analysis What is Hierarchical Clustering? Hierarchical clustering is used to group similar objects into clusters. In the beginning, each row and/or column is considered a cluster.
Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Bonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB)
Bonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB) I recently decided to read Part Three of The Mathematics of Poker (TMOP) more carefully than I did the first time around.
Experiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
Millikan Oil Drop. Introduction
Millikan Oil Drop Introduction Towards the end of the 19th century a clear picture of the atom was only beginning to emerge. An important aspect of this developing picture was the microscopic nature of
Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63
Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ
Appendix C. Vernier Tutorial
C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer
MICROSOFT POWERPOINT STEP BY STEP GUIDE
IGCSE ICT SECTION 16 PRESENTATION AUTHORING MICROSOFT POWERPOINT STEP BY STEP GUIDE Mark Nicholls ICT Lounge Page 1 Contents Importing text to create slides Page 4 Manually creating slides.. Page 5 Removing
Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy
Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy
13 Managing Devices. Your computer is an assembly of many components from different manufacturers. LESSON OBJECTIVES
LESSON 13 Managing Devices OBJECTIVES After completing this lesson, you will be able to: 1. Open System Properties. 2. Use Device Manager. 3. Understand hardware profiles. 4. Set performance options. Estimated
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
Plots, Curve-Fitting, and Data Modeling in Microsoft Excel
Plots, Curve-Fitting, and Data Modeling in Microsoft Excel This handout offers some tips on making nice plots of data collected in your lab experiments, as well as instruction on how to use the built-in
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
5 PROJECTILES. 5.0 Introduction. Objectives
5 PROJECTILES Chapter 5 Projectiles Objectives After studying this chapter you should recognise that projectile motion is common; understand how to obtain a simple mathematical model of projectile motion;
Kinetic Friction. Experiment #13
Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test
Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together
Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a
